

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Buildbot 0.8.7-61-g6a0fea1 documentation

 This is the BuildBot documentation for Buildbot version 0.8.7-61-g6a0fea1.

If you are evaluating Buildbot and would like to get started quickly, start
with the Tutorial. Regular users of Buildbot should
consult the Manual, and those wishing to modify Buildbot
directly will want to be familiar with the Developer's Documentation.

Table Of Contents

	Buildbot Tutorial
	First Run

	A Quick Tour

	Buildbot Manual
	Introduction

	Installation

	Concepts

	Configuration

	Customization

	Command-line Tool

	Resources

	Buildbot Development
	Master Organization

	Definitions

	Buildbot Coding Style

	Buildbot's Test Suite

	Configuration

	Error Handling

	Reconfiguration

	Utilities

	Database

	Build Result Codes

	File Formats

	Web Status

	Master-Slave API

	String Encodings

	Metrics

	Classes

	Release Notes for Buildbot 0.8.7-61-g6a0fea1
	Master

	Slave

	Details

	Older Versions

Indices and Tables

	Index

	Buildmaster Configuration Index

	Scheduler Index

	Change Source Index

	Build Step Index

	Status Target Index

	Command Line Index

	Module Index

	Search Page

Copyright

Copyright Buildbot Team Members

Copying and distribution of this file, with or without modification, are
permitted in any medium without royalty provided the copyright notice and this
notice are preserved.

 Copyright Buildbot Team Members.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 	v0.8.7

 	v0.8.6p1

 	v0.8.6

 	v0.8.5

 	v0.8.4

 Buildbot Tutorial

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Buildbot 0.8.7-61-g6a0fea1 documentation

Buildbot Tutorial

Contents:

	First Run
	Goal

	Getting the code

	Creating a master

	Creating a slave

	A Quick Tour
	Goal

	Setting Project Name and URL

	Configuration Errors

	Your First Build

	Enabling the IRC Bot

	Setting Authorized Web Users

	Debugging with Manhole

	Adding a 'try' scheduler

 Copyright Buildbot Team Members.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 	v0.8.7

 	v0.8.6p1

 	v0.8.6

 	v0.8.5

 	v0.8.4

 First Run

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Buildbot 0.8.7-61-g6a0fea1 documentation

 	Buildbot Tutorial

First Run

Goal

This tutorial will take you from zero to running your first buildbot master
and slave as quickly as possible, without changing the default configuration.

This tutorial is all about instant gratification and the five minute
experience: in five minutes we want to convince you that this project Works,
and that you should seriously consider spending some more time learning
the system. In this tutorial no configuration or code changes are done.

This tutorial assumes that you are running on Unix, but might be adaptable
easily to Windows.

For the quickest way through, you should be able to cut and paste each shell
block from this tutorial directly into a terminal.

Getting the code

There are many ways to get the code on your machine.
For this tutorial, we will use easy_install to install and run buildbot.
While this isn't the preferred method to install buildbot, it is the simplest
one to use for the purposes of this tutorial because it should work on all
systems. (The preferred method would be to install buildbot from packages
of your distribution.)

	To make this work, you will need the following installed:

	
	python [http://www.python.org/] and the development packages for it

	virtualenv [http://pypi.python.org/pypi/virtualenv/]

	git [http://git-scm.com/]

Preferably, use your package installer to install these.

You will also need a working Internet connection, as virtualenv and
easy_install will need to download other projects from the Internet.

Note

Buildbot does not require root access. Run the commands in this tutorial
as a normal, unpriviledged user.

Let's dive in by typing at the terminal:

cd
mkdir -p tmp/buildbot
cd tmp/buildbot
virtualenv --no-site-packages sandbox
source sandbox/bin/activate
easy_install buildbot

Creating a master

At the terminal, type:

buildbot create-master master
mv master/master.cfg.sample master/master.cfg

Now start it:

buildbot start master
tail -f master/twistd.log

You will now see all of the log information from the master in this terminal.
You should see lines like this:

2011-12-04 10:04:40-0600 [-] Starting factory <buildbot.status.web.baseweb.RotateLogSite instance at 0x2e36638>
2011-12-04 10:04:40-0600 [-] Setting up http.log rotating 10 files of 10000000 bytes each
2011-12-04 10:04:40-0600 [-] WebStatus using (/home/dustin/tmp/buildbot/master/public_html)
2011-12-04 10:04:40-0600 [-] removing 0 old schedulers, updating 0, and adding 1
2011-12-04 10:04:40-0600 [-] adding 1 new changesources, removing 0
2011-12-04 10:04:40-0600 [-] gitpoller: using workdir '/home/dustin/tmp/buildbot/master/gitpoller-workdir'
2011-12-04 10:04:40-0600 [-] gitpoller: initializing working dir from git://github.com/buildbot/pyflakes.git
2011-12-04 10:04:40-0600 [-] configuration update complete
2011-12-04 10:04:41-0600 [-] gitpoller: checking out master
2011-12-04 10:04:41-0600 [-] gitpoller: finished initializing working dir from git://github.com/buildbot/pyflakes.git at rev 1a4af6ec1dbb724b884ea14f439b272f30439e4d

Creating a slave

Open a new terminal, and first enter the same sandbox you created before:

cd
cd tmp/buildbot
source sandbox/bin/activate

Install buildslave command:

easy_install buildbot-slave

Now, create the slave:

buildslave create-slave slave localhost:9989 example-slave pass

The user:host pair, username, and password should be the same as the ones in
master.cfg; verify this is the case by looking at the section for c['slaves']
and c['slavePortnum']:

cat master/master.cfg

Now, start the slave:

buildslave start slave

Check the slave's log:

tail -f slave/twistd.log

You should see lines like the following at the end of the worker log:

2009-07-29 20:59:18+0200 [Broker,client] message from master: attached
2009-07-29 20:59:18+0200 [Broker,client] SlaveBuilder.remote_print(buildbot-full): message from master: attached
2009-07-29 20:59:18+0200 [Broker,client] sending application-level keepalives every 600 seconds

Meanwhile, in the other terminal, in the master log, if you tail the log you should see lines like this:

2011-03-13 18:46:58-0700 [Broker,1,127.0.0.1] slave 'example-slave' attaching from IPv4Address(TCP, '127.0.0.1', 41306)
2011-03-13 18:46:58-0700 [Broker,1,127.0.0.1] Got slaveinfo from 'example-slave'
2011-03-13 18:46:58-0700 [Broker,1,127.0.0.1] bot attached
2011-03-13 18:46:58-0700 [Broker,1,127.0.0.1] Buildslave example-slave attached to runtests

You should now be able to go to http://localhost:8010, where you will see
a web page similar to:

[image: index page]
Click on the
Waterfall Display link [http://localhost:8010/waterfall]
and you get this:

[image: empty waterfall.]
That's the end of the first tutorial. A bit underwhelming, you say? Well, that
was the point! We just wanted to get you to dip your toes in the water. It's
easy to take your first steps, but this is about as far as we can go without
touching the configuration.

You've got a taste now, but you're probably curious for more. Let's step it
up a little in the second tutorial by changing the configuration and doing
an actual build. Continue on to A Quick Tour

 Copyright Buildbot Team Members.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 	v0.8.7

 	v0.8.6p1

 	v0.8.6

 	v0.8.5

 	v0.8.4

 A Quick Tour

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Buildbot 0.8.7-61-g6a0fea1 documentation

 	Buildbot Tutorial

A Quick Tour

Goal

This tutorial will expand on the First Run tutorial by taking a
quick tour around some of the features of buildbot that are hinted at in the
comments in the sample configuration. We will simply change parts of the
default configuration and explain the activated features.

As a part of this tutorial, we will make buildbot do a few actual builds.

	This section will teach you how to:

	
	make simple configuration changes and activate them

	deal with configuration errors

	force builds

	enable and control the IRC bot

	enable ssh debugging

	add a 'try' scheduler

Setting Project Name and URL

Let's start simple by looking at where you would customize the buildbot's project name and URL.

We continue where we left off in the First Run tutorial.

Open a new terminal, and first enter the same sandbox you created before (where $EDITOR is your editor of choice like vim, gedit, or emacs):

cd
cd tmp/buildbot
source sandbox/bin/activate
$EDITOR master/master.cfg

Now, look for the section marked PROJECT IDENTITY which reads:

####### PROJECT IDENTITY

the 'title' string will appear at the top of this buildbot
installation's html.WebStatus home page (linked to the
'titleURL') and is embedded in the title of the waterfall HTML page.

c['title'] = "Pyflakes"
c['titleURL'] = "http://divmod.org/trac/wiki/DivmodPyflakes"

If you want, you can change either of these links to anything you want to see what happens when you change them.

After making a change go into the terminal and type:

buildbot reconfig master

You will see a handful of lines of output from the master log, much like this:

2011-12-04 10:11:09-0600 [-] loading configuration from /home/dustin/tmp/buildbot/master/master.cfg
2011-12-04 10:11:09-0600 [-] configuration update started
2011-12-04 10:11:09-0600 [-] builder runtests is unchanged
2011-12-04 10:11:09-0600 [-] removing IStatusReceiver <WebStatus on port tcp:8010 at 0x2aee368>
2011-12-04 10:11:09-0600 [-] (TCP Port 8010 Closed)
2011-12-04 10:11:09-0600 [-] Stopping factory <buildbot.status.web.baseweb.RotateLogSite instance at 0x2e36638>
2011-12-04 10:11:09-0600 [-] adding IStatusReceiver <WebStatus on port tcp:8010 at 0x2c2d950>
2011-12-04 10:11:09-0600 [-] RotateLogSite starting on 8010
2011-12-04 10:11:09-0600 [-] Starting factory <buildbot.status.web.baseweb.RotateLogSite instance at 0x2e36e18>
2011-12-04 10:11:09-0600 [-] Setting up http.log rotating 10 files of 10000000 bytes each
2011-12-04 10:11:09-0600 [-] WebStatus using (/home/dustin/tmp/buildbot/master/public_html)
2011-12-04 10:11:09-0600 [-] removing 0 old schedulers, updating 0, and adding 0
2011-12-04 10:11:09-0600 [-] adding 1 new changesources, removing 1
2011-12-04 10:11:09-0600 [-] gitpoller: using workdir '/home/dustin/tmp/buildbot/master/gitpoller-workdir'
2011-12-04 10:11:09-0600 [-] GitPoller repository already exists
2011-12-04 10:11:09-0600 [-] configuration update complete

Reconfiguration appears to have completed successfully.

The important lines are the ones telling you that it is loading the new
configuration at the top, and the one at the bottom saying that the update
is complete.

Now, if you go back to
the waterfall page [http://localhost:8010/waterfall],
you will see that the project's name is whatever you may have changed it to and when you click on the
the URL of the project name at the bottom of the page it should take you to the link you put in the configuration.

Configuration Errors

It is very common to make a mistake when configuring buildbot, so you might
as well see now what happens in that case and what you can do to fix
the error.

Open up the config again and introduce a syntax error by removing the first
single quote in the two lines you changed, so they read:

c[title'] = "Pyflakes"
c['titleURL'] = "http://divmod.org/trac/wiki/DivmodPyflakes"

This creates a Python SyntaxError. Now go ahead and reconfig the buildmaster:

buildbot reconfig master

This time, the output looks like:

2011-12-04 10:12:28-0600 [-] loading configuration from /home/dustin/tmp/buildbot/master/master.cfg
2011-12-04 10:12:28-0600 [-] configuration update started
2011-12-04 10:12:28-0600 [-] error while parsing config file
2011-12-04 10:12:28-0600 [-] Unhandled Error
 Traceback (most recent call last):
 File "/home/dustin/tmp/buildbot/sandbox/lib/python2.7/site-packages/buildbot-0.8.5-py2.7.egg/buildbot/master.py", line 197, in loadTheConfigFile
 d = self.loadConfig(f)
 File "/home/dustin/tmp/buildbot/sandbox/lib/python2.7/site-packages/buildbot-0.8.5-py2.7.egg/buildbot/master.py", line 579, in loadConfig
 d.addCallback(do_load)
 File "/home/dustin/tmp/buildbot/sandbox/lib/python2.7/site-packages/Twisted-11.1.0-py2.7-linux-x86_64.egg/twisted/internet/defer.py", line 298, in addCallback
 callbackKeywords=kw)
 File "/home/dustin/tmp/buildbot/sandbox/lib/python2.7/site-packages/Twisted-11.1.0-py2.7-linux-x86_64.egg/twisted/internet/defer.py", line 287, in addCallbacks
 self._runCallbacks()
 --- <exception caught here> ---
 File "/home/dustin/tmp/buildbot/sandbox/lib/python2.7/site-packages/Twisted-11.1.0-py2.7-linux-x86_64.egg/twisted/internet/defer.py", line 545, in _runCallbacks
 current.result = callback(current.result, *args, **kw)
 File "/home/dustin/tmp/buildbot/sandbox/lib/python2.7/site-packages/buildbot-0.8.5-py2.7.egg/buildbot/master.py", line 226, in do_load
 exec f in localDict
 exceptions.SyntaxError: EOL while scanning string literal (master.cfg, line 17)

Never saw reconfiguration finish.

This time, it's clear that there was a mistake. in the configuration.
Luckily, the buildbot master will ignore the wrong configuration and keep
running with the previous configuration.

The message is clear enough, so open the configuration again, fix the error,
and reconfig the master.

Your First Build

By now you're probably thinking: "All this time spent and still not done a
single build ? What was the name of this project again ?"

On the waterfall [http://localhost:8010/waterfall]. page, click on the
runtests link. You'll see a builder page, and in the upper-right corner is a
box where you can login. The default username and password are both
"pyflakes". Once you've logged in, you will see some new options that allow
you to force a build:

[image: force a build.]
Click Force Build - there's no need to fill in any of the fields in this
case. Next, click on view in waterfall [http://localhost:8010/waterfall?show=runtests].

You will now see:

[image: an successful test run happened.]

Enabling the IRC Bot

Buildbot includes an IRC bot that you can tell to join a channel and control
to report on the status of buildbot.

First, start an IRC client of your choice, connect to irc.freenode.org and
join an empty channel. In this example we will use #buildbot-test, so go
join that channel. (Note: please do not join the main buildbot channel!)

Edit the config and look for the STATUS TARGETS section. Enter these lines
below the WebStatus line in master.cfg:

c['status'].append(html.WebStatus(http_port=8010, authz=authz_cfg))

from buildbot.status import words
c['status'].append(words.IRC(host="irc.freenode.org", nick="bbtest",
 channels=["#buildbot-test"]))

Reconfigure the build master then do:

cat master/twistd.log | grep IRC

The log output should contain a line like this:

2009-08-01 15:35:20+0200 [-] adding IStatusReceiver <buildbot.status.words.IRC instance at 0x300d290>

You should see the bot now joining in your IRC client.
In your IRC channel, type:

bbtest: commands

to get a list of the commands the bot supports.

Let's tell the bot to notify certain events, to learn which EVENTS we can notify on:

bbtest: help notify

Now let's set some event notifications:

bbtest: notify on started
bbtest: notify on finished
bbtest: notify on failure

The bot should have responded to each of the commands:

<@lsblakk> bbtest: notify on started
<bbtest> The following events are being notified: ['started']
<@lsblakk> bbtest: notify on finished
<bbtest> The following events are being notified: ['started', 'finished']
<@lsblakk> bbtest: notify on failure
<bbtest> The following events are being notified: ['started', 'failure', 'finished']

Now, go back to the web interface and force another build.

Notice how the bot tells you about the start and finish of this build:

< bbtest> build #1 of runtests started, including []
< bbtest> build #1 of runtests is complete: Success [build successful] Build details are at http://localhost:8010/builders/runtests/builds/1

You can also use the bot to force a build:

bbtest: force build runtests test build

But to allow this, you'll need to have allowForce in the IRC
configuration:

c['status'].append(words.IRC(host="irc.freenode.org", nick="bbtest",
 allowForce=True,
 channels=["#buildbot-test"]))

This time, the bot is giving you more output, as it's specifically responding
to your direct request to force a build, and explicitly tells you when the
build finishes:

<@lsblakk> bbtest: force build runtests test build
< bbtest> build #2 of runtests started, including []
< bbtest> build forced [ETA 0 seconds]
< bbtest> I'll give a shout when the build finishes
< bbtest> build #2 of runtests is complete: Success [build successful] Build details are at http://localhost:8010/builders/runtests/builds/2

You can also see the new builds in the web interface.

[image: a successful test run from IRC happened.]

Setting Authorized Web Users

Further down, look for the WebStatus configuration:

c['status'] = []

from buildbot.status import html
from buildbot.status.web import authz, auth

authz_cfg=authz.Authz(
 # change any of these to True to enable; see the manual for more
 # options
 auth=auth.BasicAuth([("pyflakes","pyflakes")]),
 gracefulShutdown = False,
 forceBuild = 'auth', # use this to test your slave once it is set up
 forceAllBuilds = False,
 pingBuilder = False,
 stopBuild = False,
 stopAllBuilds = False,
 cancelPendingBuild = False,
)
c['status'].append(html.WebStatus(http_port=8010, authz=authz_cfg))

The auth.BasicAuth() define authorized users and their passwords. You can
change these or add new ones. See WebStatus for more about the
WebStatus configuration.

Debugging with Manhole

You can do some debugging by using manhole, an interactive Python shell. It
exposes full access to the buildmaster's account (including the ability to
modify and delete files), so it should not be enabled with a weak or easily
guessable password.

To use this you will need to install an additional package or two to your virtualenv:

cd
cd tmp/buildbot
source sandbox/bin/activate
easy_install pycrypto
easy_install pyasn1

In your master.cfg find:

c = BuildmasterConfig = {}

Insert the following to enable debugging mode with manhole:

####### DEBUGGING
from buildbot import manhole
c['manhole'] = manhole.PasswordManhole("tcp:1234:interface=127.0.0.1","admin","passwd")

After restarting the master, you can ssh into the master and get an interactive python shell:

ssh -p1234 admin@127.0.0.1
enter passwd at prompt

Note

The pyasn1-0.1.1 release has a bug which results in an exception similar to
this on startup:

exceptions.TypeError: argument 2 must be long, not int

If you see this, the temporary solution is to install the previous version
of pyasn1:

pip install pyasn1-0.0.13b

If you wanted to check which slaves are connected and what builders those slaves are assigned to you could do:

>>> master.botmaster.slaves
{'example-slave': <BuildSlave 'example-slave', current builders: runtests>}

Objects can be explored in more depth using dir(x) or the helper function
show(x).

Adding a 'try' scheduler

Buildbot includes a way for developers to submit patches for testing without
committing them to the source code control system. (This is really handy for
projects that support several operating systems or architectures.)

To set this up, add the following lines to master.cfg:

from buildbot.scheduler import Try_Userpass
c['schedulers'].append(Try_Userpass(
 name='try',
 builderNames=['runtests'],
 port=5555,
 userpass=[('sampleuser','samplepass')]))

Then you can submit changes using the try command.

Let's try this out by making a one-line change to pyflakes, say,
to make it trace the tree by default:

git clone git://github.com/buildbot/pyflakes.git pyflakes-git
cd pyflakes-git/pyflakes
$EDITOR checker.py
change "traceTree = False" on line 185 to "traceTree = True"

Then run buildbot's try command as follows:

source ~/tmp/buildbot/sandbox/bin/activate
buildbot try --connect=pb --master=127.0.0.1:5555 --username=sampleuser --passwd=samplepass --vc=git

This will do "git diff" for you and send the resulting patch to
the server for build and test against the latest sources from git.

Now go back to the waterfall [http://localhost:8010/waterfall]
page, click on the runtests link, and scroll down. You should see that
another build has been started with your change (and stdout for the tests
should be chock-full of parse trees as a result). The "Reason" for the
job will be listed as "'try' job", and the blamelist will be empty.

To make yourself show up as the author of the change, use the --who=emailaddr
option on 'buildbot try' to pass your email address.

To make a description of the change show up, use the
--properties=comment="this is a comment" option on 'buildbot try'.

To use ssh instead of a private username/password database, see
Try_Jobdir.

 Copyright Buildbot Team Members.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 	v0.8.7

 	v0.8.6p1

 	v0.8.6

 	v0.8.5

 	v0.8.4

 Buildbot Manual

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Buildbot 0.8.7-61-g6a0fea1 documentation

 This is the BuildBot manual for Buildbot version 0.8.7-61-g6a0fea1.

Buildbot Manual

	Introduction
	History and Philosophy

	System Architecture

	Control Flow

	Installation
	Buildbot Components

	Requirements

	Installing the code

	Running Buildbot's Tests (optional)

	Creating a buildmaster

	Upgrading an Existing Buildmaster

	Creating a buildslave

	Upgrading an Existing Buildslave

	Launching the daemons

	Logfiles

	Shutdown

	Maintenance

	Troubleshooting

	Concepts
	Source Stamps

	Version Control Systems

	Changes

	Scheduling Builds

	BuildSets

	BuildRequests

	Builders

	Build Factories

	Build Slaves

	Builds

	Users

	Build Properties

	Multiple-Codebase Builds

	Configuration
	Configuring Buildbot

	Global Configuration

	Change Sources

	Schedulers

	Buildslaves

	Builder Configuration

	Build Factories

	Properties

	Build Steps

	Interlocks

	Status Targets

	Customization
	Programmatic Configuration Generation

	Merge Request Functions

	Builder Priority Functions

	Build Priority Functions

	Customizing SVNPoller

	Writing Change Sources

	Writing a New Latent Buildslave Implementation

	Custom Build Classes

	Factory Workdir Functions

	Writing New BuildSteps

	Writing New Status Plugins

	Command-line Tool
	buildbot

	buildslave

	Resources

 Copyright Buildbot Team Members.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 	v0.8.7

 	v0.8.6p1

 	v0.8.6

 	v0.8.5

 	v0.8.4

 Introduction

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Buildbot 0.8.7-61-g6a0fea1 documentation

 	Buildbot Manual

Introduction

BuildBot is a system to automate the compile/test cycle required by most
software projects to validate code changes. By automatically rebuilding and
testing the tree each time something has changed, build problems are
pinpointed quickly, before other developers are inconvenienced by the
failure. The guilty developer can be identified and harassed without human
intervention. By running the builds on a variety of platforms, developers
who do not have the facilities to test their changes everywhere before
checkin will at least know shortly afterwards whether they have broken the
build or not. Warning counts, lint checks, image size, compile time, and
other build parameters can be tracked over time, are more visible, and
are therefore easier to improve.

The overall goal is to reduce tree breakage and provide a platform to
run tests or code-quality checks that are too annoying or pedantic for
any human to waste their time with. Developers get immediate (and
potentially public) feedback about their changes, encouraging them to
be more careful about testing before checkin.

Features:

	run builds on a variety of slave platforms

	arbitrary build process: handles projects using C, Python, whatever

	minimal host requirements: python and Twisted

	slaves can be behind a firewall if they can still do checkout

	status delivery through web page, email, IRC, other protocols

	track builds in progress, provide estimated completion time

	flexible configuration by subclassing generic build process classes

	debug tools to force a new build, submit fake Changes,
query slave status

	released under the GPL [http://opensource.org/licenses/gpl-2.0.php]

History and Philosophy

The Buildbot was inspired by a similar project built for a development
team writing a cross-platform embedded system. The various components
of the project were supposed to compile and run on several flavors of
unix (linux, solaris, BSD), but individual developers had their own
preferences and tended to stick to a single platform. From time to
time, incompatibilities would sneak in (some unix platforms want to
use string.h, some prefer strings.h), and then the tree
would compile for some developers but not others. The buildbot was
written to automate the human process of walking into the office,
updating a tree, compiling (and discovering the breakage), finding the
developer at fault, and complaining to them about the problem they had
introduced. With multiple platforms it was difficult for developers to
do the right thing (compile their potential change on all platforms);
the buildbot offered a way to help.

Another problem was when programmers would change the behavior of a
library without warning its users, or change internal aspects that
other code was (unfortunately) depending upon. Adding unit tests to
the codebase helps here: if an application's unit tests pass despite
changes in the libraries it uses, you can have more confidence that
the library changes haven't broken anything. Many developers
complained that the unit tests were inconvenient or took too long to
run: having the buildbot run them reduces the developer's workload to
a minimum.

In general, having more visibility into the project is always good,
and automation makes it easier for developers to do the right thing.
When everyone can see the status of the project, developers are
encouraged to keep the tree in good working order. Unit tests that
aren't run on a regular basis tend to suffer from bitrot just like
code does: exercising them on a regular basis helps to keep them
functioning and useful.

The current version of the Buildbot is additionally targeted at
distributed free-software projects, where resources and platforms are
only available when provided by interested volunteers. The buildslaves
are designed to require an absolute minimum of configuration, reducing
the effort a potential volunteer needs to expend to be able to
contribute a new test environment to the project. The goal is for
anyone who wishes that a given project would run on their favorite
platform should be able to offer that project a buildslave, running on
that platform, where they can verify that their portability code
works, and keeps working.

System Architecture

The Buildbot consists of a single buildmaster and one or more
buildslaves, connected in a star topology. The buildmaster
makes all decisions about what, when, and how to build. It sends
commands to be run on the build slaves, which simply execute the
commands and return the results. (certain steps involve more local
decision making, where the overhead of sending a lot of commands back
and forth would be inappropriate, but in general the buildmaster is
responsible for everything).

The buildmaster is usually fed Changes by some sort of version control
system (Change Sources), which may cause builds to be run. As the
builds are performed, various status messages are produced, which are then sent
to any registered Status Targets.

[image: Overview Diagram]The buildmaster is configured and maintained by the buildmaster
admin, who is generally the project team member responsible for
build process issues. Each buildslave is maintained by a buildslave
admin, who do not need to be quite as involved. Generally slaves are
run by anyone who has an interest in seeing the project work well on
their favorite platform.

BuildSlave Connections

The buildslaves are typically run on a variety of separate machines,
at least one per platform of interest. These machines connect to the
buildmaster over a TCP connection to a publically-visible port. As a
result, the buildslaves can live behind a NAT box or similar
firewalls, as long as they can get to buildmaster. The TCP connections
are initiated by the buildslave and accepted by the buildmaster, but
commands and results travel both ways within this connection. The
buildmaster is always in charge, so all commands travel exclusively
from the buildmaster to the buildslave.

To perform builds, the buildslaves must typically obtain source code
from a CVS/SVN/etc repository. Therefore they must also be able to
reach the repository. The buildmaster provides instructions for
performing builds, but does not provide the source code itself.

[image: BuildSlave Connections]

Buildmaster Architecture

The buildmaster consists of several pieces:

[image: Buildmaster Architecture]
	Change Sources

	Which create a Change object each time something is
modified in the VC repository. Most ChangeSources listen for messages
from a hook script of some sort. Some sources actively poll the
repository on a regular basis. All Changes are fed to the
Schedulers.

	Schedulers

	Which decide when builds should be performed. They collect
Changes into BuildRequests, which are then queued for delivery to
Builders until a buildslave is available.

	Builders

	Which control exactly how each build is performed
(with a series of BuildSteps, configured in a BuildFactory). Each
Build is run on a single buildslave.

	Status plugins

	Which deliver information about the build results
through protocols like HTTP, mail, and IRC.

Each Builder is configured with a list of BuildSlaves that it will use
for its builds. These buildslaves are expected to behave identically:
the only reason to use multiple BuildSlaves for a single Builder is to
provide a measure of load-balancing.

Within a single BuildSlave, each Builder creates its own SlaveBuilder
instance. These SlaveBuilders operate independently from each other.
Each gets its own base directory to work in. It is quite common to
have many Builders sharing the same buildslave. For example, there
might be two buildslaves: one for i386, and a second for PowerPC.
There may then be a pair of Builders that do a full compile/test run,
one for each architecture, and a lone Builder that creates snapshot
source tarballs if the full builders complete successfully. The full
builders would each run on a single buildslave, whereas the tarball
creation step might run on either buildslave (since the platform
doesn't matter when creating source tarballs). In this case, the
mapping would look like:

Builder(full-i386) -> BuildSlaves(slave-i386)
Builder(full-ppc) -> BuildSlaves(slave-ppc)
Builder(source-tarball) -> BuildSlaves(slave-i386, slave-ppc)

and each BuildSlave would have two SlaveBuilders inside it, one for a
full builder, and a second for the source-tarball builder.

Once a SlaveBuilder is available, the Builder pulls one or more
BuildRequests off its incoming queue. (It may pull more than one if it
determines that it can merge the requests together; for example, there
may be multiple requests to build the current HEAD revision). These
requests are merged into a single Build instance, which includes the
SourceStamp that describes what exact version of the source code
should be used for the build. The Build is then randomly assigned to a
free SlaveBuilder and the build begins.

The behaviour when BuildRequests are merged can be customized,
Merging Build Requests.

Status Delivery Architecture

The buildmaster maintains a central Status object, to which various
status plugins are connected. Through this Status object, a full
hierarchy of build status objects can be obtained.

[image: Status Delivery]The configuration file controls which status plugins are active. Each
status plugin gets a reference to the top-level Status object. From
there they can request information on each Builder, Build, Step, and
LogFile. This query-on-demand interface is used by the html.Waterfall
plugin to create the main status page each time a web browser hits the
main URL.

The status plugins can also subscribe to hear about new Builds as they
occur: this is used by the MailNotifier to create new email messages
for each recently-completed Build.

The Status object records the status of old builds on disk in the
buildmaster's base directory. This allows it to return information
about historical builds.

There are also status objects that correspond to Schedulers and
BuildSlaves. These allow status plugins to report information about
upcoming builds, and the online/offline status of each buildslave.

Control Flow

A day in the life of the buildbot:

	A developer commits some source code changes to the repository. A hook
script or commit trigger of some sort sends information about this
change to the buildmaster through one of its configured Change
Sources. This notification might arrive via email, or over a network
connection (either initiated by the buildmaster as it subscribes
to changes, or by the commit trigger as it pushes Changes towards the
buildmaster). The Change contains information about who made the
change, what files were modified, which revision contains the change,
and any checkin comments.

	The buildmaster distributes this change to all of its configured
Schedulers. Any important changes cause the tree-stable-timer
to be started, and the Change is added to a list of those that will go
into a new Build. When the timer expires, a Build is started on each
of a set of configured Builders, all compiling/testing the same source
code. Unless configured otherwise, all Builds run in parallel on the
various buildslaves.

	The Build consists of a series of Steps. Each Step causes some number
of commands to be invoked on the remote buildslave associated with
that Builder. The first step is almost always to perform a checkout of
the appropriate revision from the same VC system that produced the
Change. The rest generally perform a compile and run unit tests. As
each Step runs, the buildslave reports back command output and return
status to the buildmaster.

	As the Build runs, status messages like "Build Started", "Step
Started", "Build Finished", etc, are published to a collection of
Status Targets. One of these targets is usually the HTML Waterfall
display, which shows a chronological list of events, and summarizes
the results of the most recent build at the top of each column.
Developers can periodically check this page to see how their changes
have fared. If they see red, they know that they've made a mistake and
need to fix it. If they see green, they know that they've done their
duty and don't need to worry about their change breaking anything.

	If a MailNotifier status target is active, the completion of a build
will cause email to be sent to any developers whose Changes were
incorporated into this Build. The MailNotifier can be configured to
only send mail upon failing builds, or for builds which have just
transitioned from passing to failing. Other status targets can provide
similar real-time notification via different communication channels,
like IRC.

 Copyright Buildbot Team Members.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 	v0.8.7

 	v0.8.6p1

 	v0.8.6

 	v0.8.5

 	v0.8.4

 Installation

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Buildbot 0.8.7-61-g6a0fea1 documentation

 	Buildbot Manual

Installation

Buildbot Components

Buildbot is shipped in two components: the buildmaster (called buildbot
for legacy reasons) and the buildslave. The buildslave component has far fewer
requirements, and is more broadly compatible than the buildmaster. You will
need to carefully pick the environment in which to run your buildmaster, but
the buildslave should be able to run just about anywhere.

It is possible to install the buildmaster and buildslave on the same system,
although for anything but the smallest installation this arrangement will not
be very efficient.

Requirements

Common Requirements

At a bare minimum, you'll need the following for both the buildmaster and a
buildslave:

Python: http://www.python.org

Buildbot requires python-2.5 or later on the master, although Python-2.7 is
recommended. The slave run on Python-2.4.

Twisted: http://twistedmatrix.com

Buildbot requires Twisted-9.0.0 or later on the master, and Twisted-8.1.0 on
the slave. As always, the most recent version is recommended.

In some cases, Twisted is delivered as a collection of subpackages. You'll
need at least "Twisted" (the core package), and you'll also want
TwistedMail [http://twistedmatrix.com/trac/wiki/TwistedMail], TwistedWeb [http://twistedmatrix.com/trac/wiki/TwistedWeb], and TwistedWords [http://twistedmatrix.com/trac/wiki/TwistedWords] (for sending email,
serving a web status page, and delivering build status via IRC,
respectively). You might also want TwistedConch [http://twistedmatrix.com/trac/wiki/TwistedConch] (for the encrypted Manhole
debug port). Note that Twisted requires ZopeInterface to be installed as
well.

Of course, your project's build process will impose additional
requirements on the buildslaves. These hosts must have all the tools
necessary to compile and test your project's source code.

Windows Support

Buildbot - both master and slave - runs well natively on Windows. The slave runs
well on Cygwin, but because of problems with SQLite on Cygwin, the master does
not.

Buildbot's windows testing is limited to the most recent Twisted and Python
versions. For best results, use the most recent available versions of these
libraries on Windows.

Pywin32: http://sourceforge.net/projects/pywin32/

Twisted requires PyWin32 in order to spawn processes on Windows.

Buildmaster Requirements

sqlite3: http://www.sqlite.org

Buildbot requires SQLite to store its state. Version 3.7.0 or higher is
recommended, although Buildbot will run against earlier versions -- at the
risk of "Database is locked" errors. The minimum version is 3.4.0, below
which parallel database queries and schema introspection fail.

pysqlite: http://pypi.python.org/pypi/pysqlite

The SQLite Python package is required for python-2.5 and earlier (it is already
included in python-2.5 and later, but the version in python-2.5 has nasty bugs)

simplejson: http://pypi.python.org/pypi/simplejson

The simplejson package is required for python-2.5 and earlier (it is already
included as json in python-2.6 and later)

Jinja2: http://jinja.pocoo.org/

Buildbot requires Jinja version 2.1 or higher.

Jinja2 is a general purpose templating language and is used by Buildbot
to generate the HTML output.

SQLAlchemy: http://www.sqlalchemy.org/

Buildbot requires SQLAlchemy 0.6.0 or higher. SQLAlchemy allows Buildbot to
build database schemas and queries for a wide variety of database systems.

SQLAlchemy-Migrate: http://code.google.com/p/sqlalchemy-migrate/

Buildbot requires one of the following SQLAlchemy-Migrate versions:
0.6.1, 0.7.0, and 0.7.1. Sadly, Migrate's inter-version compatibility is not
good, so other versions - newer or older - are unlikely to work correctly.
Buildbot uses SQLAlchemy-Migrate to manage schema upgrades from version to
version.

Python-Dateutil: http://labix.org/python-dateutil

The Nightly scheduler requires Python-Dateutil version 1.5 (the last version
to support Python-2.x). This is a small, pure-python library. Buildbot will
function properly without it if the Nightlys scheduler is not used.

Installing the code

The Distribution Package

Buildbot comes in two parts: buildbot (the master) and
buildbot-slave (the slave). The two can be installed individually or
together.

Installation From PyPI

The easiest way to install Buildbot is using 'pip'. For the master:

pip install buildbot

and for the slave:

pip install buildbot-slave

Installation From Tarballs

Buildbot and Buildslave are installed using the standard python
distutils [http://docs.python.org/library/distutils.html] process. For either
component, after unpacking the tarball, the process is:

python setup.py build
python setup.py install

where the install step may need to be done as root. This will put the bulk of
the code in somewhere like /usr/lib/pythonx.y/site-packages/buildbot. It
will also install the buildbot command-line tool in
/usr/bin/buildbot.

If the environment variable $NO_INSTALL_REQS is set to 1, then
setup.py will not try to install Buildbot's requirements. This is
usually only useful when building a Buildbot package.

To test this, shift to a different directory (like /tmp), and run:

buildbot --version
or
buildslave --version

If it shows you the versions of Buildbot and Twisted, the install went
ok. If it says "no such command" or it gets an ImportError
when it tries to load the libaries, then something went wrong.
pydoc buildbot is another useful diagnostic tool.

Windows users will find these files in other places. You will need to
make sure that python can find the libraries, and will probably find
it convenient to have buildbot on your PATH.

Installation in a Virtualenv

If you cannot or do not wish to install the buildbot into a site-wide
location like /usr or /usr/local, you can also install
it into the account's home directory or any other location using a tool like
virtualenv [http://pypi.python.org/pypi/virtualenv].

Running Buildbot's Tests (optional)

If you wish, you can run the buildbot unit test suite. First, ensure you have
the mock [http://pypi.python.org/pypi/mock] Python module installed from
PyPi. This module is not required for ordinary Buildbot operation - only to
run the tests. Note that this is not the same as the Fedora mock
package! You can check with

python -mmock

Then, run the tests:

PYTHONPATH=. trial buildbot.test
or
PYTHONPATH=. trial buildslave.test

Nothing should fail, although a few might be skipped.

If any of the tests fail for reasons other than a missing mock, you
should stop and investigate the cause before continuing the installation
process, as it will probably be easier to track down the bug early. In most
cases, the problem is incorrectly installed Python modules or a badly
configured PYTHONPATH. This may be a good time to contact the Buildbot
developers for help.

Creating a buildmaster

As you learned earlier (System Architecture), the buildmaster
runs on a central host (usually one that is publicly visible, so
everybody can check on the status of the project), and controls all
aspects of the buildbot system

You will probably wish to create a separate user account for the buildmaster,
perhaps named buildmaster. Do not run the buildmaster as root!

You need to choose a directory for the buildmaster, called the
basedir. This directory will be owned by the buildmaster. It will
contain configuration, the database, and status information - including
logfiles. On a large buildmaster this directory will see a lot of activity, so
it should be on a disk with adequate space and speed.

Once you've picked a directory, use the buildbot
create-master command to create the directory and populate it with
startup files:

buildbot create-master -r basedir

You will need to create a configuration file
before starting the buildmaster. Most of the rest of this manual is
dedicated to explaining how to do this. A sample configuration file is
placed in the working directory, named master.cfg.sample, which
can be copied to master.cfg and edited to suit your purposes.

(Internal details: This command creates a file named
buildbot.tac that contains all the state necessary to create
the buildmaster. Twisted has a tool called twistd which can use
this .tac file to create and launch a buildmaster instance. twistd
takes care of logging and daemonization (running the program in the
background). /usr/bin/buildbot is a front end which runs twistd
for you.)

Using A Database Server

If you want to use a database server (e.g., MySQL or Postgres) as the database
backend for your Buildbot, add the --db option to the create-master
invocation to specify the connection string for
the database, and make sure that the same URL appears in the db_url of the
db parameter in your configuration file.

Additional Requirements

Depending on the selected database, further Python packages will be required.
Consult the SQLAlchemy dialect list for a full description. The most common
choice for MySQL is

MySQL-python: http://mysql-python.sourceforge.net/

To communicate with MySQL, SQLAlchemy requires MySQL-python. Any reasonably
recent version of MySQL-python should suffice.

The most common choice for Postgres is

Psycopg: http://initd.org/psycopg/

SQLAlchemy uses Psycopg to communicate with Postgres. Any reasonably
recent version should suffice.

Buildmaster Options

This section lists options to the create-master command.
You can also type buildbot create-master --help for an up-to-the-moment summary.

--force

With this option, @command{create-master} will re-use an existing master
directory.

--no-logrotate

This disables internal buildslave log management mechanism. With this option
buildslave does not override the default logfile name and its behaviour giving
a possibility to control those with command-line options of twistd daemon.

--relocatable

This creates a "relocatable" buildbot.tac, which uses relative paths instead
of absolute paths, so that the buildmaster directory can be moved about.

--config

The name of the configuration file to use. This configuration file need not
reside in the buildmaster directory.

--log-size

This is the size in bytes when to rotate the Twisted log files. The default is
10MiB.

--log-count

This is the number of log rotations to keep around. You can either
specify a number or @code{None} to keep all @file{twistd.log} files
around. The default is 10.

--db

The database that the Buildmaster should use. Note that the same value must be
added to the configuration file.

Upgrading an Existing Buildmaster

If you have just installed a new version of the Buildbot code, and you
have buildmasters that were created using an older version, you'll
need to upgrade these buildmasters before you can use them. The
upgrade process adds and modifies files in the buildmaster's base
directory to make it compatible with the new code.

buildbot upgrade-master basedir

This command will also scan your master.cfg file for
incompatibilities (by loading it and printing any errors or deprecation
warnings that occur). Each buildbot release tries to be compatible
with configurations that worked cleanly (i.e. without deprecation
warnings) on the previous release: any functions or classes that are
to be removed will first be deprecated in a release, to give you a
chance to start using the replacement.

The upgrade-master command is idempotent. It is safe to run it
multiple times. After each upgrade of the buildbot code, you should
use upgrade-master on all your buildmasters.

In general, Buildbot slaves and masters can be upgraded independently, although
some new features will not be available, depending on the master and slave
versions.

Beyond this general information, read all of the sections below that apply to
versions through which you are upgrading.

Version-specific Notes

Upgrading a Buildmaster to Buildbot-0.7.6

The 0.7.6 release introduced the public_html/ directory, which
contains index.html and other files served by the
WebStatus and Waterfall status displays. The
upgrade-master command will create these files if they do not
already exist. It will not modify existing copies, but it will write a
new copy in e.g. index.html.new if the new version differs from
the version that already exists.

Upgrading a Buildmaster to Buildbot-0.8.0

Buildbot-0.8.0 introduces a database backend, which is SQLite by default. The
upgrade-master command will automatically create and populate this
database with the changes the buildmaster has seen. Note that, as of this
release, build history is not contained in the database, and is thus not
migrated.

The upgrade process renames the Changes pickle ($basedir/changes.pck) to
changes.pck.old once the upgrade is complete. To reverse the upgrade,
simply downgrade Buildbot and move this file back to its original name. You
may also wish to delete the state database (state.sqlite).

Upgrading into a non-SQLite database

If you are not using sqlite, you will need to add an entry into your
master.cfg to reflect the database version you are using. The upgrade
process does not edit your master.cfg for you. So something like:

for using mysql:
c['db_url'] = 'mysql://bbuser:<password>@localhost/buildbot'

Once the parameter has been added, invoke upgrade-master.
This will extract the DB url from your configuration file.

buildbot upgrade-master

See Database Specification for more options to specify a database.

Change Encoding Issues

The upgrade process assumes that strings in your Changes pickle are encoded in
UTF-8 (or plain ASCII). If this is not the case, and if there are non-UTF-8
characters in the pickle, the upgrade will fail with a suitable error message.
If this occurs, you have two options. If the change history is not important
to your purpose, you can simply delete changes.pck.

If you would like to keep the change history, then you will need to figure out
which encoding is in use, and use
contrib/fix_changes_pickle_encoding.py (Contrib Scripts)
to rewrite the changes pickle into Unicode before upgrading the master. A
typical invocation (with Mac-Roman encoding) might look like:

$ python $buildbot/contrib/fix_changes_pickle_encoding.py changes.pck macroman
decoding bytestrings in changes.pck using macroman
converted 11392 strings
backing up changes.pck to changes.pck.old

If your Changes pickle uses multiple encodings, you're on your own, but the
script in contrib may provide a good starting point for the fix.

Upgrading a Buildmaster to Later Versions

Up to Buildbot version 0.8.7-61-g6a0fea1, no further steps beyond those described
above are required.

Creating a buildslave

Typically, you will be adding a buildslave to an existing buildmaster,
to provide additional architecture coverage. The buildbot
administrator will give you several pieces of information necessary to
connect to the buildmaster. You should also be somewhat familiar with
the project being tested, so you can troubleshoot build problems
locally.

The buildbot exists to make sure that the project's stated how to
build it process actually works. To this end, the buildslave should
run in an environment just like that of your regular developers.
Typically the project build process is documented somewhere
(README, INSTALL, etc), in a document that should
mention all library dependencies and contain a basic set of build
instructions. This document will be useful as you configure the host
and account in which the buildslave runs.

Here's a good checklist for setting up a buildslave:

	Set up the account

It is recommended (although not mandatory) to set up a separate user
account for the buildslave. This account is frequently named
buildbot or buildslave. This serves to isolate your
personal working environment from that of the slave's, and helps to
minimize the security threat posed by letting possibly-unknown
contributors run arbitrary code on your system. The account should
have a minimum of fancy init scripts.

	Install the buildbot code

Follow the instructions given earlier (Installing the code).
If you use a separate buildslave account, and you didn't install the
buildbot code to a shared location, then you will need to install it
with --home=~ for each account that needs it.

	Set up the host

Make sure the host can actually reach the buildmaster. Usually the
buildmaster is running a status webserver on the same machine, so
simply point your web browser at it and see if you can get there.
Install whatever additional packages or libraries the project's
INSTALL document advises. (or not: if your buildslave is supposed to
make sure that building without optional libraries still works, then
don't install those libraries).

Again, these libraries don't necessarily have to be installed to a
site-wide shared location, but they must be available to your build
process. Accomplishing this is usually very specific to the build
process, so installing them to /usr or /usr/local is
usually the best approach.

	Test the build process

Follow the instructions in the INSTALL document, in the buildslave's
account. Perform a full CVS (or whatever) checkout, configure, make,
run tests, etc. Confirm that the build works without manual fussing.
If it doesn't work when you do it by hand, it will be unlikely to work
when the buildbot attempts to do it in an automated fashion.

	Choose a base directory

This should be somewhere in the buildslave's account, typically named
after the project which is being tested. The buildslave will not touch
any file outside of this directory. Something like ~/Buildbot
or ~/Buildslaves/fooproject is appropriate.

	Get the buildmaster host/port, botname, and password

When the buildbot admin configures the buildmaster to accept and use
your buildslave, they will provide you with the following pieces of
information:

	your buildslave's name

	the password assigned to your buildslave

	the hostname and port number of the buildmaster, i.e. buildbot.example.org:8007

	Create the buildslave

Now run the 'buildslave' command as follows:

buildslave create-slave BASEDIR MASTERHOST:PORT SLAVENAME PASSWORD

This will create the base directory and a collection of files inside,
including the buildbot.tac file that contains all the
information you passed to the buildbot command.

	Fill in the hostinfo files

When it first connects, the buildslave will send a few files up to the
buildmaster which describe the host that it is running on. These files
are presented on the web status display so that developers have more
information to reproduce any test failures that are witnessed by the
buildbot. There are sample files in the info subdirectory of
the buildbot's base directory. You should edit these to correctly
describe you and your host.

BASEDIR/info/admin should contain your name and email address.
This is the buildslave admin address, and will be visible from the
build status page (so you may wish to munge it a bit if
address-harvesting spambots are a concern).

BASEDIR/info/host should be filled with a brief description of
the host: OS, version, memory size, CPU speed, versions of relevant
libraries installed, and finally the version of the buildbot code
which is running the buildslave.

The optional BASEDIR/info/access_uri can specify a URI which will
connect a user to the machine. Many systems accept ssh://hostname URIs
for this purpose.

If you run many buildslaves, you may want to create a single
~buildslave/info file and share it among all the buildslaves
with symlinks.

Buildslave Options

There are a handful of options you might want to use when creating the
buildslave with the buildslave create-slave <options> DIR <params>
command. You can type buildslave create-slave --help for a summary.
To use these, just include them on the buildslave create-slave
command line, like this

buildslave create-slave --umask=022 ~/buildslave buildmaster.example.org:42012 {myslavename} {mypasswd}

	
--no-logrotate

	This disables internal buildslave log management mechanism. With this option
buildslave does not override the default logfile name and its behaviour giving
a possibility to control those with command-line options of twistd
daemon.

	
--usepty

	This is a boolean flag that tells the buildslave whether to launch child
processes in a PTY or with regular pipes (the default) when the master does not
specify. This option is deprecated, as this particular parameter is better
specified on the master.

	
--umask

	This is a string (generally an octal representation of an integer)
which will cause the buildslave process' umask value to be set
shortly after initialization. The twistd daemonization utility
forces the umask to 077 at startup (which means that all files created
by the buildslave or its child processes will be unreadable by any
user other than the buildslave account). If you want build products to
be readable by other accounts, you can add --umask=022 to tell
the buildslave to fix the umask after twistd clobbers it. If you want
build products to be writable by other accounts too, use
--umask=000, but this is likely to be a security problem.

	
--keepalive

	This is a number that indicates how frequently keepalive messages
should be sent from the buildslave to the buildmaster, expressed in
seconds. The default (600) causes a message to be sent to the
buildmaster at least once every 10 minutes. To set this to a lower
value, use e.g. --keepalive=120.

If the buildslave is behind a NAT box or stateful firewall, these
messages may help to keep the connection alive: some NAT boxes tend to
forget about a connection if it has not been used in a while. When
this happens, the buildmaster will think that the buildslave has
disappeared, and builds will time out. Meanwhile the buildslave will
not realize than anything is wrong.

	
--maxdelay

	This is a number that indicates the maximum amount of time the
buildslave will wait between connection attempts, expressed in
seconds. The default (300) causes the buildslave to wait at most 5
minutes before trying to connect to the buildmaster again.

	
--log-size

	This is the size in bytes when to rotate the Twisted log files.

	
--log-count

	This is the number of log rotations to keep around. You can either
specify a number or None to keep all twistd.log files
around. The default is 10.

	
--allow-shutdown

	
Can also be passed directly to the BuildSlave constructor in buildbot.tac. If

	
set, it allows the buildslave to initiate a graceful shutdown, meaning that it

	
will ask the master to shut down the slave when the current build, if any, is

	
complete.

	Setting allow_shutdown to file will cause the buildslave to watch
shutdown.stamp in basedir for updates to its mtime. When the mtime changes,
the slave will request a graceful shutdown from the master. The file does not
need to exist prior to starting the slave.

Setting allow_shutdown to signal will set up a SIGHUP handler to start a
graceful shutdown. When the signal is received, the slave will request a
graceful shutdown from the master.

The default value is None, in which case this feature will be disabled.

Both master and slave must be at least version 0.8.3 for this feature to work.

Other Buildslave Configuration

	unicode_encoding

	This represents the encoding that buildbot should use when converting unicode
commandline arguments into byte strings in order to pass to the operating
system when spawning new processes.

The default value is what python's sys.getfilesystemencoding returns, which
on Windows is 'mbcs', on Mac OSX is 'utf-8', and on Unix depends on your locale
settings.

If you need a different encoding, this can be changed in your build slave's
buildbot.tac file by adding a unicode_encoding
argument to the BuildSlave constructor.

s = BuildSlave(buildmaster_host, port, slavename, passwd, basedir,
 keepalive, usepty, umask=umask, maxdelay=maxdelay,
 unicode_encoding='utf-8', allow_shutdown='signal')

Upgrading an Existing Buildslave

If you have just installed a new version of Buildbot-slave, you may need to
take some steps to upgrade it. If you are upgrading to version 0.8.2 or later,
you can run

buildslave upgrade-slave /path/to/buildslave/dir

Version-specific Notes

Upgrading a Buildslave to Buildbot-slave-0.8.1

Before Buildbot version 0.8.1, the Buildbot master and slave were part of the
same distribution. As of version 0.8.1, the buildslave is a separate
distribution.

As of this release, you will need to install buildbot-slave to run a slave.

Any automatic startup scripts that had run buildbot start for previous versions
should be changed to run buildslave start instead.

If you are running a version later than 0.8.1, then you can skip the remainder
of this section: the `upgrade-slave command will take care of this. If
you are upgrading directly to 0.8.1, read on.

The existing buildbot.tac for any buildslaves running older versions
will need to be edited or replaced. If the loss of cached buildslave state
(e.g., for Source steps in copy mode) is not problematic, the easiest solution
is to simply delete the slave directory and re-run buildslave
create-slave.

If deleting the slave directory is problematic, the change to
buildbot.tac is simple. On line 3, replace

from buildbot.slave.bot import BuildSlave

with

from buildslave.bot import BuildSlave

After this change, the buildslave should start as usual.

Launching the daemons

Both the buildmaster and the buildslave run as daemon programs. To
launch them, pass the working directory to the buildbot
and buildslave commands, as appropriate:

start a master
buildbot start [BASEDIR]
start a slave
buildslave start [SLAVE_BASEDIR]

The BASEDIR is option and can be omitted if the current directory
contains the buildbot configuration (the buildbot.tac file).

buildbot start

This command will start the daemon and then return, so normally it
will not produce any output. To verify that the programs are indeed
running, look for a pair of files named twistd.log and
twistd.pid that should be created in the working directory.
twistd.pid contains the process ID of the newly-spawned daemon.

When the buildslave connects to the buildmaster, new directories will
start appearing in its base directory. The buildmaster tells the slave
to create a directory for each Builder which will be using that slave.
All build operations are performed within these directories: CVS
checkouts, compiles, and tests.

Once you get everything running, you will want to arrange for the
buildbot daemons to be started at boot time. One way is to use
cron, by putting them in a @reboot crontab entry [1]

@reboot buildbot start [BASEDIR]

When you run crontab to set this up, remember to do it as
the buildmaster or buildslave account! If you add this to your crontab
when running as your regular account (or worse yet, root), then the
daemon will run as the wrong user, quite possibly as one with more
authority than you intended to provide.

It is important to remember that the environment provided to cron jobs
and init scripts can be quite different that your normal runtime.
There may be fewer environment variables specified, and the PATH may
be shorter than usual. It is a good idea to test out this method of
launching the buildslave by using a cron job with a time in the near
future, with the same command, and then check twistd.log to
make sure the slave actually started correctly. Common problems here
are for /usr/local or ~/bin to not be on your
PATH, or for PYTHONPATH to not be set correctly.
Sometimes HOME is messed up too.

Some distributions may include conveniences to make starting buildbot
at boot time easy. For instance, with the default buildbot package in
Debian-based distributions, you may only need to modify
/etc/default/buildbot (see also /etc/init.d/buildbot, which
reads the configuration in /etc/default/buildbot).

Buildbot also comes with its own init scripts that provide support for
controlling multi-slave and multi-master setups (mostly because they are based
on the init script from the Debian package). With a little modification these
scripts can be used both on Debian and RHEL-based distributions and may thus
prove helpful to package maintainers who are working on buildbot (or those that
haven't yet split buildbot into master and slave packages).

install as /etc/default/buildslave
or /etc/sysconfig/buildslave
master/contrib/init-scripts/buildslave.default

install as /etc/default/buildmaster
or /etc/sysconfig/buildmaster
master/contrib/init-scripts/buildmaster.default

install as /etc/init.d/buildslave
slave/contrib/init-scripts/buildslave.init.sh

install as /etc/init.d/buildmaster
slave/contrib/init-scripts/buildmaster.init.sh

... and tell sysvinit about them
chkconfig buildmaster reset
... or
update-rc.d buildmaster defaults

Logfiles

While a buildbot daemon runs, it emits text to a logfile, named
twistd.log. A command like tail -f twistd.log is useful
to watch the command output as it runs.

The buildmaster will announce any errors with its configuration file
in the logfile, so it is a good idea to look at the log at startup
time to check for any problems. Most buildmaster activities will cause
lines to be added to the log.

Shutdown

To stop a buildmaster or buildslave manually, use:

buildbot stop [BASEDIR]
or
buildslave stop [SLAVE_BASEDIR]

This simply looks for the twistd.pid file and kills whatever
process is identified within.

At system shutdown, all processes are sent a SIGKILL. The
buildmaster and buildslave will respond to this by shutting down
normally.

The buildmaster will respond to a SIGHUP by re-reading its
config file. Of course, this only works on Unix-like systems with
signal support, and won't work on Windows. The following shortcut is
available:

buildbot reconfig [BASEDIR]

When you update the Buildbot code to a new release, you will need to
restart the buildmaster and/or buildslave before it can take advantage
of the new code. You can do a buildbot stop BASEDIR and
buildbot start BASEDIR in quick succession, or you can
use the restart shortcut, which does both steps for you:

buildbot restart [BASEDIR]

Buildslaves can similarly be restarted with:

buildslave restart [BASEDIR]

There are certain configuration changes that are not handled cleanly
by buildbot reconfig. If this occurs, buildbot restart
is a more robust tool to fully switch over to the new configuration.

buildbot restart may also be used to start a stopped Buildbot
instance. This behaviour is useful when writing scripts that stop, start
and restart Buildbot.

A buildslave may also be gracefully shutdown from the
WebStatus status plugin. This is useful to shutdown a
buildslave without interrupting any current builds. The buildmaster
will wait until the buildslave is finished all its current builds, and
will then tell the buildslave to shutdown.

Maintenance

The buildmaster can be configured to send out email notifications when a
slave has been offline for a while. Be sure to configure the buildmaster
with a contact email address for each slave so these notifications are sent
to someone who can bring it back online.

If you find you can no longer provide a buildslave to the project, please
let the project admins know, so they can put out a call for a
replacement.

The Buildbot records status and logs output continually, each time a
build is performed. The status tends to be small, but the build logs
can become quite large. Each build and log are recorded in a separate
file, arranged hierarchically under the buildmaster's base directory.
To prevent these files from growing without bound, you should
periodically delete old build logs. A simple cron job to delete
anything older than, say, two weeks should do the job. The only trick
is to leave the buildbot.tac and other support files alone, for
which find's -mindepth argument helps skip everything in the
top directory. You can use something like the following:

@weekly cd BASEDIR && find . -mindepth 2 i-path './public_html/*' \
 -prune -o -type f -mtime +14 -exec rm {} \;
@weekly cd BASEDIR && find twistd.log* -mtime +14 -exec rm {} \;

Alternatively, you can configure a maximum number of old logs to be kept
using the --log-count command line option when running buildslave
create-slave or buildbot create-master.

Troubleshooting

Here are a few hints on diagnosing common problems.

Starting the buildslave

Cron jobs are typically run with a minimal shell (/bin/sh, not
/bin/bash), and tilde expansion is not always performed in such
commands. You may want to use explicit paths, because the PATH
is usually quite short and doesn't include anything set by your
shell's startup scripts (.profile, .bashrc, etc). If
you've installed buildbot (or other python libraries) to an unusual
location, you may need to add a PYTHONPATH specification (note
that python will do tilde-expansion on PYTHONPATH elements by
itself). Sometimes it is safer to fully-specify everything:

@reboot PYTHONPATH=~/lib/python /usr/local/bin/buildbot \
 start /usr/home/buildbot/basedir

Take the time to get the @reboot job set up. Otherwise, things will work
fine for a while, but the first power outage or system reboot you have will
stop the buildslave with nothing but the cries of sorrowful developers to
remind you that it has gone away.

Connecting to the buildmaster

If the buildslave cannot connect to the buildmaster, the reason should
be described in the twistd.log logfile. Some common problems
are an incorrect master hostname or port number, or a mistyped bot
name or password. If the buildslave loses the connection to the
master, it is supposed to attempt to reconnect with an
exponentially-increasing backoff. Each attempt (and the time of the
next attempt) will be logged. If you get impatient, just manually stop
and re-start the buildslave.

When the buildmaster is restarted, all slaves will be disconnected, and will
attempt to reconnect as usual. The reconnect time will depend upon how long the
buildmaster is offline (i.e. how far up the exponential backoff curve the
slaves have travelled). Again, buildslave restart BASEDIR will
speed up the process.

	[1]	This @reboot syntax is understood by Vixie cron, which is the flavor
usually provided with Linux systems. Other unices may have a cron that
doesn't understand @reboot:

Contrib Scripts

While some features of Buildbot are included in the distribution, others are
only available in contrib/ in the source directory. The latest versions
of such scripts are available at
http://github.com/buildbot/buildbot/tree/master/master/contrib.

 Copyright Buildbot Team Members.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 	v0.8.7

 	v0.8.6p1

 	v0.8.6

 	v0.8.5

 	v0.8.4

 Concepts

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Buildbot 0.8.7-61-g6a0fea1 documentation

 	Buildbot Manual

Concepts

This chapter defines some of the basic concepts that the Buildbot
uses. You'll need to understand how the Buildbot sees the world to
configure it properly.

Source Stamps

Source code comes from respositories, provided by version control systems.
Repositories are generally identified by URLs, e.g., git://github.com/buildbot/buildbot.git.

In these days of distribtued version control systems, the same codebase may appear in mutiple repositories.
For example, https://github.com/mozilla/mozilla-central and http://hg.mozilla.org/mozilla-release both contain the Firefox codebase, although not exactly the same code.

Many projects are built from multiple codebases.
For example, a company may build several applications based on the same core library.
The "app" codebase and the "core" codebase are in separate repositories, but are compiled together and constitute a single project.
Changes to either codebase should cause a rebuild of the application.

Most version control systems define some sort of revision that can be used (sometimes in combination with a branch) to uniquely specify a particular version of the source code.

To build a project, Buildbot needs to know exactly which version of each codebase it should build.
It uses a source stamp to do so for each codebase; the collection of sourcestamps required for a project is called a source stamp set.

Version Control Systems

Buildbot supports a significant number of version control systems, so it treats them abstractly.

For purposes of deciding when to perform builds, Buildbot's change sources monitor repositories, and represent any updates to those repositories as changes.
These change sources fall broadly into two categories: pollers which periodically check the repository for updates; and hooks, where the repository is configured to notify Buildbot whenever an update occurs.

This concept does not map perfectly to every version control system.
For example, for CVS Buildbot must guess that version updates made to multiple files within a short time represent a single change; for DVCS's like Git, Buildbot records a change when a commit is pushed to the monitored repository, not when it is initially committed.
We assume that the Changes arrive at the master in the same order in which they are committed to the repository.

When it comes time to actually perform a build, a scheduler prepares a source stamp set, as described above, based on its configuration.
When the build begins, one or more source steps use the information in the source stamp set to actually check out the source code, using the normal VCS commands.

Tree Stability

Changes tend to arrive at a buildmaster in bursts.
In many cases, these bursts of changes are meant to be taken together.
For example, a developer may have pushed multiple commits to a DVCS that comprise the same new feature or bugfix.
To avoid trying to build every change, Buildbot supports the notion of tree stability, by waiting for a burst of changes to finish before starting to schedule builds.
This is implemented as a timer, with builds not scheduled until no changes have occurred for the duration of the timer.

How Different VC Systems Specify Sources

For CVS, the static specifications are repository and
module. In addition to those, each build uses a timestamp (or
omits the timestamp to mean the latest) and branch tag
(which defaults to HEAD). These parameters collectively specify a set
of sources from which a build may be performed.

Subversion [http://subversion.tigris.org], combines the
repository, module, and branch into a single Subversion URL
parameter. Within that scope, source checkouts can be specified by a
numeric revision number (a repository-wide
monotonically-increasing marker, such that each transaction that
changes the repository is indexed by a different revision number), or
a revision timestamp. When branches are used, the repository and
module form a static baseURL, while each build has a
revision number and a branch (which defaults to a
statically-specified defaultBranch). The baseURL and
branch are simply concatenated together to derive the
svnurl to use for the checkout.

Perforce [http://www.perforce.com/] is similar. The server
is specified through a P4PORT parameter. Module and branch
are specified in a single depot path, and revisions are
depot-wide. When branches are used, the p4base and
defaultBranch are concatenated together to produce the depot
path.

Bzr [http://bazaar-vcs.org] (which is a descendant of
Arch/Bazaar, and is frequently referred to as "Bazaar") has the same
sort of repository-vs-workspace model as Arch, but the repository data
can either be stored inside the working directory or kept elsewhere
(either on the same machine or on an entirely different machine). For
the purposes of Buildbot (which never commits changes), the repository
is specified with a URL and a revision number.

The most common way to obtain read-only access to a bzr tree is via
HTTP, simply by making the repository visible through a web server
like Apache. Bzr can also use FTP and SFTP servers, if the buildslave
process has sufficient privileges to access them. Higher performance
can be obtained by running a special Bazaar-specific server. None of
these matter to the buildbot: the repository URL just has to match the
kind of server being used. The repoURL argument provides the
location of the repository.

Branches are expressed as subdirectories of the main central
repository, which means that if branches are being used, the BZR step
is given a baseURL and defaultBranch instead of getting
the repoURL argument.

Darcs [http://darcs.net/] doesn't really have the
notion of a single master repository. Nor does it really have
branches. In Darcs, each working directory is also a repository, and
there are operations to push and pull patches from one of these
repositories to another. For the Buildbot's purposes, all you
need to do is specify the URL of a repository that you want to build
from. The build slave will then pull the latest patches from that
repository and build them. Multiple branches are implemented by using
multiple repositories (possibly living on the same server).

Builders which use Darcs therefore have a static repourl which
specifies the location of the repository. If branches are being used,
the source Step is instead configured with a baseURL and a
defaultBranch, and the two strings are simply concatenated
together to obtain the repository's URL. Each build then has a
specific branch which replaces defaultBranch, or just uses the
default one. Instead of a revision number, each build can have a
context, which is a string that records all the patches that are
present in a given tree (this is the output of darcs changes
--context, and is considerably less concise than, e.g. Subversion's
revision number, but the patch-reordering flexibility of Darcs makes
it impossible to provide a shorter useful specification).

Mercurial [http://selenic.com/mercurial] is like Darcs, in that
each branch is stored in a separate repository. The repourl,
baseURL, and defaultBranch arguments are all handled the
same way as with Darcs. The revision, however, is the hash
identifier returned by hg identify.

Git [http://git.or.cz/] also follows a decentralized model, and
each repository can have several branches and tags. The source Step is
configured with a static repourl which specifies the location
of the repository. In addition, an optional branch parameter
can be specified to check out code from a specific branch instead of
the default master branch. The revision is specified as a SHA1
hash as returned by e.g. git rev-parse. No attempt is made
to ensure that the specified revision is actually a subset of the
specified branch.

Monotone [http://www.monotone.ca/] is another that follows a
decentralized model where each repository can have several branches and
tags. The source Step is configured with static repourl and
branch parameters, which specifies the location of the
repository and the branch to use. The revision is specified as a
SHA1 hash as returned by e.g. mtn automate select w:. No
attempt is made to ensure that the specified revision is actually a
subset of the specified branch.

Changes

Who

Each Change has a who attribute, which specifies which developer is
responsible for the change. This is a string which comes from a namespace
controlled by the VC repository. Frequently this means it is a username on the
host which runs the repository, but not all VC systems require this. Each
StatusNotifier will map the who attribute into something appropriate for
their particular means of communication: an email address, an IRC handle, etc.

This who attribute is also parsed and stored into Buildbot's database (see
User Objects). Currently, only who attributes in Changes from
git repositories are translated into user objects, but in the future all
incoming Changes will have their who parsed and stored.

Files

It also has a list of files, which are just the tree-relative
filenames of any files that were added, deleted, or modified for this
Change. These filenames are used by the fileIsImportant
function (in the Scheduler) to decide whether it is worth triggering a
new build or not, e.g. the function could use the following function
to only run a build if a C file were checked in:

def has_C_files(change):
 for name in change.files:
 if name.endswith(".c"):
 return True
 return False

Certain BuildSteps can also use the list of changed files
to run a more targeted series of tests, e.g. the
python_twisted.Trial step can run just the unit tests that
provide coverage for the modified .py files instead of running the
full test suite.

Comments

The Change also has a comments attribute, which is a string containing any checkin comments.

Project

The project attribute of a change or source stamp describes the project to which it corresponds, as a short human-readable string.
This is useful in cases where multiple independent projects are built on the same buildmaster.
In such cases, it can be used to control which builds are scheduled for a given commit, and to limit status displays to only one project.

Repository

This attibute specifies the repository in which this change occurred.
In the case of DVCS's, this information may be required to check out the committed source code.
However, using the repository from a change has security risks: if Buildbot is configured to blidly trust this information, then it may easily be tricked into building arbitrary source code, potentially compromising the buildslaves and the integrity of subsequent builds.

Codebase

This attribute specifies the codebase to which this change was made.
As described above, multiple repositories may contain the same codebase.
A change's codebase is usually determined by the bb:cfg:codebaseGenerator configuration.
By default the codebase is ''; this value is used automatically for single-codebase configurations.

Revision

Each Change can have a revision attribute, which describes how
to get a tree with a specific state: a tree which includes this Change
(and all that came before it) but none that come after it. If this
information is unavailable, the revision attribute will be
None. These revisions are provided by the ChangeSource.

Revisions are always strings.

	CVS

	revision is the seconds since the epoch as an integer.

	SVN

	revision is the revision number

	Darcs

	revision is a large string, the output of darcs changes --context

	Mercurial

	revision is a short string (a hash ID), the output of hg identify

	P4

	revision is the transaction number

	Git

	revision is a short string (a SHA1 hash), the output of e.g.
git rev-parse

Branches

The Change might also have a branch attribute. This indicates
that all of the Change's files are in the same named branch. The
Schedulers get to decide whether the branch should be built or not.

For VC systems like CVS, Git and Monotone the branch
name is unrelated to the filename. (that is, the branch name and the
filename inhabit unrelated namespaces). For SVN, branches are
expressed as subdirectories of the repository, so the file's
svnurl is a combination of some base URL, the branch name, and the
filename within the branch. (In a sense, the branch name and the
filename inhabit the same namespace). Darcs branches are
subdirectories of a base URL just like SVN. Mercurial branches are the
same as Darcs.

	CVS

	branch='warner-newfeature', files=['src/foo.c']

	SVN

	branch='branches/warner-newfeature', files=['src/foo.c']

	Darcs

	branch='warner-newfeature', files=['src/foo.c']

	Mercurial

	branch='warner-newfeature', files=['src/foo.c']

	Git

	branch='warner-newfeature', files=['src/foo.c']

	Monotone

	branch='warner-newfeature', files=['src/foo.c']

Change Properties

A Change may have one or more properties attached to it, usually specified
through the Force Build form or sendchange. Properties are discussed
in detail in the Build Properties section.

Scheduling Builds

Each Buildmaster has a set of Scheduler objects, each of which
gets a copy of every incoming Change. The Schedulers are responsible
for deciding when Builds should be run. Some Buildbot installations
might have a single Scheduler, while others may have several, each for
a different purpose.

For example, a quick scheduler might exist to give immediate
feedback to developers, hoping to catch obvious problems in the code
that can be detected quickly. These typically do not run the full test
suite, nor do they run on a wide variety of platforms. They also
usually do a VC update rather than performing a brand-new checkout
each time.

A separate full scheduler might run more comprehensive tests, to
catch more subtle problems. configured to run after the quick scheduler, to give
developers time to commit fixes to bugs caught by the quick scheduler before
running the comprehensive tests. This scheduler would also feed multiple
Builders.

Many schedulers can be configured to wait a while after seeing a source-code
change - this is the tree stable timer. The timer allows multiple commits to
be "batched" together. This is particularly useful in distributed version
control systems, where a developer may push a long sequence of changes all at
once. To save resources, it's often desirable only to test the most recent
change.

Schedulers can also filter out the changes they are interested in, based on a
number of criteria. For example, a scheduler that only builds documentation
might skip any changes that do not affect the documentation. Schedulers can
also filter on the branch to which a commit was made.

There is some support for configuring dependencies between builds - for
example, you may want to build packages only for revisions which pass all of
the unit tests. This support is under active development in Buildbot, and is
referred to as "build coordination".

Periodic builds (those which are run every N seconds rather than after
new Changes arrive) are triggered by a special Periodic
Scheduler subclass.

Each Scheduler creates and submits BuildSet objects to the
BuildMaster, which is then responsible for making sure the
individual BuildRequests are delivered to the target
Builders.

Scheduler instances are activated by placing them in the
c['schedulers'] list in the buildmaster config file. Each
Scheduler has a unique name.

BuildSets

A BuildSet is the name given to a set of Builds that all
compile/test the same version of the tree on multiple Builders. In
general, all these component Builds will perform the same sequence of
Steps, using the same source code, but on different platforms or
against a different set of libraries.

The BuildSet is tracked as a single unit, which fails if any of
the component Builds have failed, and therefore can succeed only if
all of the component Builds have succeeded. There are two kinds
of status notification messages that can be emitted for a BuildSet:
the firstFailure type (which fires as soon as we know the
BuildSet will fail), and the Finished type (which fires once
the BuildSet has completely finished, regardless of whether the
overall set passed or failed).

A BuildSet is created with set of one or more source stamp tuples of
(branch, revision, changes, patch), some of which may be None, and a
list of Builders on which it is to be run. They are then given to the
BuildMaster, which is responsible for creating a separate
BuildRequest for each Builder.

There are a couple of different likely values for the
SourceStamp:

	(revision=None, changes=CHANGES, patch=None)

	This is a SourceStamp used when a series of Changes have
triggered a build. The VC step will attempt to check out a tree that
contains CHANGES (and any changes that occurred before CHANGES, but
not any that occurred after them.)

	(revision=None, changes=None, patch=None)

	This builds the most recent code on the default branch. This is the
sort of SourceStamp that would be used on a Build that was
triggered by a user request, or a Periodic scheduler. It is also
possible to configure the VC Source Step to always check out the
latest sources rather than paying attention to the Changes in the
SourceStamp, which will result in same behavior as this.

	(branch=BRANCH, revision=None, changes=None, patch=None)

	This builds the most recent code on the given BRANCH. Again, this is
generally triggered by a user request or Periodic build.

	(revision=REV, changes=None, patch=(LEVEL, DIFF, SUBDIR_ROOT))

	This checks out the tree at the given revision REV, then applies a
patch (using patch -pLEVEL <DIFF) from inside the relative
directory SUBDIR_ROOT. Item SUBDIR_ROOT is optional and defaults to the
builder working directory. The try command creates this kind of
SourceStamp. If patch is None, the patching step is
bypassed.

The buildmaster is responsible for turning the BuildSet into a
set of BuildRequest objects and queueing them on the
appropriate Builders.

BuildRequests

A BuildRequest is a request to build a specific set of source
code (specified by one ore more source stamps) on a single Builder.
Each Builder runs the BuildRequest as soon as it can (i.e.
when an associated buildslave becomes free). BuildRequests are
prioritized from oldest to newest, so when a buildslave becomes free, the
Builder with the oldest BuildRequest is run.

The BuildRequest contains one SourceStamp specification per codebase.
The actual process of running the build (the series of Steps that will
be executed) is implemented by the Build object. In this future
this might be changed, to have the Build define what
gets built, and a separate BuildProcess (provided by the
Builder) to define how it gets built.

The BuildRequest may be mergeable with other compatible
BuildRequests. Builds that are triggered by incoming Changes
will generally be mergeable. Builds that are triggered by user requests are generally not,
unless they are multiple requests to build the latest sources of the same branch.
A merge of buildrequests is performed per codebase, thus on changes having the same codebase.

Builders

The Buildmaster runs a collection of Builders, each of which handles a single
type of build (e.g. full versus quick), on one or more build slaves. Builders
serve as a kind of queue for a particular type of build. Each Builder gets a
separate column in the waterfall display. In general, each Builder runs
independently (although various kinds of interlocks can cause one Builder to
have an effect on another).

Each builder is a long-lived object which controls a sequence of Builds.
Each Builder is created when the config file is first parsed, and lives forever
(or rather until it is removed from the config file). It mediates the
connections to the buildslaves that do all the work, and is responsible for
creating the Build objects - Builds.

Each builder gets a unique name, and the path name of a directory where it gets
to do all its work (there is a buildmaster-side directory for keeping status
information, as well as a buildslave-side directory where the actual
checkout/compile/test commands are executed).

Build Factories

A builder also has a BuildFactory, which is responsible for creating new Build
instances: because the Build instance is what actually performs each build,
choosing the BuildFactory is the way to specify what happens each time a build
is done (Builds).

Build Slaves

Each builder is associated with one of more BuildSlaves. A builder which is
used to perform Mac OS X builds (as opposed to Linux or Solaris builds) should
naturally be associated with a Mac buildslave.

If multiple buildslaves are available for any given builder, you will
have some measure of redundancy: in case one slave goes offline, the
others can still keep the Builder working. In addition, multiple
buildslaves will allow multiple simultaneous builds for the same
Builder, which might be useful if you have a lot of forced or try
builds taking place.

If you use this feature, it is important to make sure that the
buildslaves are all, in fact, capable of running the given build. The
slave hosts should be configured similarly, otherwise you will spend a
lot of time trying (unsuccessfully) to reproduce a failure that only
occurs on some of the buildslaves and not the others. Different
platforms, operating systems, versions of major programs or libraries,
all these things mean you should use separate Builders.

Builds

A build is a single compile or test run of a particular version of the source
code, and is comprised of a series of steps. It is ultimately up to you what
constitutes a build, but for compiled software it is generally the checkout,
configure, make, and make check sequence. For interpreted projects like Python
modules, a build is generally a checkout followed by an invocation of the
bundled test suite.

A BuildFactory describes the steps a build will perform. The builder which
starts a build uses its configured build factory to determine the build's
steps.

Users

Buildbot has a somewhat limited awareness of users. It assumes
the world consists of a set of developers, each of whom can be
described by a couple of simple attributes. These developers make
changes to the source code, causing builds which may succeed or fail.

Users also may have different levels of authorization when issuing Buildbot
commands, such as forcing a build from the web interface or from an IRC channel
(see WebStatus and IRC).

Each developer is primarily known through the source control system. Each
Change object that arrives is tagged with a who field that
typically gives the account name (on the repository machine) of the user
responsible for that change. This string is displayed on the HTML status
pages and in each Build's blamelist.

To do more with the User than just refer to them, this username needs to be
mapped into an address of some sort. The responsibility for this mapping is
left up to the status module which needs the address. In the future, the
responsbility for managing users will be transferred to User Objects.

The who fields in git Changes are used to create User Objects,
which allows for more control and flexibility in how Buildbot manages users.

User Objects

User Objects allow Buildbot to better manage users throughout its various
interactions with users (see Change Sources and Status Targets).
The User Objects are stored in the Buildbot database and correlate the various
attributes that a user might have: irc, git, etc.

Changes

Incoming Changes all have a who attribute attached to them that specifies
which developer is responsible for that Change. When a Change is first
rendered, the who attribute is parsed and added to the database if it
doesn't exist or checked against an existing user. The who attribute is
formatted in different ways depending on the version control system that the
Change came from.

	git

	who attributes take the form Full Name <Email>.

	svn

	who attributes are of the form Username.

	hg

	who attributes are free-form strings, but usually adhere to similar
conventions as git attributes (Full Name <Email>).

	cvs

	who attributes are of the form Username.

	darcs

	who attributes contain an Email and may also include a Full Name
like git attributes.

	bzr

	who attributes are free-form strings like hg, and can include a
Username, Email, and/or Full Name.

Tools

For managing users manually, use the buildbot user command, which allows
you to add, remove, update, and show various attributes of users in the Buildbot
database (see Command-line Tool).

To show all of the users in the database in a more pretty manner, use the users page in
the WebStatus.

Uses

Correlating the various bits and pieces that Buildbot views as users also means
that one attribute of a user can be translated into another. This provides a
more complete view of users throughout Buildbot.

One such use is being able to find email addresses based on a set of Builds
to notify users through the MailNotifier. This process is explained
more clearly in :ref:Email-Addresses.

Another way to utilize User Objects is through UsersAuth for web authentication
(see WebStatus). To use UsersAuth, you need to
set a bb_username and bb_password via the buildbot user command line tool
to check against. The password will be encrypted before storing in the database
along with other user attributes.

Doing Things With Users

Each change has a single user who is responsible for it. Most builds have a set
of changes: the build generally represents the first time these changes have
been built and tested by the Buildbot. The build has a blamelist that is
the union of the users responsible for all the build's changes. If the build
was created by a Try Schedulers this list will include the submitter of the try
job, if known.

The build provides a list of users who are interested in the build -- the
interested users. Usually this is equal to the blamelist, but may also be
expanded, e.g., to include the current build sherrif or a module's maintainer.

If desired, the buildbot can notify the interested users until the problem is
resolved.

Email Addresses

The MailNotifier is a status target which can send email
about the results of each build. It accepts a static list of email
addresses to which each message should be delivered, but it can also
be configured to send mail to the Build's Interested Users. To do
this, it needs a way to convert User names into email addresses.

For many VC systems, the User Name is actually an account name on the
system which hosts the repository. As such, turning the name into an
email address is a simple matter of appending
@repositoryhost.com. Some projects use other kinds of mappings
(for example the preferred email address may be at project.org
despite the repository host being named cvs.project.org), and some
VC systems have full separation between the concept of a user and that
of an account on the repository host (like Perforce). Some systems
(like Git) put a full contact email address in every change.

To convert these names to addresses, the MailNotifier uses an EmailLookup
object. This provides a getAddress method which accepts a name and
(eventually) returns an address. The default MailNotifier
module provides an EmailLookup which simply appends a static string,
configurable when the notifier is created. To create more complex behaviors
(perhaps using an LDAP lookup, or using finger on a central host to
determine a preferred address for the developer), provide a different object
as the lookup argument.

If an EmailLookup object isn't given to the MailNotifier, the MailNotifier
will try to find emails through User Objects. This will work the
same as if an EmailLookup object was used if every user in the Build's
Interested Users list has an email in the database for them. If a user
whose change led to a Build doesn't have an email attribute, that user
will not receive an email. If extraRecipients is given, those users
are still sent mail when the EmailLookup object is not specified.

In the future, when the Problem mechanism has been set up, the Buildbot
will need to send mail to arbitrary Users. It will do this by locating a
MailNotifier-like object among all the buildmaster's status targets, and
asking it to send messages to various Users. This means the User-to-address
mapping only has to be set up once, in your MailNotifier, and every email
message the buildbot emits will take advantage of it.

IRC Nicknames

Like MailNotifier, the buildbot.status.words.IRC class
provides a status target which can announce the results of each build. It
also provides an interactive interface by responding to online queries
posted in the channel or sent as private messages.

In the future, the buildbot can be configured map User names to IRC
nicknames, to watch for the recent presence of these nicknames, and to
deliver build status messages to the interested parties. Like
MailNotifier does for email addresses, the IRC object
will have an IRCLookup which is responsible for nicknames. The
mapping can be set up statically, or it can be updated by online users
themselves (by claiming a username with some kind of buildbot: i am
user warner commands).

Once the mapping is established, the rest of the buildbot can ask the
IRC object to send messages to various users. It can report on
the likelihood that the user saw the given message (based upon how long the
user has been inactive on the channel), which might prompt the Problem
Hassler logic to send them an email message instead.

These operations and authentication of commands issued by particular
nicknames will be implemented in User Objects.

Live Status Clients

The Buildbot also offers a desktop status client interface which can display
real-time build status in a GUI panel on the developer's desktop.

Build Properties

Each build has a set of Build Properties, which can be used by its
build steps to modify their actions. These properties, in the form of
key-value pairs, provide a general framework for dynamically altering
the behavior of a build based on its circumstances.

Properties form a simple kind of variable in a build. Some properties are set
when the build starts, and properties can be changed as a build progresses --
properties set or changed in one step may be accessed in subsequent steps.
Property values can be numbers, strings, lists, or dictionaries - basically,
anything that can be represented in JSON.

Properties are very flexible, and can be used to implement all manner
of functionality. Here are some examples:

Most Source steps record the revision that they checked out in
the got_revision property. A later step could use this
property to specify the name of a fully-built tarball, dropped in an
easily-acessible directory for later testing.

Note

In builds with more than one codebase, the got_revision property is a dictionary, keyed by codebase.

Some projects want to perform nightly builds as well as bulding in response to
committed changes. Such a project would run two schedulers, both pointing to
the same set of builders, but could provide an is_nightly property so
that steps can distinguish the nightly builds, perhaps to run more
resource-intensive tests.

Some projects have different build processes on different systems.
Rather than create a build factory for each slave, the steps can use
buildslave properties to identify the unique aspects of each slave
and adapt the build process dynamically.

Multiple-Codebase Builds

What if an end-product is composed of code from several codebases?
Changes may arrive from different repositories within the tree-stable-timer period.
Buildbot will not only use the source-trees that contain changes but also needs the remaining source-trees to build the complete product.

For this reason a Scheduler can be configured to base a build on a set of several source-trees that can (partly) be overidden by the information from incoming Changes.

As descibed above, the source for each codebase is identified by a source stamp, containing its repository, branch and revision.
A full build set will specify a source stamp set describing the source to use for each codebase.

Configuring all of this takes a coordinated approach. A complete multiple repository configuration consists of:

	a codebase generator

Every relevant change arriving from a VC must contain a codebase.
This is done by a codebaseGenerator that is defined in the configuration.
Most generators examine the repository of a change to determine its codebase, using project-specific rules.

	some schedulers

Each scheduler has to be configured with a set of all required codebases to build a product.
These codebases indicate the set of required source-trees.
In order for the scheduler to be able to produce a complete set for each build, the configuration can give a default repository, branch, and revision for each codebase.
When a scheduler must generate a source stamp for a codebase that has received no changes, it applies these default values.

	multiple source steps - one for each codebase

A Builders's build factory must include a source step for each codebase.
Each of the source steps has a codebase attribute which is used to select an appropriate source stamp from the source stamp set for a build.
This information comes from the arrived changes or from the scheduler's configured default values.

Warning

Defining a codebaseGenerator that returns non-empty (not '') codebases will change the behavior of all the schedulers.

 Copyright Buildbot Team Members.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 	v0.8.7

 	v0.8.6p1

 	v0.8.6

 	v0.8.5

 	v0.8.4

 Configuration

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Buildbot 0.8.7-61-g6a0fea1 documentation

 	Buildbot Manual

Configuration

The following sections describe the configuration of the various Buildbot
components. The information available here is sufficient to create basic
build and test configurations, and does not assume great familiarity with
Python.

In more advanced Buildbot configurations, Buildbot acts as a framework for a
continuous-integration application. The next section, Customization,
describes this approach, with frequent references into the
development documentation.

	Configuring Buildbot
	Config File Format

	Predefined Config File Symbols

	Testing the Config File

	Loading the Config File

	Global Configuration
	Database Specification

	Multi-master mode

	Site Definitions

	Log Handling

	Data Lifetime

	Merging Build Requests

	Prioritizing Builders

	Setting the PB Port for Slaves

	Defining Global Properties

	Debug Options

	Manhole

	Metrics Options

	Users Options

	Input Validation

	Revision Links

	Codebase Generator

	Change Sources
	Choosing a Change Source

	Configuring Change Sources

	Mail-parsing ChangeSources

	PBChangeSource

	P4Source

	BonsaiPoller

	SVNPoller

	Bzr Poller

	GitPoller

	HgPoller

	GerritChangeSource

	Change Hooks (HTTP Notifications)

	GoogleCodeAtomPoller

	Schedulers
	Configuring Schedulers

	Change Filters

	SingleBranchScheduler

	AnyBranchScheduler

	Dependent Scheduler

	Periodic Scheduler

	Nightly Scheduler

	Try Schedulers

	Triggerable Scheduler

	NightlyTriggerable Scheduler

	ForceScheduler Scheduler

	Buildslaves
	BuildSlave Options

	Latent Buildslaves

	Builder Configuration
	Merging Build Requests

	Prioritizing Builds

	Build Factories
	Defining a Build Factory

	Predefined Build Factories

	Properties
	Common Build Properties

	Source Stamp Attributes

	Using Properties in Steps

	Build Steps
	Common Parameters

	Source Checkout

	Source Checkout (Slave-Side)

	ShellCommand

	Slave Filesystem Steps

	Python BuildSteps

	Transferring Files

	Transfering Strings

	Running Commands on the Master

	Setting Properties

	Triggering Schedulers

	RPM-Related Steps

	Debian Build Steps

	Miscellaneous BuildSteps

	Interlocks
	Access Modes

	Count

	Scope

	Examples

	Status Targets
	WebStatus

	MailNotifier

	IRC Bot

	PBListener

	StatusPush

	HttpStatusPush

	GerritStatusPush

 Copyright Buildbot Team Members.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 	v0.8.7

 	v0.8.6p1

 	v0.8.6

 	v0.8.5

 	v0.8.4

 Configuring Buildbot

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Buildbot 0.8.7-61-g6a0fea1 documentation

 	Buildbot Manual

 	Configuration

Configuring Buildbot

The buildbot's behavior is defined by the config file, which
normally lives in the master.cfg file in the buildmaster's base
directory (but this can be changed with an option to the
buildbot create-master command). This file completely specifies
which Builders are to be run, which slaves they should use, how
Changes should be tracked, and where the status information is to be
sent. The buildmaster's buildbot.tac file names the base
directory; everything else comes from the config file.

A sample config file was installed for you when you created the
buildmaster, but you will need to edit it before your buildbot will do
anything useful.

This chapter gives an overview of the format of this file and the
various sections in it. You will need to read the later chapters to
understand how to fill in each section properly.

Config File Format

The config file is, fundamentally, just a piece of Python code which
defines a dictionary named BuildmasterConfig, with a number of
keys that are treated specially. You don't need to know Python to do
basic configuration, though, you can just copy the syntax of the
sample file. If you are comfortable writing Python code,
however, you can use all the power of a full programming language to
achieve more complicated configurations.

The BuildmasterConfig name is the only one which matters: all
other names defined during the execution of the file are discarded.
When parsing the config file, the Buildmaster generally compares the
old configuration with the new one and performs the minimum set of
actions necessary to bring the buildbot up to date: Builders which are
not changed are left untouched, and Builders which are modified get to
keep their old event history.

The beginning of the master.cfg file
typically starts with something like:

BuildmasterConfig = c = {}

Therefore a config key like change_source will usually appear in
master.cfg as c['change_source'].

See Buildmaster Configuration Index for a full list of BuildMasterConfig keys.

Basic Python Syntax

The master configuration file is interpreted as Python, allowing the full
flexibility of the language. For the configurations described in this section,
a detailed knowledge of Python is not required, but the basic syntax is easily
described.

Python comments start with a hash character #, tuples are defined with
(parenthesis, pairs), and lists (arrays) are defined with [square,
brackets]. Tuples and lists are mostly interchangeable. Dictionaries (data
structures which map keys to values) are defined with curly braces:
{'key1': value1, 'key2': value2}. Function calls (and object
instantiation) can use named parameters, like w =
html.Waterfall(http_port=8010).

The config file starts with a series of import statements, which make
various kinds of Steps and Status targets available for
later use. The main BuildmasterConfig dictionary is created, then it is
populated with a variety of keys, described section-by-section in subsequent
chapters.

Predefined Config File Symbols

The following symbols are automatically available for use in the configuration
file.

	basedir

	the base directory for the buildmaster. This string has not been
expanded, so it may start with a tilde. It needs to be expanded before
use. The config file is located in

os.path.expanduser(os.path.join(basedir, 'master.cfg'))

	__file__

	the absolute path of the config file. The config file's directory is located in
os.path.dirname(__file__).

Testing the Config File

To verify that the config file is well-formed and contains no deprecated or
invalid elements, use the checkconfig command, passing it either a master
directory or a config file.

% buildbot checkconfig master.cfg
Config file is good!
or
% buildbot checkconfig /tmp/masterdir
Config file is good!

If the config file has deprecated features (perhaps because you've
upgraded the buildmaster and need to update the config file to match),
they will be announced by checkconfig. In this case, the config file
will work, but you should really remove the deprecated items and use
the recommended replacements instead:

% buildbot checkconfig master.cfg
/usr/lib/python2.4/site-packages/buildbot/master.py:559: DeprecationWarning: c['sources'] is
deprecated as of 0.7.6 and will be removed by 0.8.0 . Please use c['change_source'] instead.
Config file is good!

If you have errors in your configuration file, checkconfig will let you know:

% buildbot checkconfig master.cfg
Configuration Errors:
c['slaves'] must be a list of BuildSlave instances
no slaves are configured
builder 'smoketest' uses unknown slaves 'linux-002'

If the config file is simply broken, that will be caught too:

% buildbot checkconfig master.cfg
error while parsing config file:
Traceback (most recent call last):
File "/home/buildbot/master/bin/buildbot", line 4, in <module>
 runner.run()
File "/home/buildbot/master/buildbot/scripts/runner.py", line 1358, in run
 if not doCheckConfig(so):
File "/home/buildbot/master/buildbot/scripts/runner.py", line 1079, in doCheckConfig
 return cl.load(quiet=quiet)
File "/home/buildbot/master/buildbot/scripts/checkconfig.py", line 29, in load
 self.basedir, self.configFileName)
--- <exception caught here> ---
File "/home/buildbot/master/buildbot/config.py", line 147, in loadConfig
 exec f in localDict
exceptions.SyntaxError: invalid syntax (master.cfg, line 52)
Configuration Errors:
error while parsing config file: invalid syntax (master.cfg, line 52) (traceback in logfile)

Loading the Config File

The config file is only read at specific points in time. It is first
read when the buildmaster is launched.

Reloading the Config File (reconfig)

If you are on the system hosting the buildmaster, you can send a SIGHUP
signal to it: the buildbot tool has a shortcut for this:

buildbot reconfig BASEDIR

This command will show you all of the lines from twistd.log
that relate to the reconfiguration. If there are any problems during
the config-file reload, they will be displayed in these lines.

When reloading the config file, the buildmaster will endeavor to
change as little as possible about the running system. For example,
although old status targets may be shut down and new ones started up,
any status targets that were not changed since the last time the
config file was read will be left running and untouched. Likewise any
Builders which have not been changed will be left running. If a
Builder is modified (say, the build process is changed) while a Build
is currently running, that Build will keep running with the old
process until it completes. Any previously queued Builds (or Builds
which get queued after the reconfig) will use the new process.

Warning

Buildbot's reconfiguration system is fragile for a few difficult-to-fix
reasons:

	Any modules imported by the configuration file are not automatically reloaded.
Python modules such as http://pypi.python.org/pypi/lazy-reload may help
here, but reloading modules is fraught with subtlties and difficult-to-decipher
failure cases.

	During the reconfiguration, active internal objects are divorced from the service
hierarchy, leading to tracebacks in the web interface and other components. These
are ordinarily transient, but with HTTP connection caching (either by the browser or
an intervening proxy) they can last for a long time.

	If the new configuration file is invalid, it is possible for Buildbot's
internal state to be corrupted, leading to undefined results. When this
occurs, it is best to restart the master.

	For more advanced configurations, it is impossible for Buildbot to tell if the
configuration for a Builder or Scheduler has chanaged, and thus the Builder or
Scheduler will always be reloaded. This occurs most commonly when a callable
is passed as a configuration parameter.

The bbproto project (at https://github.com/dabrahams/bbproto) may help to
construct large (multi-file) configurations which can be effectively reloaded
and reconfigured.

Reconfig by Debug Client

The debug tool (buildbot debugclient
--master HOST:PORT) has a Reload .cfg button which will also
trigger a reload.

 Copyright Buildbot Team Members.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 	v0.8.7

 	v0.8.6p1

 	v0.8.6

 	v0.8.5

 	v0.8.4

 Global Configuration

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Buildbot 0.8.7-61-g6a0fea1 documentation

 	Buildbot Manual

 	Configuration

Global Configuration

The keys in this section affect the operations of the buildmaster globally.

Database Specification

Buildbot requires a connection to a database to maintain certain state information, such as tracking pending build requests.
In the default configuration Buildbot uses a file-based SQLite database, stored in the state.sqlite file of the master's base directory.
Override this configuration with the db_url parameter.

Buildbot accepts a database configuration in a dictionary named db.
All keys are optional:

c['db'] = {
 'db_url' : 'sqlite:///state.sqlite',
 'db_poll_interval' : 30,
}

The db_url key indicates the database engine to use.
The format of this parameter is completely documented at http://www.sqlalchemy.org/docs/dialects/, but is generally of the form:

driver://[username:password@]host:port/database[?args]

The optional db_poll_interval specifies the interval, in seconds, between checks for pending tasks in the database.
This parameter is generally only usful in multi-master mode. See Multi-master mode.

These parameters can be specified directly in the configuration dictionary, as c['db_url'] and c['db_poll_interval'], although this method is deprecated.

The following sections give additional information for particular database backends:

SQLite

For sqlite databases, since there is no host and port, relative paths are specified with sqlite:/// and absolute paths with sqlite:////.
Examples:

c['db_url'] = "sqlite:///state.sqlite"

SQLite requires no special configuration.

If Buildbot produces "database is locked" exceptions, try adding serialize_access=1 to the DB URL as a workaround:

c['db_url'] = "sqlite:///state.sqlite?serialize_access=1"

and please file a bug at http://trac.buildbot.net.

MySQL

c['db_url'] = "mysql://user:pass@somehost.com/database_name?max_idle=300"

The max_idle argument for MySQL connections is unique to Buildbot, and should be set to something less than the wait_timeout configured for your server.
This controls the SQLAlchemy pool_recycle parameter, which defaults to no timeout.
Setting this parameter ensures that connections are closed and re-opened after the configured amount of idle time.
If you see errors such as _mysql_exceptions.OperationalError: (2006, 'MySQL server has gone away'), this means your max_idle setting is probably too high.
show global variables like 'wait_timeout'; will show what the currently configured wait_timeout is on your MySQL server.

Buildbot requires use_unique=True and charset=utf8, and will add them automatically, so they do not need to be specified in db_url.

MySQL defaults to the MyISAM storage engine, but this can be overridden with the storage_engine URL argument.

Note that, because of InnoDB's extremely short key length limitations, it cannot be used to run Buildbot.
See http://bugs.mysql.com/bug.php?id=4541 for more information.

Buildbot uses temporary tables internally to manage large transactions.

MySQL has trouble doing replication with temporary tables, so if you are using a replicated MySQL installation, you may need to handle this situation carefully.
The MySQL documentation (http://dev.mysql.com/doc/refman/5.5/en/replication-features-temptables.html) recommends using --replicate-wild-ignore-table to ignore temporary
tables that should not be replicated.
All Buildbot temporary tables begin with bbtmp_, so an option such as --replicate-wild-ignore-table=bbtmp_.* may help.

Postgres

c['db_url'] = "postgresql://username@hostname/dbname"

PosgreSQL requires no special configuration.

Multi-master mode

Normally buildbot operates using a single master process that uses the configured database to save state.

It is possible to configure buildbot to have multiple master processes that share state in the same database.
This has been well tested using a MySQL database.
There are several benefits of Multi-master mode:

	You can have large numbers of build slaves handling the same queue of build requests.
A single master can only handle so many slaves (the number is based on a number of factors including type of builds, number of builds, and master and slave IO and CPU capacity--there is no fixed formula).
By adding another master which shares the queue of build requests, you can attach more slaves to this additional master, and increase your build throughput.

	You can shut one master down to do maintenance, and other masters will continue to do builds.

State that is shared in the database includes:

	List of changes

	Scheduler names and internal state

	Build requests, including the builder name

Because of this shared state, you are strongly encouraged to:

	Ensure that each named scheduler runs on only one master.
If the same scheduler runs on multiple masters, it will trigger duplicate builds and may produce other undesirable behaviors.

	Ensure builder names are unique for a given build factory implementation.
You can have the same builder name configured on many masters, but if the build factories differ, you will get different results depending on which master claims the build.

One suggested configuration is to have one buildbot master configured with just the scheduler and change sources; and then other masters configured with just the builders.

To enable multi-master mode in this configuration, you will need to set the multiMaster option so that buildbot doesn't warn about missing schedulers or builders.
You will also need to set db_poll_interval to specify the interval (in seconds) at which masters should poll the database for tasks.

Enable multiMaster mode; disables warnings about unknown builders and
schedulers
c['multiMaster'] = True
Check for new build requests every 60 seconds
c['db'] = {
 'db_url' : 'mysql://...',
 'db_poll_interval' : 30,
}

Site Definitions

Three basic settings describe the buildmaster in status reports:

c['title'] = "Buildbot"
c['titleURL'] = "http://buildbot.sourceforge.net/"
c['buildbotURL'] = "http://localhost:8010/"

title is a short string that will appear at the top of this buildbot installation's html.WebStatus home page (linked to the titleURL), and is embedded in the title of the waterfall HTML page.

titleURL is a URL string that must end with a slash (/).
HTML status displays will show title as a link to titleURL.
This URL is often used to provide a link from buildbot HTML pages to your project's home page.

The buildbotURL string should point to the location where the buildbot's internal web server is visible.
This URL must end with a slash (/).
This typically uses the port number set for the web status (WebStatus): the buildbot needs your help to figure out a suitable externally-visible host URL.

When status notices are sent to users (either by email or over IRC), buildbotURL will be used to create a URL to the specific build or problem that they are being notified about.
It will also be made available to queriers (over IRC) who want to find out where to get more information about this buildbot.

Log Handling

c['logCompressionLimit'] = 16384
c['logCompressionMethod'] = 'gz'
c['logMaxSize'] = 1024*1024 # 1M
c['logMaxTailSize'] = 32768

The logCompressionLimit enables compression of build logs on disk for logs that are bigger than the given size, or disables that completely if set to False.
The default value is 4096, which should be a reasonable default on most file systems.
This setting has no impact on status plugins, and merely affects the required disk space on the master for build logs.

The logCompressionMethod controls what type of compression is used for build logs.
The default is 'bz2', and the other valid option is 'gz'. 'bz2' offers better compression at the expense of more CPU time.

The logMaxSize parameter sets an upper limit (in bytes) to how large logs from an individual build step can be.
The default value is None, meaning no upper limit to the log size.
Any output exceeding logMaxSize will be truncated, and a message to this effect will be added to the log's HEADER channel.

If logMaxSize is set, and the output from a step exceeds the maximum, the logMaxTailSize parameter controls how much of the end of the build log will be kept.
The effect of setting this parameter is that the log will contain the first logMaxSize bytes and the last logMaxTailSize bytes of output.
Don't set this value too high, as the the tail of the log is kept in memory.

Data Lifetime

Horizons

c['changeHorizon'] = 200
c['buildHorizon'] = 100
c['eventHorizon'] = 50
c['logHorizon'] = 40
c['buildCacheSize'] = 15

Buildbot stores historical information on disk in the form of "Pickle" files and compressed logfiles.
In a large installation, these can quickly consume disk space, yet in many cases developers never consult this historical information.

The changeHorizon key determines how many changes the master will keep a record of. One place these changes are displayed is on the waterfall page.
This parameter defaults to 0, which means keep all changes indefinitely.

The buildHorizon specifies the minimum number of builds for each builder which should be kept on disk.
The eventHorizon specifies the minumum number of events to keep--events mostly describe connections and disconnections of slaves, and are seldom helpful to developers.
The logHorizon gives the minimum number of builds for which logs should be maintained; this parameter must be less than or equal to buildHorizon.
Builds older than logHorizon but not older than buildHorizon will maintain their overall status and the status of each step, but the logfiles will be deleted.

Caches

c['caches'] = {
 'Changes' : 100, # formerly c['changeCacheSize']
 'Builds' : 500, # formerly c['buildCacheSize']
 'chdicts' : 100,
 'BuildRequests' : 10,
 'SourceStamps' : 20,
 'ssdicts' : 20,
 'objectids' : 10,
 'usdicts' : 100,
}

The caches configuration key contains the configuration for Buildbot's in-memory caches.
These caches keep frequently-used objects in memory to avoid unnecessary trips to the database or to pickle files.
Caches are divided by object type, and each has a configurable maximum size.

The default size for each cache is 1, except where noted below.
A value of 1 allows Buildbot to make a number of optimizations without consuming much memory.
Larger, busier installations will likely want to increase these values.

The available caches are:

	Changes

	the number of change objects to cache in memory.
This should be larger than the number of changes that typically arrive in the span of a few minutes, otherwise your schedulers will be reloading changes from the database every time they run.
For distributed version control systems, like git or hg, several thousand changes may arrive at once, so setting this parameter to something like 10000 isn't unreasonable.

This parameter is the same as the deprecated global parameter changeCacheSize. Its default value is 10.

	Builds

	The buildCacheSize parameter gives the number of builds for each builder which are cached in memory.
This number should be larger than the number of builds required for commonly-used status displays (the waterfall or grid views), so that those displays do not miss the cache on a refresh.

This parameter is the same as the deprecated global parameter buildCacheSize. Its default value is 15.

	chdicts

	The number of rows from the changes table to cache in memory.
This value should be similar to the value for Changes.

	BuildRequests

	The number of BuildRequest objects kept in memory.
This number should be higher than the typical number of outstanding build requests.
If the master ordinarily finds jobs for BuildRequests immediately, you may set a lower value.

	SourceStamps

	the number of SourceStamp objects kept in memory.
This number should generally be similar to the number BuildRequesets.

	ssdicts

	The number of rows from the sourcestamps table to cache in memory.
This value should be similar to the value for SourceStamps.

	objectids

	The number of object IDs - a means to correlate an object in the Buildbot configuration with an identity in the database--to cache.
In this version, object IDs are not looked up often during runtime, so a relatively low value such as 10 is fine.

	usdicts

	The number of rows from the users table to cache in memory.
Note that for a given user there will be a row for each attribute that user has.

c['buildCacheSize'] = 15

Merging Build Requests

c['mergeRequests'] = True

This is a global default value for builders' mergeRequests parameter, and controls the merging of build requests.

This parameter can be overridden on a per-builder basis.
See Merging Build Requests for the allowed values for this parameter.

Prioritizing Builders

def prioritizeBuilders(buildmaster, builders):
 # ...
c['prioritizeBuilders'] = prioritizeBuilders

By default, buildbot will attempt to start builds on builders in order, beginning with the builder with the oldest pending request.
Customize this behavior with the prioritizeBuilders configuration key, which takes a callable.
See Builder Priority Functions for details on this callable.

This parameter controls the order that the build master can start builds, and is useful in situations where there is resource contention between builders, e.g., for a test database.
It does not affect the order in which a builder processes the build requests in its queue.
For that purpose, see Prioritizing Builds.

Setting the PB Port for Slaves

c['slavePortnum'] = 10000

The buildmaster will listen on a TCP port of your choosing for connections from buildslaves.
It can also use this port for connections from remote Change Sources, status clients, and debug tools.
This port should be visible to the outside world, and you'll need to tell your buildslave admins about your choice.

It does not matter which port you pick, as long it is externally visible; however, you should probably use something larger than 1024, since most operating systems don't allow non-root processes to bind to low-numbered ports.
If your buildmaster is behind a firewall or a NAT box of some sort, you may have to configure your firewall to permit inbound connections to this port.

slavePortnum is a strports specification string, defined in the twisted.application.strports module (try pydoc twisted.application.strports to get documentation on the format).

This means that you can have the buildmaster listen on a localhost-only port by doing:

c['slavePortnum'] = "tcp:10000:interface=127.0.0.1"

This might be useful if you only run buildslaves on the same machine, and they are all configured to contact the buildmaster at localhost:10000.

Defining Global Properties

The properties configuration key defines a dictionary of properties that will be available to all builds started by the buildmaster:

c['properties'] = {
 'Widget-version' : '1.2',
 'release-stage' : 'alpha'
}

Debug Options

If you set debugPassword, then you can connect to the buildmaster with the diagnostic tool launched by buildbot debugclient MASTER:PORT.
From this tool, you can reload the config file, manually force builds, and inject changes, which may be useful for testing your buildmaster without actually commiting changes to your repository (or before you have the Change Sources configured.)

The debug tool uses the same port number as the slaves, slavePortnum, and you may configure its authentication credentials as follows:

c['debugPassword'] = "debugpassword"

Manhole

If you set manhole to an instance of one of the classes in buildbot.manhole, you can telnet or ssh into the buildmaster and get an interactive Python shell, which may be useful for debugging buildbot internals.
It is probably only useful for buildbot developers.
It exposes full access to the buildmaster's account (including the ability to modify and delete files), so it should not be enabled with a weak or easily guessable password.

There are three separate Manhole classes.
Two of them use SSH, one uses unencrypted telnet.
Two of them use a username+password combination to grant access, one of them uses an SSH-style authorized_keys file which contains a list of ssh public keys.

Note

Using any Manhole requires that pycrypto and pyasn1 be installed.
These are not part of the normal Buildbot dependencies.

	manhole.AuthorizedKeysManhole

	You construct this with the name of a file that contains one SSH public key per line, just like ~/.ssh/authorized_keys.
If you provide a non-absolute filename, it will be interpreted relative to the buildmaster's base directory.

	manhole.PasswordManhole

	This one accepts SSH connections but asks for a username and password when authenticating.
It accepts only one such pair.

	manhole.TelnetManhole

	This accepts regular unencrypted telnet connections, and asks for a username/password pair before providing access.
Because this username/password is transmitted in the clear, and because Manhole access to the buildmaster is equivalent to granting full shell privileges to both the buildmaster and all the buildslaves (and to all accounts which then run code produced by the buildslaves), it is highly recommended that you use one of the SSH manholes instead.

some examples:
from buildbot import manhole
c['manhole'] = manhole.AuthorizedKeysManhole(1234, "authorized_keys")
c['manhole'] = manhole.PasswordManhole(1234, "alice", "mysecretpassword")
c['manhole'] = manhole.TelnetManhole(1234, "bob", "snoop_my_password_please")

The Manhole instance can be configured to listen on a specific port.
You may wish to have this listening port bind to the loopback interface (sometimes known as lo0, localhost, or 127.0.0.1) to restrict access to clients which are running on the same host.

from buildbot.manhole import PasswordManhole
c['manhole'] = PasswordManhole("tcp:9999:interface=127.0.0.1","admin","passwd")

To have the Manhole listen on all interfaces, use "tcp:9999" or simply 9999.
This port specification uses twisted.application.strports, so you can make it listen on SSL or even UNIX-domain sockets if you want.

Note that using any Manhole requires that the TwistedConch [http://twistedmatrix.com/trac/wiki/TwistedConch] package be installed.

The buildmaster's SSH server will use a different host key than the normal sshd running on a typical unix host.
This will cause the ssh client to complain about a host key mismatch, because it does not realize there are two separate servers running on the same host.
To avoid this, use a clause like the following in your .ssh/config file:

Host remotehost-buildbot
HostName remotehost
HostKeyAlias remotehost-buildbot
Port 9999
use 'user' if you use PasswordManhole and your name is not 'admin'.
if you use AuthorizedKeysManhole, this probably doesn't matter.
User admin

Using Manhole

After you have connected to a manhole instance, you will find yourself at a Python prompt.
You have access to two objects: master (the BuildMaster) and status (the master's Status object).
Most interesting objects on the master can be reached from these two objects.

To aid in navigation, the show method is defined.
It displays the non-method attributes of an object.

A manhole session might look like:

>>> show(master)
data attributes of <buildbot.master.BuildMaster instance at 0x7f7a4ab7df38>
 basedir : '/home/dustin/code/buildbot/t/buildbot/'...
 botmaster : <type 'instance'>
 buildCacheSize : None
 buildHorizon : None
 buildbotURL : http://localhost:8010/
 changeCacheSize : None
 change_svc : <type 'instance'>
 configFileName : master.cfg
 db : <class 'buildbot.db.connector.DBConnector'>
 db_poll_interval : None
 db_url : sqlite:///state.sqlite
 ...
>>> show(master.botmaster.builders['win32'])
data attributes of <Builder ''builder'' at 48963528>
 ...
>>> win32 = _
>>> win32.category = 'w32'

Metrics Options

c['metrics'] = dict(log_interval=10, periodic_interval=10)

metrics can be a dictionary that configures various aspects of the metrics subsystem.
If metrics is None, then metrics collection, logging and reporting will be disabled.

log_interval determines how often metrics should be logged to twistd.log.
It defaults to 60s.
If set to 0 or None, then logging of metrics will be disabled.
This value can be changed via a reconfig.

periodic_interval determines how often various non-event based metrics are collected, such as memory usage, uncollectable garbage, reactor delay.
This defaults to 10s.
If set to 0 or None, then periodic collection of this data is disabled.
This value can also be changed via a reconfig.

Read more about metrics in the Metrics section in the developer documentation.

Users Options

from buildbot.process.users import manual
c['user_managers'] = []
c['user_managers'].append(manual.CommandlineUserManager(username="user",
 passwd="userpw",
 port=9990))

user_managers contains a list of ways to manually manage User Objects within Buildbot (see User Objects).
Currently implemented is a commandline tool buildbot user, described at length in user.
In the future, a web client will also be able to manage User Objects and their attributes.

As shown above, to enable the buildbot user tool, you must initialize a CommandlineUserManager instance in your master.cfg.
CommandlineUserManager instances require the following arguments:

	username

	This is the username that will be registered on the PB connection and need to be used when calling buildbot user.

	passwd

	This is the passwd that will be registered on the PB connection and need to be used when calling buildbot user.

	port

	The PB connection port must be different than c['slavePortnum'] and be specified when calling buildbot user

Input Validation

import re
c['validation'] = {
 'branch' : re.compile(r'^[\w.+/~-]*$'),
 'revision' : re.compile(r'^[\w\.\-\/]*$'),
 'property_name' : re.compile(r'^[\w\.\-\/\~:]*$'),
 'property_value' : re.compile(r'^[\w\.\-\/\~:]*$'),
}

This option configures the validation applied to user inputs of various types.
This validation is important since these values are often included in command-line arguments executed on slaves.
Allowing arbitrary input from untrusted users may raise security concerns.

The keys describe the type of input validated; the values are compiled regular expressions against which the input will be matched.
The defaults for each type of input are those given in the example, above.

Revision Links

The revlink parameter is used to create links from revision IDs in the web status to a web-view of your source control system.
The parameter's value must be a callable.

By default, Buildbot is configured to generate revlinks for a number of open source hosting platforms.

The callable takes the revision id and repository argument, and should return an URL to the revision.
Note that the revision id may not always be in the form you expect, so code defensively.
In particular, a revision of "??" may be supplied when no other information is available.

Note that SourceStamps that are not created from version-control changes (e.g., those created by a Nightly or Periodic scheduler) may have an empty repository string, if the respository is not known to the scheduler.

Revision Link Helpers

Buildbot provides two helpers for generating revision links.
buildbot.revlinks.RevlinkMatcher takes a list of regular expressions, and replacement text.
The regular expressions should all have the same number of capture groups.
The replacement text should have sed-style references to that capture groups (i.e. '1' for the first capture group), and a single '%s' reference, for the revision ID.
The repository given is tried against each regular expression in turn.
The results are the substituted into the replacement text, along with the revision ID to obtain the revision link.

from buildbot import revlinks
c['revlink'] = revlinks.RevlinkMatch([r'git://notmuchmail.org/git/\(.*\)'],
 r'http://git.notmuchmail.org/git/\1/commit/%s')

buildbot.revlinks.RevlinkMultiplexer takes a list of revision link callables, and tries each in turn, returning the first successful match.

Codebase Generator

all_repositories = {
 r'https://hg/hg/mailsuite/mailclient': 'mailexe',
 r'https://hg/hg/mailsuite/mapilib': 'mapilib',
 r'https://hg/hg/mailsuite/imaplib': 'imaplib',
 r'https://github.com/mailinc/mailsuite/mailclient': 'mailexe',
 r'https://github.com/mailinc/mailsuite/mapilib': 'mapilib',
 r'https://github.com/mailinc/mailsuite/imaplib': 'imaplib',
}

def codebaseGenerator(chdict):
 return all_repositories[chdict['repository']]

c['codebaseGenerator'] = codebaseGenerator

For any incoming change, the codebase is set to ''.
This codebase value is sufficient if all changes come from the same repository (or clones).
If changes come from different repositories, extra processing will be needed to determine the codebase for the incoming change.
This codebase will then be a logical name for the combination of repository and or branch etc.

The codebaseGenerator accepts a change dictionary as produced by the buildbot.db.changes.ChangesConnectorComponent, with a changeid equal to None.

 Copyright Buildbot Team Members.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 	v0.8.7

 	v0.8.6p1

 	v0.8.6

 	v0.8.5

 	v0.8.4

 Change Sources

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Buildbot 0.8.7-61-g6a0fea1 documentation

 	Buildbot Manual

 	Configuration

Change Sources

A Version Control System mantains a source tree, and tells the
buildmaster when it changes. The first step of each Build is typically
to acquire a copy of some version of this tree.

This chapter describes how the Buildbot learns about what Changes have
occurred. For more information on VC systems and Changes, see
Version Control Systems.

Changes can be provided by a variety of ChangeSource types, although any given
project will typically have only a single ChangeSource active. This section
provides a description of all available ChangeSource types and explains how to
set up each of them.

In general, each Buildmaster watches a single source tree. It is possible to
work around this, but true support for multi-tree builds remains elusive.

Choosing a Change Source

There are a variety of ChangeSource classes available, some of which are
meant to be used in conjunction with other tools to deliver Change
events from the VC repository to the buildmaster.

As a quick guide, here is a list of VC systems and the ChangeSources
that might be useful with them. Note that some of these modules are in
Buildbot's "contrib" directory, meaning that they have been offered by other
users in hopes they may be useful, and might require some additional work to
make them functional.

	CVS

	
	CVSMaildirSource (watching mail sent by contrib/buildbot_cvs_mail.py script)

	PBChangeSource (listening for connections from buildbot
sendchange run in a loginfo script)

	PBChangeSource (listening for connections from a long-running
contrib/viewcvspoll.py polling process which examines the ViewCVS
database directly

	Change Hooks in WebStatus

	SVN

	
	PBChangeSource (listening for connections from
contrib/svn_buildbot.py run in a postcommit script)

	PBChangeSource (listening for connections from a long-running
contrib/svn_watcher.py or contrib/svnpoller.py polling
process

	SVNCommitEmailMaildirSource (watching for email sent by
commit-email.pl)

	SVNPoller (polling the SVN repository)

	Change Hooks in WebStatus

	GoogleCodeAtomPoller (polling the
commit feed for a GoogleCode Git repository)

	Darcs

	
	PBChangeSource (listening for connections from
contrib/darcs_buildbot.py in a commit script)

	Change Hooks in WebStatus

	Mercurial

	
	PBChangeSource (listening for connections from
contrib/hg_buildbot.py run in an 'changegroup' hook)

	Change Hooks in WebStatus

	PBChangeSource (listening for connections from
buildbot/changes/hgbuildbot.py run as an in-process 'changegroup'
hook)

	HgPoller (polling a remote Mercurial repository)

	GoogleCodeAtomPoller (polling the
commit feed for a GoogleCode Git repository)

	Bzr (the newer Bazaar)

	
	PBChangeSource (listening for connections from
contrib/bzr_buildbot.py run in a post-change-branch-tip or commit hook)

	BzrPoller (polling the Bzr repository)

	Change Hooks in WebStatus

	Git

	
	PBChangeSource (listening for connections from
contrib/git_buildbot.py run in the post-receive hook)

	PBChangeSource (listening for connections from
contrib/github_buildbot.py, which listens for notifications
from GitHub)

	Change Hooks in WebStatus

	github change hook (specifically designed for GitHub notifications,
but requiring a publicly-accessible WebStatus)

	GitPoller (polling a remote git repository)

	GoogleCodeAtomPoller (polling the
commit feed for a GoogleCode Git repository)

	Repo/Git

	
	GerritChangeSource connects to Gerrit
via SSH to get a live stream of changes

	Monotone

	
	PBChangeSource (listening for connections from
monotone-buildbot.lua, which is available with monotone)

All VC systems can be driven by a PBChangeSource and the buildbot
sendchange tool run from some form of commit script. If you write an email
parsing function, they can also all be driven by a suitable mail-parsing
source. Additionally, handlers for web-based
notification (i.e. from GitHub) can be used with WebStatus' change_hook module.
The interface is simple, so adding your own handlers (and sharing!) should be a
breeze.

See Change Source Index for a full list of change sources.

Configuring Change Sources

The change_source configuration key holds all active
change sources for the confguration.

Most configurations have a single ChangeSource, watching only a single
tree, e.g.,

c['change_source'] = PBChangeSource()

For more advanced configurations, the parameter can be a list of change sources:

source1 = ...
source2 = ...
c['change_source'] = [source1, source1]

Repository and Project

ChangeSources will, in general, automatically provide the proper repository
attribute for any changes they produce. For systems which operate on URL-like
specifiers, this is a repository URL. Other ChangeSources adapt the concept as
necessary.

Many ChangeSources allow you to specify a project, as well. This attribute is
useful when building from several distinct codebases in the same buildmaster:
the project string can serve to differentiate the different codebases.
Schedulers can filter on project, so you can configure different builders to
run for each project.

Mail-parsing ChangeSources

Many projects publish information about changes to their source tree
by sending an email message out to a mailing list, frequently named
PROJECT-commits or PROJECT-changes. Each message usually contains a
description of the change (who made the change, which files were
affected) and sometimes a copy of the diff. Humans can subscribe to
this list to stay informed about what's happening to the source tree.

The Buildbot can also be subscribed to a -commits mailing list, and
can trigger builds in response to Changes that it hears about. The
buildmaster admin needs to arrange for these email messages to arrive
in a place where the buildmaster can find them, and configure the
buildmaster to parse the messages correctly. Once that is in place,
the email parser will create Change objects and deliver them to the
Schedulers (see Schedulers) just like any other ChangeSource.

There are two components to setting up an email-based ChangeSource.
The first is to route the email messages to the buildmaster, which is
done by dropping them into a maildir. The second is to actually
parse the messages, which is highly dependent upon the tool that was
used to create them. Each VC system has a collection of favorite
change-emailing tools, and each has a slightly different format, so
each has a different parsing function. There is a separate
ChangeSource variant for each parsing function.

Once you've chosen a maildir location and a parsing function, create
the change source and put it in change_source

from buildbot.changes.mail import CVSMaildirSource
c['change_source'] = CVSMaildirSource("~/maildir-buildbot",
 prefix="/trunk/")

Subscribing the Buildmaster

The recommended way to install the buildbot is to create a dedicated
account for the buildmaster. If you do this, the account will probably
have a distinct email address (perhaps
buildmaster@example.org). Then just arrange for this
account's email to be delivered to a suitable maildir (described in
the next section).

If the buildbot does not have its own account, extension addresses
can be used to distinguish between email intended for the buildmaster
and email intended for the rest of the account. In most modern MTAs,
the e.g. foo@example.org account has control over every email
address at example.org which begins with "foo", such that email
addressed to account-foo@example.org can be delivered to a
different destination than account-bar@example.org. qmail
does this by using separate .qmail files for the two destinations
(.qmail-foo and .qmail-bar, with .qmail
controlling the base address and .qmail-default controlling all
other extensions). Other MTAs have similar mechanisms.

Thus you can assign an extension address like
foo-buildmaster@example.org to the buildmaster, and retain
foo@example.org for your own use.

Using Maildirs

A maildir is a simple directory structure originally developed for
qmail that allows safe atomic update without locking. Create a base
directory with three subdirectories: new, tmp, and cur.
When messages arrive, they are put into a uniquely-named file (using
pids, timestamps, and random numbers) in tmp. When the file is
complete, it is atomically renamed into new. Eventually the
buildmaster notices the file in new, reads and parses the
contents, then moves it into cur. A cronjob can be used to delete
files in cur at leisure.

Maildirs are frequently created with the maildirmake tool,
but a simple mkdir -p ~/MAILDIR/{cur,new,tmp} is pretty much
equivalent.

Many modern MTAs can deliver directly to maildirs. The usual .forward
or .procmailrc syntax is to name the base directory with a trailing
slash, so something like ~/MAILDIR/. qmail and postfix are
maildir-capable MTAs, and procmail is a maildir-capable MDA (Mail
Delivery Agent).

Here is an example procmail config, located in ~/.procmailrc:

.procmailrc
routes incoming mail to appropriate mailboxes
PATH=/usr/bin:/usr/local/bin
MAILDIR=$HOME/Mail
LOGFILE=.procmail_log
SHELL=/bin/sh

:0
*
new

If procmail is not setup on a system wide basis, then the following one-line
.forward file will invoke it.

!/usr/bin/procmail

For MTAs which cannot put files into maildirs directly, the
safecat tool can be executed from a .forward file to accomplish
the same thing.

The Buildmaster uses the linux DNotify facility to receive immediate
notification when the maildir's new directory has changed. When
this facility is not available, it polls the directory for new
messages, every 10 seconds by default.

Parsing Email Change Messages

The second component to setting up an email-based ChangeSource is to
parse the actual notices. This is highly dependent upon the VC system
and commit script in use.

A couple of common tools used to create these change emails, along with the
buildbot tools to parse them, are:

	CVS

	
	Buildbot CVS MailNotifier

	CVSMaildirSource

	SVN

	
	svnmailer

	http://opensource.perlig.de/en/svnmailer/

	commit-email.pl

	SVNCommitEmailMaildirSource

	Bzr

	
	Launchpad

	BzrLaunchpadEmailMaildirSource

	Mercurial

	
	NotifyExtension

	http://www.selenic.com/mercurial/wiki/index.cgi/NotifyExtension

	Git

	
	post-receive-email

	http://git.kernel.org/?p=git/git.git;a=blob;f=contrib/hooks/post-receive-email;hb=HEAD

The following sections describe the parsers available for each of
these tools.

Most of these parsers accept a prefix= argument, which is used
to limit the set of files that the buildmaster pays attention to. This
is most useful for systems like CVS and SVN which put multiple
projects in a single repository (or use repository names to indicate
branches). Each filename that appears in the email is tested against
the prefix: if the filename does not start with the prefix, the file
is ignored. If the filename does start with the prefix, that
prefix is stripped from the filename before any further processing is
done. Thus the prefix usually ends with a slash.

CVSMaildirSource

	
class buildbot.changes.mail.CVSMaildirSource

	

This parser works with the buildbot_cvs_maildir.py script in the
contrib directory.

The script sends an email containing all the files submitted in
one directory. It is invoked by using the CVSROOT/loginfo facility.

The Buildbot's CVSMaildirSource knows how to parse these messages
and turn them into Change objects. It takes the directory name of the maildir
root. For example:

from buildbot.changes.mail import CVSMaildirSource
c['change_source'] = CVSMaildirSource("/home/buildbot/Mail")

Configuration of CVS and buildbot_cvs_mail.py

CVS must be configured to invoke the buildbot_cvs_mail.py script when files
are checked in. This is done via the CVS loginfo configuration file.

To update this, first do:

cvs checkout CVSROOT

cd to the CVSROOT directory and edit the file loginfo, adding a line like:

SomeModule /cvsroot/CVSROOT/buildbot_cvs_mail.py --cvsroot :ext:example.com:/cvsroot -e buildbot -P SomeModule %@{sVv@}

Note

For cvs version 1.12.x, the --path %p option is required.
Version 1.11.x and 1.12.x report the directory path differently.

The above example you put the buildbot_cvs_mail.py script under /cvsroot/CVSROOT.
It can be anywhere. Run the script with --help to see all the options.
At the very least, the
options -e (email) and -P (project) should be specified. The line must end with %{sVv}
This is expanded to the files that were modified.

Additional entries can be added to support more modules.

See buildbot_cvs_mail.py --help` for more information on the available options.

SVNCommitEmailMaildirSource

	
class buildbot.changes.mail.SVNCommitEmailMaildirSource

	

SVNCommitEmailMaildirSource parses message sent out by the
commit-email.pl script, which is included in the Subversion
distribution.

It does not currently handle branches: all of the Change objects that
it creates will be associated with the default (i.e. trunk) branch.

from buildbot.changes.mail import SVNCommitEmailMaildirSource
c['change_source'] = SVNCommitEmailMaildirSource("~/maildir-buildbot")

BzrLaunchpadEmailMaildirSource

	
class buildbot.changes.mail.BzrLaunchpadEmailMaildirSource

	

BzrLaunchpadEmailMaildirSource parses the mails that are sent to
addresses that subscribe to branch revision notifications for a bzr branch
hosted on Launchpad.

The branch name defaults to lp:Launchpad path. For example
lp:~maria-captains/maria/5.1.

If only a single branch is used, the default branch name can be changed by
setting defaultBranch.

For multiple branches, pass a dictionary as the value of the branchMap
option to map specific repository paths to specific branch names (see example
below). The leading lp: prefix of the path is optional.

The prefix option is not supported (it is silently ignored). Use the
branchMap and defaultBranch instead to assign changes to
branches (and just do not subscribe the buildbot to branches that are not of
interest).

The revision number is obtained from the email text. The bzr revision id is
not available in the mails sent by Launchpad. However, it is possible to set
the bzr append_revisions_only option for public shared repositories to
avoid new pushes of merges changing the meaning of old revision numbers.

from buildbot.changes.mail import BzrLaunchpadEmailMaildirSource
bm = { 'lp:~maria-captains/maria/5.1' : '5.1', 'lp:~maria-captains/maria/6.0' : '6.0' }
c['change_source'] = BzrLaunchpadEmailMaildirSource("~/maildir-buildbot", branchMap = bm)

PBChangeSource

	
class buildbot.changes.pb.PBChangeSource

	

PBChangeSource actually listens on a TCP port for
clients to connect and push change notices into the
Buildmaster. This is used by the built-in buildbot sendchange
notification tool, as well as several version-control hook
scripts. This change is also useful for
creating new kinds of change sources that work on a push model
instead of some kind of subscription scheme, for example a script
which is run out of an email .forward file. This ChangeSource
always runs on the same TCP port as the slaves. It shares the same
protocol, and in fact shares the same space of "usernames", so you
cannot configure a PBChangeSource with the same name as a slave.

If you have a publicly accessible slave port, and are using
PBChangeSource, you must establish a secure username and password
for the change source. If your sendchange credentials are known (e.g., the
defaults), then your buildmaster is susceptible to injection of arbitrary
changes, which (depending on the build factories) could lead to arbitrary code
execution on buildslaves.

The PBChangeSource is created with the following arguments.

	port

	which port to listen on. If None (which is the default), it
shares the port used for buildslave connections.

	user

	The user account that the client program must use to connect. Defaults to
change

	passwd

	The password for the connection - defaults to changepw. Do not use
this default on a publicly exposed port!

	prefix

	The prefix to be found and stripped from filenames delivered over the
connection, defaulting to None. Any filenames which do not start with
this prefix will be removed. If all the filenames in a given Change are
removed, the that whole Change will be dropped. This string should probably
end with a directory separator.

This is useful for changes coming from version control systems that
represent branches as parent directories within the repository (like SVN
and Perforce). Use a prefix of trunk/ or
project/branches/foobranch/ to only follow one branch and to get
correct tree-relative filenames. Without a prefix, the
PBChangeSource will probably deliver Changes with filenames
like trunk/foo.c instead of just foo.c. Of course this also
depends upon the tool sending the Changes in (like buildbot
sendchange) and what filenames it is delivering: that tool
may be filtering and stripping prefixes at the sending end.

For example:

from buildbot.changes import pb
c['change_source'] = pb.PBChangeSource(port=9999, user='laura', passwd='fpga')

The following hooks are useful for sending changes to a PBChangeSource:

Mercurial Hook

Since Mercurial is written in python, the hook script can invoke
Buildbot's sendchange function directly, rather than having to
spawn an external process. This function delivers the same sort of
changes as buildbot sendchange and the various hook scripts in
contrib/, so you'll need to add a PBChangeSource to your
buildmaster to receive these changes.

To set this up, first choose a Mercurial repository that represents
your central official source tree. This will be the same
repository that your buildslaves will eventually pull from. Install
Buildbot on the machine that hosts this repository, using the same
version of python as Mercurial is using (so that the Mercurial hook
can import code from buildbot). Then add the following to the
.hg/hgrc file in that repository, replacing the buildmaster
hostname/portnumber as appropriate for your buildbot:

[hooks]
changegroup.buildbot = python:buildbot.changes.hgbuildbot.hook

[hgbuildbot]
master = buildmaster.example.org:9987
.. other hgbuildbot parameters ..

The master configuration key allows to have more than one buildmaster
specification. The buildmasters have to be separated by a whitspace
or comma (see also 'hg help config'):

master =
 buildmaster.example.org:9987
 buildmaster2.example.org:9989

Note

Mercurial lets you define multiple changegroup hooks by
giving them distinct names, like changegroup.foo and
changegroup.bar, which is why we use changegroup.buildbot
in this example. There is nothing magical about the buildbot
suffix in the hook name. The [hgbuildbot] section is special,
however, as it is the only section that the buildbot hook pays
attention to.)

Also note that this runs as a changegroup hook, rather than as
an incoming hook. The changegroup hook is run with
multiple revisions at a time (say, if multiple revisions are being
pushed to this repository in a single hg push command),
whereas the incoming hook is run with just one revision at a
time. The hgbuildbot.hook function will only work with the
changegroup hook.

Changes' attribute properties has an entry is_merge which is set to
true when the change was caused by a merge.

Authentication

If the buildmaster PBChangeSource is configured to require
sendchange credentials then you can set these with the auth
parameter. When this parameter is not set it defaults to
change:changepw, which are the defaults for the user and
password values of a PBChangeSource which doesn't require
authentication.

[hgbuildbot]
auth = clientname:supersecret
...

You can set this parameter in either the global /etc/mercurial/hgrc,
your personal ~/.hgrc file or the repository local .hg/hgrc
file. But since this value is stored in plain text, you must make sure that
it can only be read by those users that need to know the authentication
credentials.

Branch Type

The [hgbuildbot] section has two other parameters that you
might specify, both of which control the name of the branch that is
attached to the changes coming from this hook.

One common branch naming policy for Mercurial repositories is to use
Mercurial's built-in branches (the kind created with hg
branch and listed with hg branches). This feature
associates persistent names with particular lines of descent within a
single repository. (note that the buildbot source.Mercurial
checkout step does not yet support this kind of branch). To have the
commit hook deliver this sort of branch name with the Change object,
use branchtype = inrepo, this is the default behavior:

[hgbuildbot]
branchtype = inrepo
...

Another approach is for each branch to go into a separate repository,
and all the branches for a single project share a common parent
directory. For example, you might have /var/repos/PROJECT/trunk/ and
/var/repos/PROJECT/release. To use this style, use the
branchtype = dirname setting, which simply uses the last component
of the repository's enclosing directory as the branch name:

[hgbuildbot]
branchtype = dirname
...

Finally, if you want to simply specify the branchname directly, for
all changes, use branch = BRANCHNAME. This overrides
branchtype:

[hgbuildbot]
branch = trunk
...

If you use branch= like this, you'll need to put a separate
.hgrc in each repository. If you use branchtype=, you may be
able to use the same .hgrc for all your repositories, stored in
~/.hgrc or /etc/mercurial/hgrc.

Compatibility

As twisted needs to hook some signals, and some web servers
strictly forbid that, the parameter fork in the
[hgbuildbot] section will instruct mercurial to fork before
sending the change request. Then as the created process will be of short
life, it is considered as safe to disable the signal restriction in
the Apache setting like that WSGIRestrictSignal Off. Refer to the
documentation of your web server for other way to do the same.

Resulting Changes

The category parameter sets the category for any changes generated from
the hook. Likewise, the project parameter sets the project.

Changes' repository attributes are formed from the Mercurial repo path by
stripping strip slashes on the left, then prepending the baseurl. For
example, assume the following parameters:

[hgbuildbot]
baseurl = http://hg.myorg.com/repos/
strip = 3
...

Then a repopath of /var/repos/myproject/release would have its left 3
slashes stripped, leaving myproject/release, after which the base URL would
be prepended, to create http://hg.myorg.com/repos/myproject/release.

The hgbuildbot baseurl value defaults to the value of the same
parameter in the web section of the configuration.

Note

older versions of Buildbot created repository strings that did not
contain an entire URL. To continue this pattern, set the hgbuildbot
baseurl parameter to an empty string:

[hgbuildbot]
baseurl = http://hg.myorg.com/repos/

Bzr Hook

Bzr is also written in Python, and the Bzr hook depends on Twisted to send the
changes.

To install, put contrib/bzr_buildbot.py in one of your plugins
locations a bzr plugins directory (e.g.,
~/.bazaar/plugins). Then, in one of your bazaar conf files (e.g.,
~/.bazaar/locations.conf), set the location you want to connect with buildbot
with these keys:

	buildbot_on
one of 'commit', 'push, or 'change'. Turns the plugin on to report changes via
commit, changes via push, or any changes to the trunk. 'change' is
recommended.

	buildbot_server
(required to send to a buildbot master) the URL of the buildbot master to
which you will connect (as of this writing, the same server and port to which
slaves connect).

	buildbot_port
(optional, defaults to 9989) the port of the buildbot master to which you will
connect (as of this writing, the same server and port to which slaves connect)

	buildbot_pqm
(optional, defaults to not pqm) Normally, the user that commits the revision
is the user that is responsible for the change. When run in a pqm (Patch Queue
Manager, see https://launchpad.net/pqm) environment, the user that commits is
the Patch Queue Manager, and the user that committed the parent revision is
responsible for the change. To turn on the pqm mode, set this value to any of
(case-insensitive) "Yes", "Y", "True", or "T".

	buildbot_dry_run
(optional, defaults to not a dry run) Normally, the post-commit hook will
attempt to communicate with the configured buildbot server and port. If this
parameter is included and any of (case-insensitive) "Yes", "Y", "True", or
"T", then the hook will simply print what it would have sent, but not attempt
to contact the buildbot master.

	buildbot_send_branch_name
(optional, defaults to not sending the branch name) If your buildbot's bzr
source build step uses a repourl, do not turn this on. If your buildbot's
bzr build step uses a baseURL, then you may set this value to any of
(case-insensitive) "Yes", "Y", "True", or "T" to have the buildbot master
append the branch name to the baseURL.

Note

The bzr smart server (as of version 2.2.2) doesn't know how
to resolve bzr:// urls into absolute paths so any paths in
locations.conf won't match, hence no change notifications
will be sent to Buildbot. Setting configuration parameters globally
or in-branch might still work. When buildbot no longer has a
hardcoded password, it will be a configuration option here as well.

Here's a simple example that you might have in your
~/.bazaar/locations.conf.

[chroot-*:///var/local/myrepo/mybranch]
buildbot_on = change
buildbot_server = localhost

P4Source

The P4Source periodically polls a Perforce [http://www.perforce.com/]
depot for changes. It accepts the following arguments:

	p4base

	The base depot path to watch, without the trailing '/...'.

	p4port

	The Perforce server to connect to (as host:port).

	p4user

	The Perforce user.

	p4passwd

	The Perforce password.

	p4bin

	An optional string parameter. Specify the location of the perforce command
line binary (p4). You only need to do this if the perforce binary is not
in the path of the buildbot user. Defaults to p4.

	split_file

	A function that maps a pathname, without the leading p4base, to a
(branch, filename) tuple. The default just returns (None, branchfile),
which effectively disables branch support. You should supply a function
which understands your repository structure.

	pollinterval

	How often to poll, in seconds. Defaults to 600 (10 minutes).

	histmax

	The maximum number of changes to inspect at a time. If more than this
number occur since the last poll, older changes will be silently
ignored.

	encoding

	The character encoding of p4's output. This defaults to "utf8", but
if your commit messages are in another encoding, specify that here.

Example

This configuration uses the P4PORT, P4USER, and P4PASSWD
specified in the buildmaster's environment. It watches a project in which the
branch name is simply the next path component, and the file is all path
components after.

from buildbot.changes import p4poller
s = p4poller.P4Source(p4base='//depot/project/',
 split_file=lambda branchfile: branchfile.split('/',1),
)
c['change_source'] = s

BonsaiPoller

The BonsaiPoller periodically polls a Bonsai server. This is a
CGI script accessed through a web server that provides information
about a CVS tree, for example the Mozilla bonsai server at
http://bonsai.mozilla.org. Bonsai servers are usable by both
humans and machines. In this case, the buildbot's change source forms
a query which asks about any files in the specified branch which have
changed since the last query.

BonsaiPoller accepts the following arguments:

	bonsaiURL

	The base URL of the Bonsai server, e.g., http://bonsai.mozilla.org

	module

	The module to look for changes in. Commonly this is all.

	branch

	The branch to look for changes in. This will appear in the
branch field of the resulting change objects.

	tree

	The tree to look for changes in. Commonly this is all.

	cvsroot

	The CVS root of the repository. Usually this is /cvsroot.

	pollInterval

	The time (in seconds) between queries for changes.

	project

	The project name to attach to all change objects produced by this
change source.

SVNPoller

	
class buildbot.changes.svnpoller.SVNPoller

	

The SVNPoller is a ChangeSource which periodically polls a
Subversion [http://subversion.tigris.org/] repository for new revisions, by
running the svn log command in a subshell. It can watch a single branch or
multiple branches.

SVNPoller accepts the following arguments:

	svnurl

	The base URL path to watch, like
svn://svn.twistedmatrix.com/svn/Twisted/trunk, or
http://divmod.org/svn/Divmo/, or even
file:///home/svn/Repository/ProjectA/branches/1.5/. This must
include the access scheme, the location of the repository (both the
hostname for remote ones, and any additional directory names necessary
to get to the repository), and the sub-path within the repository's
virtual filesystem for the project and branch of interest.

The SVNPoller will only pay attention to files inside the
subdirectory specified by the complete svnurl.

	split_file

	A function to convert pathnames into (branch, relative_pathname)
tuples. Use this to explain your repository's branch-naming policy to
SVNPoller. This function must accept a single string (the
pathname relative to the repository) and return a two-entry tuple.
Directory pathnames always end with a right slash to distinguish them from
files, like trunk/src/, or src/. There are a few utility functions
in buildbot.changes.svnpoller that can be used as a split_file
function; see below for details.

For directories, the relative pathname returned by split_file should
end with a right slash but an empty string is also accepted for the root,
like ("branches/1.5.x", "") being converted from "branches/1.5.x/".

The default value always returns (None, path), which indicates that
all files are on the trunk.

Subclasses of SVNPoller can override the split_file
method instead of using the split_file= argument.

	project

	Set the name of the project to be used for the SVNPoller. This
will then be set in any changes generated by the SVNPoller, and
can be used in a Change Filter for triggering
particular builders.

	svnuser

	An optional string parameter. If set, the --user argument will
be added to all svn commands. Use this if you have to
authenticate to the svn server before you can do svn info or
svn log commands.

	svnpasswd

	Like svnuser, this will cause a --password argument to
be passed to all svn commands.

	pollinterval

	How often to poll, in seconds. Defaults to 600 (checking once every 10
minutes). Lower this if you want the buildbot to notice changes
faster, raise it if you want to reduce the network and CPU load on
your svn server. Please be considerate of public SVN repositories by
using a large interval when polling them.

	histmax

	The maximum number of changes to inspect at a time. Every pollinterval
seconds, the SVNPoller asks for the last histmax changes and
looks through them for any revisions it does not already know about. If
more than histmax revisions have been committed since the last poll,
older changes will be silently ignored. Larger values of histmax will
cause more time and memory to be consumed on each poll attempt.
histmax defaults to 100.

	svnbin

	This controls the svn executable to use. If subversion is
installed in a weird place on your system (outside of the
buildmaster's PATH), use this to tell SVNPoller where
to find it. The default value of svn will almost always be
sufficient.

	revlinktmpl

	This parameter is deprecated in favour of specifying a global revlink option.
This parameter allows a link to be provided for each revision (for example,
to websvn or viewvc). These links appear anywhere changes are shown, such
as on build or change pages. The proper form for this parameter is an URL
with the portion that will substitute for a revision number replaced by
''%s''. For example, 'http://myserver/websvn/revision.php?rev=%s'
could be used to cause revision links to be created to a websvn repository
viewer.

	cachepath

	If specified, this is a pathname of a cache file that SVNPoller
will use to store its state between restarts of the master.

	extra_args

	If specified, the extra arguments will be added to the svn command args.

Several split file functions are available for common SVN repository layouts.
For a poller that is only monitoring trunk, the default split file function
is available explicitly as split_file_alwaystrunk:

from buildbot.changes.svnpoller import SVNPoller
from buildbot.changes.svnpoller import split_file_alwaystrunk
c['change_source'] = SVNPoller(
 svnurl="svn://svn.twistedmatrix.com/svn/Twisted/trunk",
 split_file=split_file_alwaystrunk)

For repositories with the /trunk and
/branches/{BRANCH} layout, split_file_branches will do the
job:

from buildbot.changes.svnpoller import SVNPoller
from buildbot.changes.svnpoller import split_file_branches
c['change_source'] = SVNPoller(
 svnurl="https://amanda.svn.sourceforge.net/svnroot/amanda/amanda",
 split_file=split_file_branches)

When using this splitter the poller will set the project attribute of any
changes to the project attribute of the poller.

For repositories with the {PROJECT}/trunk and
{PROJECT}/branches/{BRANCH} layout, split_file_projects_branches will do
the job:

from buildbot.changes.svnpoller import SVNPoller
from buildbot.changes.svnpoller import split_file_projects_branches
c['change_source'] = SVNPoller(
 svnurl="https://amanda.svn.sourceforge.net/svnroot/amanda/",
 split_file=split_file_projects_branches)

When using this splitter the poller will set the project attribute of any
changes to the project determined by the splitter.

The SVNPoller is highly adaptable to various Subversion layouts.
See Customizing SVNPoller for details and some common scenarios.

Bzr Poller

If you cannot insert a Bzr hook in the server, you can use the Bzr Poller. To
use, put contrib/bzr_buildbot.py somewhere that your buildbot
configuration can import it. Even putting it in the same directory as the master.cfg
should work. Install the poller in the buildbot configuration as with any
other change source. Minimally, provide a URL that you want to poll (bzr://,
bzr+ssh://, or lp:), making sure the buildbot user has necessary
privileges.

bzr_buildbot.py in the same directory as master.cfg
from bzr_buildbot import BzrPoller
c['change_source'] = BzrPoller(
 url='bzr://hostname/my_project',
 poll_interval=300)

The BzrPoller parameters are:

	url

	The URL to poll.

	poll_interval

	The number of seconds to wait between polls. Defaults to 10 minutes.

	branch_name

	Any value to be used as the branch name. Defaults to None, or specify a
string, or specify the constants from bzr_buildbot.py
SHORT or FULL to
get the short branch name or full branch address.

	blame_merge_author

	normally, the user that commits the revision is the user that is responsible
for the change. When run in a pqm (Patch Queue Manager, see
https://launchpad.net/pqm) environment, the user that commits is the Patch
Queue Manager, and the user that committed the merged, parent revision is
responsible for the change. set this value to True if this is pointed against
a PQM-managed branch.

GitPoller

If you cannot take advantage of post-receive hooks as provided by
contrib/git_buildbot.py for example, then you can use the GitPoller.

The GitPoller periodically fetches from a remote git repository and processes any changes.
It requires its own working directory for operation.
The default should be adequate, but it can be overridden via the workdir property.

Note

There can only be a single GitPoller pointed at any given repository.

The GitPoller requires git-1.7 and later. It accepts the following
arguments:

	repourl

	the git-url that describes the remote repository, e.g.
git@example.com:foobaz/myrepo.git
(see the git fetch help for more info on git-url formats)

	branches

	a list of the branches to fetch, will default to ['master']

	branch

	accepts a single branch name to fetch.
Exists for backwards compatability with old configurations.

	pollinterval

	interval in seconds between polls, default is 10 minutes

	gitbin

	path to the git binary, defaults to just 'git'

	category

	Set the category to be used for the changes produced by the
GitPoller. This will then be set in any changes generated
by the GitPoller, and can be used in a Change Filter for
triggering particular builders.

	project

	Set the name of the project to be used for the
GitPoller. This will then be set in any changes generated
by the GitPoller, and can be used in a Change Filter for
triggering particular builders.

	usetimestamps

	parse each revision's commit timestamp (default is True),
or ignore it in favor of the current time (so recently processed
commits appear together in the waterfall page)

	encoding

	Set encoding will be used to parse author's name and commit
message. Default encoding is 'utf-8'. This will not be
applied to file names since git will translate non-ascii file
names to unreadable escape sequences.

	workdir

	the directory where the poller should keep its local repository.
The default is gitpoller_work.
If this is a relative path, it will be interpreted relative to the master's basedir.
Multiple git pollers can share the same directory.

An configuration for the git poller might look like this:

from buildbot.changes.gitpoller import GitPoller
c['change_source'] = GitPoller('git@example.com:foobaz/myrepo.git',
 branches=['master', 'great_new_feature'])

HgPoller

If you cannot take advantage of post-receive hooks as provided by
buildbot/changes/hgbuildbot.py for example, then you can use the
HgPoller.

The HgPoller periodically pulls a named branch from a remote
Mercurial repository and processes any changes. It requires its own working
directory for operation, which must be specified via the workdir property.

The HgPoller requires a working hg executable, and at least a
read-only access to the repository it polls (possibly through ssh keys or by
tweaking the hgrc of the system user buildbot runs as).

The HgPoller will not transmit any change if there are several heads
on the watched named branch. This is similar (although not identical) to the
Mercurial executable behaviour. This exceptional condition is usually the result
of a developer mistake, and usually does not last for long. It is reported in
logs. If fixed by a later merge, the buildmaster administrator does not have
anything to do: that merge will be transmitted, together with the intermediate
ones.

The HgPoller accepts the following arguments:

	repourl

	the url that describes the remote repository, e.g.
http://hg.example.com/projects/myrepo.
Any url suitable for hg pull can be specified.

	branch

	the desired branch to pull, will default to 'default'

	workdir

	the directory where the poller should keep its local repository. It
is mandatory for now, although later releases may provide a meaningful
default.

It also serves to identify the poller in the buildmaster internal
database. Changing it may result in re-processing all changes so far.

Several HgPoller instances may share the same workdir for
mutualisation of the common history between two different branches, thus
easing on local and remote system resources and bandwith.

If relative, the workdir will be interpreted from the master directory.

	pollinterval

	interval in seconds between polls, default is 10 minutes

	hgbin

	path to the Mercurial binary, defaults to just 'hg'

	category

	Set the category to be used for the changes produced by the
HgPoller. This will then be set in any changes generated
by the HgPoller, and can be used in a Change Filter for
triggering particular builders.

	project

	Set the name of the project to be used for the
HgPoller. This will then be set in any changes generated
by the HgPoller, and can be used in a Change Filter for
triggering particular builders.

	usetimestamps

	parse each revision's commit timestamp (default is True),
or ignore it in favor of the current time (so recently processed
commits appear together in the waterfall page)

	encoding

	Set encoding will be used to parse author's name and commit
message. Default encoding is 'utf-8'.

A configuration for the Mercurial poller might look like this:

from buildbot.changes.hgpoller import HgPoller
c['change_source'] = HgPoller('http://hg.example.org/projects/myrepo',
 branch='great_new_feature',
 workdir='hg-myrepo')

GerritChangeSource

	
class buildbot.changes.gerritchangesource.GerritChangeSource

	

The GerritChangeSource class connects to a Gerrit server by its SSH
interface and uses its event source mechanism,
gerrit stream-events [http://gerrit.googlecode.com/svn/documentation/2.1.6/cmd-stream-events.html].

This class adds a change to the buildbot system for each of the following events:

	patchset-created

	A change is proposed for review. Automatic checks like
checkpatch.pl can be automatically triggered. Beware of
what kind of automatic task you trigger. At this point, no trusted
human has reviewed the code, and a patch could be specially
crafted by an attacker to compromise your buildslaves.

	ref-updated

	A change has been merged into the repository. Typically, this kind
of event can lead to a complete rebuild of the project, and upload
binaries to an incremental build results server.

This class will populate the property list of the triggered build with the info
received from Gerrit server in JSON format.

In case of patchset-created event, these properties will be:

	event.change.branch

	Branch of the Change

	event.change.id

	Change's ID in the Gerrit system (the ChangeId: in commit comments)

	event.change.number

	Change's number in Gerrit system

	event.change.owner.email

	Change's owner email (owner is first uploader)

	event.change.owner.name

	Change's owner name

	event.change.project

	Project of the Change

	event.change.subject

	Change's subject

	event.change.url

	URL of the Change in the Gerrit's web interface

	event.patchSet.number

	Patchset's version number

	event.patchSet.ref

	Patchset's Gerrit "virtual branch"

	event.patchSet.revision

	Patchset's Git commit ID

	event.patchSet.uploader.email

	Patchset uploader's email (owner is first uploader)

	event.patchSet.uploader.name

	Patchset uploader's name (owner is first uploader)

	event.type

	Event type (patchset-created)

	event.uploader.email

	Patchset uploader's email

	event.uploader.name

	Patchset uploader's name

In case of ref-updated event, these properties will be:

	event.refUpdate.newRev

	New Git commit ID (after merger)

	event.refUpdate.oldRev

	Previous Git commit ID (before merger)

	event.refUpdate.project

	Project that was updated

	event.refUpdate.refName

	Branch that was updated

	event.submitter.email

	Submitter's email (merger responsible)

	event.submitter.name

	Submitter's name (merger responsible)

	event.type

	Event type (ref-updated)

	event.submitter.email

	Submitter's email (merger responsible)

	event.submitter.name

	Submitter's name (merger responsible)

A configuration for this source might look like:

from buildbot.changes.gerritchangesource import GerritChangeSource
c['change_source'] = GerritChangeSource(gerrit_server, gerrit_user)

see master/docs/examples/repo_gerrit.cfg in the Buildbot distribution
for a full example setup of GerritChangeSource.

Change Hooks (HTTP Notifications)

Buildbot already provides a web frontend, and that frontend can easily be used
to receive HTTP push notifications of commits from services like GitHub or
GoogleCode. See Change Hooks for more information.

GoogleCodeAtomPoller

The GoogleCodeAtomPoller periodically polls a Google Code Project's
commit feed for changes. Works on SVN, Git, and Mercurial repositories. Branches
are not understood (yet). It accepts the following arguments:

	feedurl

	The commit Atom feed URL of the GoogleCode repository (MANDATORY)

	pollinterval

	Polling frequency for the feed (in seconds). Default is 1 hour (OPTIONAL)

As an example, to poll the Ostinato project's commit feed every 3 hours, the
configuration would look like this:

from googlecode_atom import GoogleCodeAtomPoller
c['change_source'] = GoogleCodeAtomPoller(
 feedurl="http://code.google.com/feeds/p/ostinato/hgchanges/basic",
 pollinterval=10800)

(note that you will need to download googlecode_atom.py from the Buildbot
source and install it somewhere on your PYTHONPATH first)

 Copyright Buildbot Team Members.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 	v0.8.7

 	v0.8.6p1

 	v0.8.6

 	v0.8.5

 	v0.8.4

 Schedulers

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Buildbot 0.8.7-61-g6a0fea1 documentation

 	Buildbot Manual

 	Configuration

Schedulers

Schedulers are responsible for initiating builds on builders.

Some schedulers listen for changes from ChangeSources and generate build sets
in response to these changes. Others generate build sets without changes,
based on other events in the buildmaster.

Configuring Schedulers

The schedulers configuration parameter gives a list of Scheduler
instances, each of which causes builds to be started on a particular set of
Builders. The two basic Scheduler classes you are likely to start with are
SingleBranchScheduler and Periodic, but you can write a
customized subclass to implement more complicated build scheduling.

Scheduler arguments should always be specified by name (as keyword arguments),
to allow for future expansion:

sched = SingleBranchScheduler(name="quick", builderNames=['lin', 'win'])

There are several common arguments for schedulers, although not all are
available with all schedulers.

	name

	Each Scheduler must have a unique name. This is used in status
displays, and is also available in the build property scheduler.

	builderNames

	This is the set of builders which this scheduler should trigger, specified
as a list of names (strings).

	properties

	This is a dictionary specifying properties that will be transmitted to all
builds started by this scheduler. The owner property may be of
particular interest, as its contents (as a list) will be added to the list of
"interested users" (Doing Things With Users) for each triggered build.
For example

sched = Scheduler(...,
 properties = { 'owner' : ['zorro@company.com', 'silver@company.com'] })

	fileIsImportant

	A callable which takes one argument, a Change instance, and
returns True if the change is worth building, and False if
it is not. Unimportant Changes are accumulated until the build is
triggered by an important change. The default value of None means
that all Changes are important.

	change_filter

	The change filter that will determine which changes are recognized
by this scheduler; Change Filters. Note that this is
different from fileIsImportant: if the change filter filters
out a Change, then it is completely ignored by the scheduler. If
a Change is allowed by the change filter, but is deemed
unimportant, then it will not cause builds to start, but will be
remembered and shown in status displays.

	codebases

	When the scheduler processes data from more than 1 repository at the
same time then a corresponding codebase definition should be passed for each
repository. A codebase definition is a dictionary with one or more of the
following keys: repository, branch, revision. The codebase definitions have
also to be passed as dictionary.

codebases = {'codebase1': {'repository':'....',
 'branch':'default',
 'revision': None},
 'codebase2': {'repository':'....'} }

Important

codebases behaves also like a change_filter on codebase.
The scheduler will only process changes when their codebases are found
in codebases. By default codebases is set to {'':{}} which
means that only changes with codebase '' (default value for codebase)
will be accepted by the scheduler.

Buildsteps can have a reference to one of the codebases. The step will only
get information (revision, branch etc.) that is related to that codebase.
When a scheduler is triggered by new changes, these changes (having a
codebase) will be incorporated by the new build. The buildsteps referencing
to the codebases that have changes get information about those changes.
The buildstep that references to a codebase that does not have changes in
the build get the information from the codebases definition as configured in
the scheduler.

	onlyImportant

	A boolean that, when True, only adds important changes to the
buildset as specified in the fileIsImportant callable. This
means that unimportant changes are ignored the same way a
change_filter filters changes. This defaults to
False and only applies when fileIsImportant is
given.

The remaining subsections represent a catalog of the available Scheduler types.
All these Schedulers are defined in modules under buildbot.schedulers,
and the docstrings there are the best source of documentation on the arguments
taken by each one.

Change Filters

Several schedulers perform filtering on an incoming set of changes. The filter
can most generically be specified as a ChangeFilter. Set up a
ChangeFilter like this:

from buildbot.changes.filter import ChangeFilter
my_filter = ChangeFilter(
 project_re="^baseproduct/.*",
 branch="devel")

and then add it to a scheduler with the change_filter parameter:

sch = SomeSchedulerClass(...,
 change_filter=my_filter)

There are five attributes of changes on which you can filter:

	project

	the project string, as defined by the ChangeSource.

	repository

	the repository in which this change occurred.

	branch

	the branch on which this change occurred. Note that 'trunk' or 'master' is often
denoted by None.

	category

	the category, again as defined by the ChangeSource.

	codebase

	the change's codebase.

For each attribute, the filter can look for a single, specific value:

my_filter = ChangeFilter(project = 'myproject')

or accept any of a set of values:

my_filter = ChangeFilter(project = ['myproject', 'jimsproject'])

or apply a regular expression, using the attribute name with a "_re"
suffix:

my_filter = ChangeFilter(category_re = '.*deve.*')
or, to use regular expression flags:
import re
my_filter = ChangeFilter(category_re = re.compile('.*deve.*', re.I))

For anything more complicated, define a Python function to recognize the strings
you want:

def my_branch_fn(branch):
 return branch in branches_to_build and branch not in branches_to_ignore
my_filter = ChangeFilter(branch_fn = my_branch_fn)

The special argument filter_fn can be used to specify a function that is
given the entire Change object, and returns a boolean.

The entire set of allowed arguments, then, is

	project
	project_re
	project_fn

	repository
	repository_re
	repository_fn

	branch
	branch_re
	branch_fn

	category
	category_re
	category_fn

	codebase
	codebase_re
	codebase_fn

	filter_fn

A Change passes the filter only if all arguments are satisfied. If no
filter object is given to a scheduler, then all changes will be built (subject
to any other restrictions the scheduler enforces).

SingleBranchScheduler

This is the original and still most popular scheduler class. It follows
exactly one branch, and starts a configurable tree-stable-timer after
each change on that branch. When the timer expires, it starts a build
on some set of Builders. The Scheduler accepts a fileIsImportant
function which can be used to ignore some Changes if they do not
affect any important files.

The arguments to this scheduler are:

name

builderNames

properties

fileIsImportant

change_filter

	onlyImportant

	See Configuring Schedulers.

	treeStableTimer

	The scheduler will wait for this many seconds before starting the
build. If new changes are made during this interval, the timer will be
restarted, so really the build will be started after a change and then
after this many seconds of inactivity.

If treeStableTimer is None, then a separate build is started
immediately for each Change.

	fileIsImportant

	A callable which takes one argument, a Change instance, and returns
True if the change is worth building, and False if
it is not. Unimportant Changes are accumulated until the build is
triggered by an important change. The default value of None means
that all Changes are important.

	categories (deprecated; use change_filter)

	A list of categories of changes that this scheduler will respond to. If this
is specified, then any non-matching changes are ignored.

	branch (deprecated; use change_filter)

	The scheduler will pay attention to this branch, ignoring Changes
that occur on other branches. Setting branch equal to the
special value of None means it should only pay attention to
the default branch.

Note

None is a keyword, not a string, so write None
and not "None".

Example:

from buildbot.schedulers.basic import SingleBranchScheduler
from buildbot.changes import filter
quick = SingleBranchScheduler(name="quick",
 change_filter=filter.ChangeFilter(branch='master'),
 treeStableTimer=60,
 builderNames=["quick-linux", "quick-netbsd"])
full = SingleBranchScheduler(name="full",
 change_filter=filter.ChangeFilter(branch='master'),
 treeStableTimer=5*60,
 builderNames=["full-linux", "full-netbsd", "full-OSX"])
c['schedulers'] = [quick, full]

In this example, the two quick builders are triggered 60 seconds
after the tree has been changed. The full builds do not run quite
so quickly (they wait 5 minutes), so hopefully if the quick builds
fail due to a missing file or really simple typo, the developer can
discover and fix the problem before the full builds are started. Both
Schedulers only pay attention to the default branch: any changes
on other branches are ignored by these schedulers. Each scheduler
triggers a different set of Builders, referenced by name.

The old names for this scheduler, buildbot.scheduler.Scheduler and
buildbot.schedulers.basic.Scheduler, are deprecated in favor of the more
accurate name buildbot.schedulers.basic.SingleBranchScheduler.

AnyBranchScheduler

This scheduler uses a tree-stable-timer like the default one, but
uses a separate timer for each branch.

The arguments to this scheduler are:

name

builderNames

properties

fileIsImportant

change_filter

	onlyImportant

	See Configuring Schedulers.

	treeStableTimer

	The scheduler will wait for this many seconds before starting the build. If
new changes are made on the same branch during this interval, the timer
will be restarted.

	branches (deprecated; use change_filter)

	Changes on branches not specified on this list will be ignored.

	categories (deprecated; use change_filter)

	A list of categories of changes that this scheduler will respond to. If this
is specified, then any non-matching changes are ignored.

Dependent Scheduler

It is common to wind up with one kind of build which should only be
performed if the same source code was successfully handled by some
other kind of build first. An example might be a packaging step: you
might only want to produce .deb or RPM packages from a tree that was
known to compile successfully and pass all unit tests. You could put
the packaging step in the same Build as the compile and testing steps,
but there might be other reasons to not do this (in particular you
might have several Builders worth of compiles/tests, but only wish to
do the packaging once). Another example is if you want to skip the
full builds after a failing quick build of the same source
code. Or, if one Build creates a product (like a compiled library)
that is used by some other Builder, you'd want to make sure the
consuming Build is run after the producing one.

You can use Dependencies to express this relationship
to the Buildbot. There is a special kind of scheduler named
scheduler.Dependent that will watch an upstream scheduler
for builds to complete successfully (on all of its Builders). Each time
that happens, the same source code (i.e. the same SourceStamp)
will be used to start a new set of builds, on a different set of
Builders. This downstream scheduler doesn't pay attention to
Changes at all. It only pays attention to the upstream scheduler.

If the build fails on any of the Builders in the upstream set,
the downstream builds will not fire. Note that, for SourceStamps
generated by a ChangeSource, the revision is None, meaning HEAD.
If any changes are committed between the time the upstream scheduler
begins its build and the time the dependent scheduler begins its
build, then those changes will be included in the downstream build.
See the Triggerable Scheduler for a more flexible dependency
mechanism that can avoid this problem.

The keyword arguments to this scheduler are:

name

builderNames

	properties

	See Configuring Schedulers.

	upstream

	The upstream scheduler to watch. Note that this is an instance,
not the name of the scheduler.

Example:

from buildbot.schedulers import basic
tests = basic.SingleBranchScheduler(name="just-tests",
 treeStableTimer=5*60,
 builderNames=["full-linux", "full-netbsd", "full-OSX"])
package = basic.Dependent(name="build-package",
 upstream=tests, # <- no quotes!
 builderNames=["make-tarball", "make-deb", "make-rpm"])
c['schedulers'] = [tests, package]

Periodic Scheduler

This simple scheduler just triggers a build every N seconds.

The arguments to this scheduler are:

name

builderNames

properties

onlyImportant

	periodicBuildTimer

	The time, in seconds, after which to start a build.

Example:

from buildbot.schedulers import timed
nightly = timed.Periodic(name="daily",
 builderNames=["full-solaris"],
 periodicBuildTimer=24*60*60)
c['schedulers'] = [nightly]

The scheduler in this example just runs the full solaris build once
per day. Note that this scheduler only lets you control the time
between builds, not the absolute time-of-day of each Build, so this
could easily wind up an evening or every afternoon scheduler
depending upon when it was first activated.

Nightly Scheduler

This is highly configurable periodic build scheduler, which triggers
a build at particular times of day, week, month, or year. The
configuration syntax is very similar to the well-known crontab
format, in which you provide values for minute, hour, day, and month
(some of which can be wildcards), and a build is triggered whenever
the current time matches the given constraints. This can run a build
every night, every morning, every weekend, alternate Thursdays,
on your boss's birthday, etc.

Pass some subset of minute, hour, dayOfMonth,
month, and dayOfWeek; each may be a single number or
a list of valid values. The builds will be triggered whenever the
current time matches these values. Wildcards are represented by a
'*' string. All fields default to a wildcard except 'minute', so
with no fields this defaults to a build every hour, on the hour.
The full list of parameters is:

name

builderNames

properties

fileIsImportant

change_filter

onlyImportant

	codebases

	See Configuring Schedulers. Note that fileIsImportant and
change_filter are only relevant if onlyIfChanged is
True.

	onlyIfChanged

	If this is true, then builds will not be scheduled at the designated time
unless the specified branch has seen an important change since
the previous build.

	branch

	(required) The branch to build when the time comes. Remember that
a value of None here means the default branch, and will not
match other branches!

	minute

	The minute of the hour on which to start the build. This defaults
to 0, meaning an hourly build.

	hour

	The hour of the day on which to start the build, in 24-hour notation.
This defaults to *, meaning every hour.

	dayOfMonth

	The day of the month to start a build. This defaults to *, meaning
every day.

	month

	The month in which to start the build, with January = 1. This defaults
to *, meaning every month.

	dayOfWeek

	The day of the week to start a build, with Monday = 0. This defaults
to *, meaning every day of the week.

For example, the following master.cfg clause will cause a build to be
started every night at 3:00am:

from buildbot.schedulers import timed
c['schedulers'].append(
 timed.Nightly(name='nightly',
 branch='master',
 builderNames=['builder1', 'builder2'],
 hour=3,
 minute=0))

This scheduler will perform a build each Monday morning at 6:23am and
again at 8:23am, but only if someone has committed code in the interim:

c['schedulers'].append(
 timed.Nightly(name='BeforeWork',
 branch=`default`,
 builderNames=['builder1'],
 dayOfWeek=0,
 hour=[6,8],
 minute=23,
 onlyIfChanged=True))

The following runs a build every two hours, using Python's range
function:

c.schedulers.append(
 timed.Nightly(name='every2hours',
 branch=None, # default branch
 builderNames=['builder1'],
 hour=range(0, 24, 2)))

Finally, this example will run only on December 24th:

c['schedulers'].append(
 timed.Nightly(name='SleighPreflightCheck',
 branch=None, # default branch
 builderNames=['flying_circuits', 'radar'],
 month=12,
 dayOfMonth=24,
 hour=12,
 minute=0))

Try Schedulers

This scheduler allows developers to use the buildbot try
command to trigger builds of code they have not yet committed. See
try for complete details.

Two implementations are available: Try_Jobdir and
Try_Userpass. The former monitors a job directory, specified
by the jobdir parameter, while the latter listens for PB
connections on a specific port, and authenticates against
userport.

The buildmaster must have a scheduler instance in the config file's
schedulers list to receive try requests. This lets the
administrator control who may initiate these trial builds, which branches
are eligible for trial builds, and which Builders should be used for them.

The scheduler has various means to accept build requests.
All of them enforce more security than the usual buildmaster ports do.
Any source code being built can be used to compromise the buildslave
accounts, but in general that code must be checked out from the VC
repository first, so only people with commit privileges can get
control of the buildslaves. The usual force-build control channels can
waste buildslave time but do not allow arbitrary commands to be
executed by people who don't have those commit privileges. However,
the source code patch that is provided with the trial build does not
have to go through the VC system first, so it is important to make
sure these builds cannot be abused by a non-committer to acquire as
much control over the buildslaves as a committer has. Ideally, only
developers who have commit access to the VC repository would be able
to start trial builds, but unfortunately the buildmaster does not, in
general, have access to VC system's user list.

As a result, the try scheduler requires a bit more configuration. There are
currently two ways to set this up:

	jobdir (ssh)

	This approach creates a command queue directory, called the
jobdir, in the buildmaster's working directory. The buildmaster
admin sets the ownership and permissions of this directory to only
grant write access to the desired set of developers, all of whom must
have accounts on the machine. The buildbot try command creates
a special file containing the source stamp information and drops it in
the jobdir, just like a standard maildir. When the buildmaster notices
the new file, it unpacks the information inside and starts the builds.

The config file entries used by 'buildbot try' either specify a local
queuedir (for which write and mv are used) or a remote one (using scp
and ssh).

The advantage of this scheme is that it is quite secure, the
disadvantage is that it requires fiddling outside the buildmaster
config (to set the permissions on the jobdir correctly). If the
buildmaster machine happens to also house the VC repository, then it
can be fairly easy to keep the VC userlist in sync with the
trial-build userlist. If they are on different machines, this will be
much more of a hassle. It may also involve granting developer accounts
on a machine that would not otherwise require them.

To implement this, the buildslave invokes ssh -l username host
buildbot tryserver ARGS, passing the patch contents over stdin. The
arguments must include the inlet directory and the revision
information.

	user+password (PB)

	In this approach, each developer gets a username/password pair, which
are all listed in the buildmaster's configuration file. When the
developer runs buildbot try, their machine connects to the
buildmaster via PB and authenticates themselves using that username
and password, then sends a PB command to start the trial build.

The advantage of this scheme is that the entire configuration is
performed inside the buildmaster's config file. The disadvantages are
that it is less secure (while the cred authentication system does
not expose the password in plaintext over the wire, it does not offer
most of the other security properties that SSH does). In addition, the
buildmaster admin is responsible for maintaining the username/password
list, adding and deleting entries as developers come and go.

For example, to set up the jobdir style of trial build, using a
command queue directory of MASTERDIR/jobdir (and assuming that
all your project developers were members of the developers unix
group), you would first set up that directory:

mkdir -p MASTERDIR/jobdir MASTERDIR/jobdir/new MASTERDIR/jobdir/cur MASTERDIR/jobdir/tmp
chgrp developers MASTERDIR/jobdir MASTERDIR/jobdir/*
chmod g+rwx,o-rwx MASTERDIR/jobdir MASTERDIR/jobdir/*

and then use the following scheduler in the buildmaster's config file:

from buildbot.schedulers.trysched import Try_Jobdir
s = Try_Jobdir(name="try1",
 builderNames=["full-linux", "full-netbsd", "full-OSX"],
 jobdir="jobdir")
c['schedulers'] = [s]

Note that you must create the jobdir before telling the buildmaster to
use this configuration, otherwise you will get an error. Also remember
that the buildmaster must be able to read and write to the jobdir as
well. Be sure to watch the twistd.log file (Logfiles)
as you start using the jobdir, to make sure the buildmaster is happy
with it.

Note

Patches in the jobdir are encoded using netstrings, which place an
arbitrary upper limit on patch size of 99999 bytes. If your submitted try
jobs are rejected with BadJobfile, try increasing this limit with a
snippet like this in your master.cfg:

from twisted.protocols.basic import NetstringReceiver
NetstringReceiver.MAX_LENGTH = 1000000

To use the username/password form of authentication, create a
Try_Userpass instance instead. It takes the same
builderNames argument as the Try_Jobdir form, but
accepts an addtional port argument (to specify the TCP port to
listen on) and a userpass list of username/password pairs to
accept. Remember to use good passwords for this: the security of the
buildslave accounts depends upon it:

from buildbot.schedulers.trysched import Try_Userpass
s = Try_Userpass(name="try2",
 builderNames=["full-linux", "full-netbsd", "full-OSX"],
 port=8031,
 userpass=[("alice","pw1"), ("bob", "pw2")])
c['schedulers'] = [s]

Like most places in the buildbot, the port argument takes a
strports specification. See twisted.application.strports for
details.

Triggerable Scheduler

The Triggerable scheduler waits to be triggered by a Trigger
step (see Triggering Schedulers) in another build. That step
can optionally wait for the scheduler's builds to complete. This
provides two advantages over Dependent schedulers. First, the same
scheduler can be triggered from multiple builds. Second, the ability
to wait for a Triggerable's builds to complete provides a form of
"subroutine call", where one or more builds can "call" a scheduler
to perform some work for them, perhaps on other buildslaves.
The Triggerable-Scheduler supports multiple codebases. The scheduler filters out
all codebases from Trigger steps that are not configured in the scheduler.

The parameters are just the basics:

name

builderNames

properties

	codebases

	See Configuring Schedulers.

This class is only useful in conjunction with the Trigger step.
Here is a fully-worked example:

from buildbot.schedulers import basic, timed, triggerable
from buildbot.process import factory
from buildbot.steps import trigger

checkin = basic.SingleBranchScheduler(name="checkin",
 branch=None,
 treeStableTimer=5*60,
 builderNames=["checkin"])
nightly = timed.Nightly(name='nightly',
 branch=None,
 builderNames=['nightly'],
 hour=3,
 minute=0)

mktarball = triggerable.Triggerable(name="mktarball",
 builderNames=["mktarball"])
build = triggerable.Triggerable(name="build-all-platforms",
 builderNames=["build-all-platforms"])
test = triggerable.Triggerable(name="distributed-test",
 builderNames=["distributed-test"])
package = triggerable.Triggerable(name="package-all-platforms",
 builderNames=["package-all-platforms"])

c['schedulers'] = [mktarball, checkin, nightly, build, test, package]

on checkin, make a tarball, build it, and test it
checkin_factory = factory.BuildFactory()
checkin_factory.addStep(trigger.Trigger(schedulerNames=['mktarball'],
 waitForFinish=True))
checkin_factory.addStep(trigger.Trigger(schedulerNames=['build-all-platforms'],
 waitForFinish=True))
checkin_factory.addStep(trigger.Trigger(schedulerNames=['distributed-test'],
 waitForFinish=True))

and every night, make a tarball, build it, and package it
nightly_factory = factory.BuildFactory()
nightly_factory.addStep(trigger.Trigger(schedulerNames=['mktarball'],
 waitForFinish=True))
nightly_factory.addStep(trigger.Trigger(schedulerNames=['build-all-platforms'],
 waitForFinish=True))
nightly_factory.addStep(trigger.Trigger(schedulerNames=['package-all-platforms'],
 waitForFinish=True))

NightlyTriggerable Scheduler

	
class buildbot.schedulers.timed.NightlyTriggerable

	

The NightlyTriggerable scheduler is a mix of the Nightly and Triggerable schedulers.
This scheduler triggers builds at a particular time of day, week, or year, exactly as the Nightly scheduler.
However, the source stamp set that is used that provided by the last Trigger step that targeted this scheduler.

The parameters are just the basics:

name

builderNames

properties

	codebases

	See Configuring Schedulers.

minute

hour

dayOfMonth

month

	dayOfWeek

	See Nightly.

This class is only useful in conjunction with the Trigger step.
Note that waitForFinish is ignored by Trigger steps targeting this scheduler.

Here is a fully-worked example:

from buildbot.schedulers import basic, timed
from buildbot.process import factory
from buildbot.steps import shell, trigger

checkin = basic.SingleBranchScheduler(name="checkin",
 branch=None,
 treeStableTimer=5*60,
 builderNames=["checkin"])
nightly = timed.NightlyTriggerable(name='nightly',
 builderNames=['nightly'],
 hour=3,
 minute=0)

c['schedulers'] = [checkin, nightly]

on checkin, run tests
checkin_factory = factory.BuildFactory()
checkin_factory.addStep(shell.Test())
checkin_factory.addStep(trigger.Trigger(schedulerNames=['nightly'])

and every night, package the latest succesful build
nightly_factory = factory.BuildFactory()
nightly_factory.addStep(shell.ShellCommand(command=['make', 'package']))

ForceScheduler Scheduler

The ForceScheduler scheduler is the way you can configure a
force build form in the web UI.

In the builder/<builder-name> web page, you will see one form for each
ForceScheduler scheduler that was configured for this builder.

This allows you to customize exactly how the build form looks, which builders
have a force build form (it might not make sense to force build every builder),
and who is allowed to force builds on which builders.

The scheduler takes the following parameters:

name

builderNames

See Configuring Schedulers.

reason

A parameter specifying the reason for
the build. The default value is a string parameter with value "force build".

username

A parameter specifying the project for
the build. The default value is a username parameter,

codebases

A list of strings or CodebaseParameter specifying
the codebases that should be presented. The default is a single codebase with no name.

properties

A list of parameters, one for each
property. These can be arbitrary parameters, where the parameter's name is
taken as the property name, or AnyPropertyParameter, which allows the
web user to specify the property name.

An example may be better than long explanation. What you need in your config
file is something like:

from buildbot.schedulers.forcesched import *

sch = ForceScheduler(name="force",
 builderNames=["my-builder"],

 # will generate a combo box
 branch=ChoiceStringParameter(name="branch",
 choices=["main","devel"], default="main"),

 # will generate a text input
 reason=StringParameter(name="reason",label="reason:
",
 required=True, size=80),

 # will generate nothing in the form, but revision, repository,
 # and project are needed by buildbot scheduling system so we
 # need to pass a value ("")
 revision=FixedParameter(name="revision", default=""),
 repository=FixedParameter(name="repository", default=""),
 project=FixedParameter(name="project", default=""),

 # in case you dont require authentication this will display
 # input for user to type his name
 username=UserNameParameter(label="your name:
", size=80),

 # A completely customized property list. The name of the
 # property is the name of the parameter
 properties=[

 BooleanParameter(name="force_build_clean",
 label="force a make clean", default=False),

 StringParameter(name="pull_url",
 label="optionally give a public git pull url:
",
 default="", size=80)
]
)
c['schedulers'].append(sch)

Authorization

The force scheduler uses the web status's authorization
framework to determine which user has the right to force which build. Here is
an example of code on how you can define which user has which right:

user_mapping = {
 re.compile("project1-builder"): ["project1-maintainer", "john"] ,
 re.compile("project2-builder"): ["project2-maintainer", "jack"],
 re.compile(".*"): ["root"]
}
def force_auth(user, status):
 global user_mapping
 for r,users in user_mapping.items():
 if r.match(status.name):
 if user in users:
 return True
 return False

use authz_cfg in your WebStatus setup
authz_cfg=authz.Authz(
 auth=my_auth,
 forceBuild = force_auth,
)

ForceSched Parameters

Most of the arguments to ForceScheduler are "parameters". Several classes
of parameters are available, each describing a different kind of input from a
force-build form.

All parameter types have a few common arguments:

name (required)

The name of the parameter. For properties, this will correspond to the name
of the property that your parameter will set. The name is also used
internally as the identifier for in the HTML form.

label (optional; default is same as name)

The label of the parameter. This is what is displayed to the user. HTML is
permitted here.

default (optional; default: "")

The default value for the parameter, that is used if there is no user
input.

required (optional; default: False)

If this is true, then an error will be shown to user if
there is no input in this field

The parameter types are:

FixedParameter

FixedParameter(name="branch", default="trunk"),

This parameter type will not be shown on the web form, and always generate a
property with its default value.

StringParameter

StringParameter(name="pull_url",
 label="optionally give a public git pull url:
",
 default="", size=80)

This parameter type will show a single-line text-entry box, and allow the user
to enter an arbitrary string. It adds the following arguments:

regex (optional)

a string that will be compiled as a regex, and used to validate the input
of this parameter

size (optional; default: 10)

The width of the input field (in characters)

TextParameter

StringParameter(name="comments",
 label="comments to be displayed to the user of the built binary",
 default="This is a development build", cols=60, rows=5)

This parameter type is similar to StringParameter, except that it is
represented in the HTML form as a textarea, allowing multi-line input. It adds
the StringParameter arguments, this type allows:

cols (optional; default: 80)

The number of columns the textarea will have

rows (optional; default: 20)

The number of rows the textarea will have

This class could be subclassed in order to have more customization e.g.

	developer could send a list of git branches to pull from

	developer could send a list of gerrit changes to cherry-pick,

	developer could send a shell script to amend the build.

beware of security issues anyway.

IntParameter

IntParameter(name="debug_level",
 label="debug level (1-10)", default=2)

This parameter type accepts an integer value using a text-entry box.

BooleanParameter

BooleanParameter(name="force_build_clean",
 label="force a make clean", default=False)

This type represents a boolean value. It will be presented as a checkbox.

UserNameParameter

UserNameParameter(label="your name:
", size=80)

This parameter type accepts a username. If authentication is active, it will
use the authenticated user instead of displaying a text-entry box.

	size (optional; default: 10)

	The width of the input field (in characters)

	need_email (optional; default True)

	If true, require a full email address rather than arbitrary text.

ChoiceStringParameter

ChoiceStringParameter(name="branch",
 choices=["main","devel"], default="main")

This parameter type lets the user choose between several choices (e.g the list
of branches you are supporting, or the test campaign to run). If multiple
is false, then its result is a string - one of the choices. If multiple is
true, then the result is a list of strings from the choices. Its arguments, in
addition to the common options, are:

choices

The list of available choices.

strict (optional; default: True)

If true, verify that the user's input is from the list. Note that this
only affects the validation of the form request; even if this argument is
False, there is no HTML form component available to enter an arbitrary
value.

multiple

If true, then the user may select multiple choices.

Example:

ChoiceStringParameter(name="forced_tests",
 label = "smoke test campaign to run",
 default = default_tests,
 multiple = True,
 strict = True,
 choices = ["test_builder1",
 "test_builder2",
 "test_builder3"])
])

.. and later base the schedulers to trigger off this property:

triggers the tests depending on the property forced_test
builder1.factory.addStep(Trigger(name="Trigger tests",
 schedulerNames=Property("forced_tests")))

CodebaseParameter

This is a parameter group to specify a sourcestamp for a given codebase.

codebase

The name of the codebase.

branch (optional; default: StringParameter)

A parameter specifying the branch to
build. The default value is a string parameter.

revision (optional; default: StringParameter)

A parameter specifying the revision to
build. The default value is a string parameter.

repository (optional; default: StringParameter)

A parameter specifying the repository
for the build. The default value is a string parameter.

project (optional; default: StringParameter)

A parameter specifying the project for
the build. The default value is a string parameter.

InheritBuildParameter

This is a special parameter for inheriting force build properties from another
build. The user is presented with a list of compatible builds from which to
choose, and all forced-build parameters from the selected build are copied into
the new build. The new parameter is:

compatible_builds

A function to find compatible builds in the build history. This function is
given the master Status instance as
first argument, and the current builder name as second argument, or None
when forcing all builds.

Example:

def get_compatible_builds(status, builder):
 if builder == None: # this is the case for force_build_all
 return ["cannot generate build list here"]
 # find all successful builds in builder1 and builder2
 builds = []
 for builder in ["builder1","builder2"]:
 builder_status = status.getBuilder(builder)
 for num in xrange(1,40): # 40 last builds
 b = builder_status.getBuild(-num)
 if not b:
 continue
 if b.getResults() == FAILURE:
 continue
 builds.append(builder+"/"+str(b.getNumber()))
 return builds

 # ...

 properties=[
 InheritBuildParameter(
 name="inherit",
 label="promote a build for merge",
 compatible_builds=get_compatible_builds,
 required = True),
])

AnyPropertyParameter

This parameter type can only be used in properties, and allows the user to
specify both the property name and value in the HTML form.

This Parameter is here to reimplement old Buildbot behavior, and should be
avoided. Stricter parameter name and type should be preferred.

 Copyright Buildbot Team Members.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 	v0.8.7

 	v0.8.6p1

 	v0.8.6

 	v0.8.5

 	v0.8.4

 Buildslaves

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Buildbot 0.8.7-61-g6a0fea1 documentation

 	Buildbot Manual

 	Configuration

Buildslaves

The slaves configuration key specifies a list of known buildslaves.
In the common case, each buildslave is defined by an instance of the
BuildSlave class. It represents a standard, manually started machine
that will try to connect to the buildbot master as a slave. Buildbot also
supports "on-demand", or latent, buildslaves, which allow buildbot to
dynamically start and stop buildslave instances.

A BuildSlave instance is created with a slavename and a
slavepassword. These are the same two values that need to be provided to
the buildslave administrator when they create the buildslave.

The slavename must be unique, of course. The password exists to
prevent evildoers from interfering with the buildbot by inserting
their own (broken) buildslaves into the system and thus displacing the
real ones.

Buildslaves with an unrecognized slavename or a non-matching password will be
rejected when they attempt to connect, and a message describing the problem
will be written to the log file (see Logfiles).

A configuration for two slaves would look like:

from buildbot.buildslave import BuildSlave
c['slaves'] = [
 BuildSlave('bot-solaris', 'solarispasswd'),
 BuildSlave('bot-bsd', 'bsdpasswd'),
]

BuildSlave Options

BuildSlave objects can also be created with an optional
properties argument, a dictionary specifying properties that
will be available to any builds performed on this slave. For example:

c['slaves'] = [
 BuildSlave('bot-solaris', 'solarispasswd',
 properties={ 'os':'solaris' }),
]

The BuildSlave constructor can also take an optional
max_builds parameter to limit the number of builds that it
will execute simultaneously:

c['slaves'] = [
 BuildSlave("bot-linux", "linuxpassword", max_builds=2)
]

Master-Slave TCP Keepalive

By default, the buildmaster sends a simple, non-blocking message to each slave
every hour. These keepalives ensure that traffic is flowing over the
underlying TCP connection, allowing the system's network stack to detect any
problems before a build is started.

The interval can be modified by specifying the interval in seconds using the
keepalive_interval parameter of BuildSlave:

c['slaves'] = [
 BuildSlave('bot-linux', 'linuxpasswd',
 keepalive_interval=3600),
]

The interval can be set to None to disable this functionality
altogether.

When Buildslaves Go Missing

Sometimes, the buildslaves go away. One very common reason for this is
when the buildslave process is started once (manually) and left
running, but then later the machine reboots and the process is not
automatically restarted.

If you'd like to have the administrator of the buildslave (or other
people) be notified by email when the buildslave has been missing for
too long, just add the notify_on_missing= argument to the
BuildSlave definition. This value can be a single email
address, or a list of addresses:

c['slaves'] = [
 BuildSlave('bot-solaris', 'solarispasswd',
 notify_on_missing="bob@example.com"),
]

By default, this will send email when the buildslave has been
disconnected for more than one hour. Only one email per
connection-loss event will be sent. To change the timeout, use
missing_timeout= and give it a number of seconds (the default
is 3600).

You can have the buildmaster send email to multiple recipients: just
provide a list of addresses instead of a single one:

c['slaves'] = [
 BuildSlave('bot-solaris', 'solarispasswd',
 notify_on_missing=["bob@example.com",
 "alice@example.org"],
 missing_timeout=300, # notify after 5 minutes
),
]

The email sent this way will use a MailNotifier (see
MailNotifier) status target, if one is configured. This provides a
way for you to control the from address of the email, as well as the
relayhost (aka smarthost) to use as an SMTP server. If no
MailNotifier is configured on this buildmaster, the buildslave-missing
emails will be sent using a default configuration.

Note that if you want to have a MailNotifier for buildslave-missing
emails but not for regular build emails, just create one with
builders=[], as follows:

from buildbot.status import mail
m = mail.MailNotifier(fromaddr="buildbot@localhost", builders=[],
 relayhost="smtp.example.org")
c['status'].append(m)

from buildbot.buildslave import BuildSlave
c['slaves'] = [
 BuildSlave('bot-solaris', 'solarispasswd',
 notify_on_missing="bob@example.com"),
]

Latent Buildslaves

The standard buildbot model has slaves started manually. The previous section
described how to configure the master for this approach.

Another approach is to let the buildbot master start slaves when builds are
ready, on-demand. Thanks to services such as Amazon Web Services' Elastic
Compute Cloud ("AWS EC2"), this is relatively easy to set up, and can be
very useful for some situations.

The buildslaves that are started on-demand are called "latent" buildslaves.
As of this writing, buildbot ships with an abstract base class for building
latent buildslaves, and a concrete implementation for AWS EC2 and for libvirt.

Common Options

The following options are available for all latent buildslaves.

	build_wait_timeout

	This option allows you to specify how long a latent slave should wait after
a build for another build before it shuts down. It defaults to 10 minutes.
If this is set to 0 then the slave will be shut down immediately. If it is
less than 0 it will never automatically shutdown.

Amazon Web Services Elastic Compute Cloud ("AWS EC2")

EC2 [http://aws.amazon.com/ec2/] is a web service that allows you to
start virtual machines in an Amazon data center. Please see their website for
details, incuding costs. Using the AWS EC2 latent buildslaves involves getting
an EC2 account with AWS and setting up payment; customizing one or more EC2
machine images ("AMIs") on your desired operating system(s) and publishing
them (privately if needed); and configuring the buildbot master to know how to
start your customized images for "substantiating" your latent slaves.

Get an AWS EC2 Account

To start off, to use the AWS EC2 latent buildslave, you need to get an AWS
developer account and sign up for EC2. Although Amazon often changes this
process, these instructions should help you get started:

	Go to http://aws.amazon.com/ and click to "Sign Up Now" for an AWS account.

	Once you are logged into your account, you need to sign up for EC2.
Instructions for how to do this have changed over time because Amazon changes
their website, so the best advice is to hunt for it. After signing up for EC2,
it may say it wants you to upload an x.509 cert. You will need this to create
images (see below) but it is not technically necessary for the buildbot master
configuration.

	You must enter a valid credit card before you will be able to use EC2. Do that
under 'Payment Method'.

	Make sure you're signed up for EC2 by going to 'Your Account'->'Account
Activity' and verifying EC2 is listed.

Create an AMI

Now you need to create an AMI and configure the master. You may need to
run through this cycle a few times to get it working, but these instructions
should get you started.

Creating an AMI is out of the scope of this document. The
EC2 Getting Started Guide [http://docs.amazonwebservices.com/AWSEC2/latest/GettingStartedGuide/]
is a good resource for this task. Here are a few additional hints.

	When an instance of the image starts, it needs to automatically start a
buildbot slave that connects to your master (to create a buildbot slave,
Creating a buildslave; to make a daemon,
Launching the daemons).

	You may want to make an instance of the buildbot slave, configure it as a
standard buildslave in the master (i.e., not as a latent slave), and test and
debug it that way before you turn it into an AMI and convert to a latent
slave in the master.

Configure the Master with an EC2LatentBuildSlave

Now let's assume you have an AMI that should work with the
EC2LatentBuildSlave. It's now time to set up your buildbot master
configuration.

You will need some information from your AWS account: the Access Key Id and
the Secret Access Key. If you've built the AMI yourself, you probably
already are familiar with these values. If you have not, and someone has
given you access to an AMI, these hints may help you find the necessary
values:

	While logged into your AWS account, find the "Access Identifiers" link (either
on the left, or via "Your Account" -> "Access Identifiers".

	On the page, you'll see alphanumeric values for "Your Access Key Id:" and
"Your Secret Access Key:". Make a note of these. Later on, we'll call the
first one your identifier and the second one your secret_identifier.

When creating an EC2LatentBuildSlave in the buildbot master configuration,
the first three arguments are required. The name and password are the first
two arguments, and work the same as with normal buildslaves. The next
argument specifies the type of the EC2 virtual machine (available options as
of this writing include m1.small, m1.large, m1.xlarge, c1.medium,
and c1.xlarge; see the EC2 documentation for descriptions of these
machines).

Here is the simplest example of configuring an EC2 latent buildslave. It
specifies all necessary remaining values explicitly in the instantiation.

from buildbot.ec2buildslave import EC2LatentBuildSlave
c['slaves'] = [EC2LatentBuildSlave('bot1', 'sekrit', 'm1.large',
 ami='ami-12345',
 identifier='publickey',
 secret_identifier='privatekey'
)]

The ami argument specifies the AMI that the master should start. The
identifier argument specifies the AWS Access Key Id, and the
secret_identifier specifies the AWS Secret Access Key. Both the AMI and
the account information can be specified in alternate ways.

Note

Whoever has your identifier and secret_identifier values can request
AWS work charged to your account, so these values need to be carefully
protected. Another way to specify these access keys is to put them in a
separate file. You can then make the access privileges stricter for this
separate file, and potentially let more people read your main configuration
file.

By default, you can make an .ec2 directory in the home folder of the user
running the buildbot master. In that directory, create a file called aws_id.
The first line of that file should be your access key id; the second line
should be your secret access key id. Then you can instantiate the build slave
as follows.

from buildbot.ec2buildslave import EC2LatentBuildSlave
c['slaves'] = [EC2LatentBuildSlave('bot1', 'sekrit', 'm1.large',
 ami='ami-12345')]

If you want to put the key information in another file, use the
aws_id_file_path initialization argument.

Previous examples used a particular AMI. If the Buildbot master will be
deployed in a process-controlled environment, it may be convenient to
specify the AMI more flexibly. Rather than specifying an individual AMI,
specify one or two AMI filters.

In all cases, the AMI that sorts last by its location (the S3 bucket and
manifest name) will be preferred.

One available filter is to specify the acceptable AMI owners, by AWS account
number (the 12 digit number, usually rendered in AWS with hyphens like
"1234-5678-9012", should be entered as in integer).

from buildbot.ec2buildslave import EC2LatentBuildSlave
bot1 = EC2LatentBuildSlave('bot1', 'sekrit', 'm1.large',
 valid_ami_owners=[11111111111,
 22222222222],
 identifier='publickey',
 secret_identifier='privatekey'
)

The other available filter is to provide a regular expression string that
will be matched against each AMI's location (the S3 bucket and manifest name).

from buildbot.ec2buildslave import EC2LatentBuildSlave
bot1 = EC2LatentBuildSlave(
 'bot1', 'sekrit', 'm1.large',
 valid_ami_location_regex=r'buildbot\-.*/image.manifest.xml',
 identifier='publickey', secret_identifier='privatekey')

The regular expression can specify a group, which will be preferred for the
sorting. Only the first group is used; subsequent groups are ignored.

from buildbot.ec2buildslave import EC2LatentBuildSlave
bot1 = EC2LatentBuildSlave(
 'bot1', 'sekrit', 'm1.large',
 valid_ami_location_regex=r'buildbot\-.*\-(.*)/image.manifest.xml',
 identifier='publickey', secret_identifier='privatekey')

If the group can be cast to an integer, it will be. This allows 10 to sort
after 1, for instance.

from buildbot.ec2buildslave import EC2LatentBuildSlave
bot1 = EC2LatentBuildSlave(
 'bot1', 'sekrit', 'm1.large',
 valid_ami_location_regex=r'buildbot\-.*\-(\d+)/image.manifest.xml',
 identifier='publickey', secret_identifier='privatekey')

In addition to using the password as a handshake between the master and the
slave, you may want to use a firewall to assert that only machines from a
specific IP can connect as slaves. This is possible with AWS EC2 by using
the Elastic IP feature. To configure, generate a Elastic IP in AWS, and then
specify it in your configuration using the elastic_ip argument.

from buildbot.ec2buildslave import EC2LatentBuildSlave
c['slaves'] = [EC2LatentBuildSlave('bot1', 'sekrit', 'm1.large',
 'ami-12345',
 identifier='publickey',
 secret_identifier='privatekey',
 elastic_ip='208.77.188.166'
)]

The EC2LatentBuildSlave supports all other configuration from the standard
BuildSlave. The missing_timeout and notify_on_missing specify how long
to wait for an EC2 instance to attach before considering the attempt to have
failed, and email addresses to alert, respectively. missing_timeout
defaults to 20 minutes.

keypair_name and security_name allow you to specify different names for
these AWS EC2 values. They both default to latent_buildbot_slave.

Libvirt

libvirt [http://www.libvirt.org/] is a virtualization API for interacting
with the virtualization capabilities of recent versions of Linux and other OSes.
It is LGPL and comes with a stable C API, and python bindings.

This means we know have an API which when tied to buildbot allows us to have slaves
that run under Xen, QEMU, KVM, LXC, OpenVZ, User Mode Linux, VirtualBox and VMWare.

The libvirt code in Buildbot was developed against libvirt 0.7.5 on Ubuntu Lucid. It
is used with KVM to test python code on Karmic VM's, but obviously isn't limited to that.
Each build is run on a new VM, images are temporary and thrown away after each build.

Setting up libvirt

We won't show you how to set up libvirt as it is quite different on each platform,
but there are a few things you should keep in mind.

	If you are running on Ubuntu, your master should run Lucid. Libvirt and apparmor are
buggy on Karmic.

	If you are using the system libvirt, your buildbot master user will need to be in the
libvirtd group.

	If you are using KVM, your buildbot master user will need to be in the KVM group.

	You need to think carefully about your virtual network first. Will NAT be enough?
What IP will my VM's need to connect to for connecting to the master?

Configuring your base image

You need to create a base image for your builds that has everything needed to build
your software. You need to configure the base image with a buildbot slave that is configured
to connect to the master on boot.

Because this image may need updating a lot, we strongly suggest scripting its creation.

If you want to have multiple slaves using the same base image it can be annoying to duplicate
the image just to change the buildbot credentials. One option is to use libvirt's DHCP
server to allocate an identity to the slave: DHCP sets a hostname, and the slave takes its
identity from that.

Doing all this is really beyond the scope of the manual, but there is a vmbuilder script
and a network.xml file to create such a DHCP server in
contrib/ (Contrib Scripts)
that should get you started:

sudo apt-get install ubuntu-vm-builder
sudo contrib/libvirt/vmbuilder

Should create an ubuntu/ folder with a suitable image in it.

virsh net-define contrib/libvirt/network.xml
virsh net-start buildbot-network

Should set up a KVM compatible libvirt network for your buildbot VM's to run on.

Configuring your Master

If you want to add a simple on demand VM to your setup, you only need the following. We
set the username to minion1, the password to sekrit. The base image is called base_image
and a copy of it will be made for the duration of the VM's life. That copy will be thrown
away every time a build is complete.

from buildbot.libvirtbuildslave import LibVirtBuildSlave
c['slaves'] = [LibVirtBuildSlave('minion1', 'sekrit',
 '/home/buildbot/images/minion1', '/home/buildbot/images/base_image')]

You can use virt-manager to define minion1 with the correct hardware. If you don't, buildbot
won't be able to find a VM to start.

LibVirtBuildSlave accepts the following arguments:

	name

	Both a buildbot username and the name of the virtual machine

	password

	A password for the buildbot to login to the master with

	hd_image

	The path to a libvirt disk image, normally in qcow2 format when using KVM.

	base_image

	If given a base image, buildbot will clone it every time it starts a VM.
This means you always have a clean environment to do your build in.

	xml

	If a VM isn't predefined in virt-manager, then you can instead provide XML
like that used with virsh define. The VM will be created
automatically when needed, and destroyed when not needed any longer.

Dangers with Latent Buildslaves

Any latent build slave that interacts with a for-fee service, such as the
EC2LatentBuildSlave, brings significant risks. As already identified, the
configuration will need access to account information that, if obtained by a
criminal, can be used to charge services to your account. Also, bugs in the
buildbot software may lead to unnecessary charges. In particular, if the
master neglects to shut down an instance for some reason, a virtual machine
may be running unnecessarily, charging against your account. Manual and/or
automatic (e.g. nagios with a plugin using a library like boto)
double-checking may be appropriate.

A comparatively trivial note is that currently if two instances try to attach
to the same latent buildslave, it is likely that the system will become
confused. This should not occur, unless, for instance, you configure a normal
build slave to connect with the authentication of a latent buildbot. If this
situation does occurs, stop all attached instances and restart the master.

 Copyright Buildbot Team Members.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 	v0.8.7

 	v0.8.6p1

 	v0.8.6

 	v0.8.5

 	v0.8.4

 Builder Configuration

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Buildbot 0.8.7-61-g6a0fea1 documentation

 	Buildbot Manual

 	Configuration

Builder Configuration

The builders configuration key is a list of objects giving
configuration for the Builders. For more information on the function of
Builders in Buildbot, see the Concepts chapter. The class
definition for the builder configuration is in buildbot.config. In the
configuration file, its use looks like:

from buildbot.config import BuilderConfig
c['builders'] = [
 BuilderConfig(name='quick', slavenames=['bot1', 'bot2'], factory=f_quick),
 BuilderConfig(name='thorough', slavename='bot1', factory=f_thorough),
]

BuilderConfig takes the following keyword arguments:

	name

	This specifies the Builder's name, which is used in status reports.

slavename

	slavenames

	These arguments specify the buildslave or buildslaves that will be used by
this Builder. All slaves names must appear in the slaves
configuration parameter. Each buildslave can accomodate multiple
builders. The slavenames parameter can be a list of names,
while slavename can specify only one slave.

	factory

	This is a buildbot.process.factory.BuildFactory instance which
controls how the build is performed by defining the steps in the build.
Full details appear in their own section, Build Factories.

Other optional keys may be set on each BuilderConfig:

	builddir

	Specifies the name of a subdirectory of the master's basedir in which
everything related to this builder will be stored. This holds build status
information. If not set, this parameter defaults to the builder name, with
some characters escaped. Each builder must have a unique build directory.

	slavebuilddir

	Specifies the name of a subdirectory (under the slave's configured base
directory) in which everything related to this builder will be placed on
the buildslave. This is where checkouts, compiles, and tests are run. If
not set, defaults to builddir. If a slave is connected to multiple
builders that share the same slavebuilddir, make sure the slave is set
to run one build at a time or ensure this is fine to run multiple builds
from the same directory simultaneously.

	category

	If provided, this is a string that identifies a category for the
builder to be a part of. Status clients can limit themselves to a
subset of the available categories. A common use for this is to add
new builders to your setup (for a new module, or for a new buildslave)
that do not work correctly yet and allow you to integrate them with
the active builders. You can put these new builders in a test
category, make your main status clients ignore them, and have only
private status clients pick them up. As soon as they work, you can
move them over to the active category.

	nextSlave

	If provided, this is a function that controls which slave will be assigned
future jobs. The function is passed two arguments, the Builder
object which is assigning a new job, and a list of BuildSlave
objects. The function should return one of the BuildSlave
objects, or None if none of the available slaves should be
used.

	nextBuild

	If provided, this is a function that controls which build request will be
handled next. The function is passed two arguments, the Builder
object which is assigning a new job, and a list of BuildRequest
objects of pending builds. The function should return one of the
BuildRequest objects, or None if none of the pending
builds should be started. This function can optionally return a
Deferred which should fire with the same results.

	locks

	This argument specifies a list of locks that apply to this builder; see
Interlocks.

	env

	A Builder may be given a dictionary of environment variables in this parameter.
The variables are used in ShellCommand steps in builds created by this
builder. The environment variables will override anything in the buildslave's
environment. Variables passed directly to a ShellCommand will override
variables of the same name passed to the Builder.

For example, if you have a pool of identical slaves it is often easier to manage
variables like PATH from Buildbot rather than manually editing it inside of
the slaves' environment.

f = factory.BuildFactory
f.addStep(ShellCommand(
 command=['bash', './configure']))
f.addStep(Compile())

c['builders'] = [
 BuilderConfig(name='test', factory=f,
 slavenames=['slave1', 'slave2', 'slave3', 'slave4'],
 env={'PATH': '/opt/local/bin:/opt/app/bin:/usr/local/bin:/usr/bin'}),
]

	mergeRequests

	Specifies how build requests for this builder should be merged. See
Merging Build Requests, below.

	properties

	A builder may be given a dictionary of Build Properties
specific for this builder in this parameter. Those values can be used
later on like other properties. Interpolate.

Merging Build Requests

When more than one build request is available for a builder, Buildbot can
"merge" the requests into a single build. This is desirable when build
requests arrive more quickly than the available slaves can satisfy them, but
has the drawback that separate results for each build are not available.

Requests are only candidated for a merge if both requests have exactly the same
codebases.

This behavior can be controlled globally, using the mergeRequests
parameter, and on a per-Builder basis, using the mergeRequests argument
to the Builder configuration. If mergeRequests is given, it completely
overrides the global configuration.

For either configuration parameter, a value of True (the default) causes
buildbot to merge BuildRequests that have "compatible" source stamps. Source
stamps are compatible if:

	their codebase, branch, project, and repository attributes match exactly;

	neither source stamp has a patch (e.g., from a try scheduler); and

	either both source stamps are associated with changes, or neither ar
associated with changes but they have matching revisions.

This algorithm is implemented by the SourceStamp method canBeMergedWith.

A configuration value of False indicates that requests should never be
merged.

The configuration value can also be a callable, specifying a custom merging
function. See Merge Request Functions for details.

Prioritizing Builds

The BuilderConfig parameter nextBuild can be use to prioritize
build requests within a builder. Note that this is orthogonal to
Prioritizing Builders, which controls the order in which builders are
called on to start their builds. The details of writing such a function are in
Build Priority Functions.

Such a function can be provided to the BuilderConfig as follows:

def pickNextBuild(builder, requests):
 # ...
c['builders'] = [
 BuilderConfig(name='test', factory=f,
 nextBuild=pickNextBuild,
 slavenames=['slave1', 'slave2', 'slave3', 'slave4']),
]

 Copyright Buildbot Team Members.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 	v0.8.7

 	v0.8.6p1

 	v0.8.6

 	v0.8.5

 	v0.8.4

 Build Factories

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Buildbot 0.8.7-61-g6a0fea1 documentation

 	Buildbot Manual

 	Configuration

Build Factories

Each Builder is equipped with a build factory, which is defines the steps
used to perform that particular type of build. This factory is created in the
configuration file, and attached to a Builder through the factory element
of its dictionary.

The steps used by these builds are defined in the next section, Build Steps.

Note

Build factories are used with builders, and are not added directly to the
buildmaster configuration dictionary.

Defining a Build Factory

A BuildFactory defines the steps that every build will follow. Think of it as
a glorified script. For example, a build factory which consists of a CVS checkout
followed by a make build would be configured as follows:

from buildbot.steps import svn, shell
from buildbot.process import factory

f = factory.BuildFactory()
f.addStep(svn.SVN(svnurl="http://..", mode="incremental"))
f.addStep(shell.Compile(command=["make", "build"]))

This factory would then be attached to one builder (or several, if desired):

c['builders'].append(
 BuilderConfig(name='quick', slavenames=['bot1', 'bot2'], factory=f))

It is also possible to pass a list of steps into the
BuildFactory when it is created. Using addStep is
usually simpler, but there are cases where is is more convenient to
create the list of steps ahead of time, perhaps using some Python
tricks to generate the steps.

from buildbot.steps import source, shell
from buildbot.process import factory

all_steps = [
 source.CVS(cvsroot=CVSROOT, cvsmodule="project", mode="update"),
 shell.Compile(command=["make", "build"]),
]
f = factory.BuildFactory(all_steps)

Finally, you can also add a sequence of steps all at once:

f.addSteps(all_steps)

Attributes

The following attributes can be set on a build factory after it is created, e.g.,

f = factory.BuildFactory()
f.useProgress = False

	useProgress

	(defaults to True): if True, the buildmaster keeps track of how long
each step takes, so it can provide estimates of how long future builds
will take. If builds are not expected to take a consistent amount of
time (such as incremental builds in which a random set of files are
recompiled or tested each time), this should be set to False to
inhibit progress-tracking.

	workdir

	(defaults to 'build'): workdir given to every build step created by
this factory as default. The workdir can be overridden in a build step
definition.

If this attribute is set to a string, that string will be used for
constructing the workdir (buildslave base + builder builddir + workdir).
The attribute can also be a Python callable, for more complex cases, as
described in Factory Workdir Functions.

Predefined Build Factories

Buildbot includes a few predefined build factories that perform common build
sequences. In practice, these are rarely used, as every site has slightly
different requirements, but the source for these factories may provide examples
for implementation of those requirements.

GNUAutoconf

	
class buildbot.process.factory.GNUAutoconf

	

GNU Autoconf [http://www.gnu.org/software/autoconf/] is a
software portability tool, intended to make it possible to write
programs in C (and other languages) which will run on a variety of
UNIX-like systems. Most GNU software is built using autoconf. It is
frequently used in combination with GNU automake. These tools both
encourage a build process which usually looks like this:

% CONFIG_ENV=foo ./configure --with-flags
% make all
% make check
make install

(except of course the Buildbot always skips the make install
part).

The Buildbot's buildbot.process.factory.GNUAutoconf factory is
designed to build projects which use GNU autoconf and/or automake. The
configuration environment variables, the configure flags, and command
lines used for the compile and test are all configurable, in general
the default values will be suitable.

Example:

f = factory.GNUAutoconf(source=source.SVN(svnurl=URL, mode="copy"),
 flags=["--disable-nls"])

Required Arguments:

	source

	This argument must be a step specification tuple that provides a
BuildStep to generate the source tree.

Optional Arguments:

	configure

	The command used to configure the tree. Defaults to
./configure. Accepts either a string or a list of shell argv
elements.

	configureEnv

	The environment used for the initial configuration step. This accepts
a dictionary which will be merged into the buildslave's normal
environment. This is commonly used to provide things like
CFLAGS="-O2 -g" (to turn off debug symbols during the compile).
Defaults to an empty dictionary.

	configureFlags

	A list of flags to be appended to the argument list of the configure
command. This is commonly used to enable or disable specific features
of the autoconf-controlled package, like ["--without-x"] to
disable windowing support. Defaults to an empty list.

	compile

	this is a shell command or list of argv values which is used to
actually compile the tree. It defaults to make all. If set to
None, the compile step is skipped.

	test

	this is a shell command or list of argv values which is used to run
the tree's self-tests. It defaults to @code{make check}. If set to
None, the test step is skipped.

BasicBuildFactory

	
class buildbot.process.factory.BasicBuildFactory

	

This is a subclass of GNUAutoconf which assumes the source is in CVS,
and uses mode='clobber' to always build from a clean working copy.

BasicSVN

	
class buildbot.process.factory.BasicSVN

	

This class is similar to BasicBuildFactory, but uses SVN instead of CVS.

QuickBuildFactory

	
class buildbot.process.factory.QuickBuildFactory

	

The QuickBuildFactory class is a subclass of GNUAutoconf which
assumes the source is in CVS, and uses mode='update' to get incremental
updates.

The difference between a full build and a quick build is that
quick builds are generally done incrementally, starting with the tree
where the previous build was performed. That simply means that the
source-checkout step should be given a mode='update' flag, to
do the source update in-place.

In addition to that, this class sets the useProgress flag to False.
Incremental builds will (or at least the ought to) compile as few files as
necessary, so they will take an unpredictable amount of time to run. Therefore
it would be misleading to claim to predict how long the build will take.

This class is probably not of use to new projects.

CPAN

	
class buildbot.process.factory.CPAN

	

Most Perl modules available from the CPAN [http://www.cpan.org/]
archive use the MakeMaker module to provide configuration,
build, and test services. The standard build routine for these modules
looks like:

% perl Makefile.PL
% make
% make test
make install

(except again Buildbot skips the install step)

Buildbot provides a CPAN factory to compile and test these
projects.

Arguments:

	source

	(required): A step specification tuple, like that used by GNUAutoconf.

	perl

	A string which specifies the perl executable to use. Defaults
to just perl.

Distutils

	
class buildbot.process.factory.Distutils

	

Most Python modules use the distutils package to provide
configuration and build services. The standard build process looks
like:

% python ./setup.py build
% python ./setup.py install

Unfortunately, although Python provides a standard unit-test framework
named unittest, to the best of my knowledge distutils
does not provide a standardized target to run such unit tests. (Please
let me know if I'm wrong, and I will update this factory.)

The Distutils factory provides support for running the build
part of this process. It accepts the same source= parameter as
the other build factories.

Arguments:

	source

	(required): A step specification tuple, like that used by GNUAutoconf.

	python

	A string which specifies the python executable to use. Defaults
to just python.

	test

	Provides a shell command which runs unit tests. This accepts either a
string or a list. The default value is None, which disables the test
step (since there is no common default command to run unit tests in
distutils modules).

Trial

	
class buildbot.process.factory.Trial

	

Twisted provides a unit test tool named trial which provides a
few improvements over Python's built-in unittest module. Many
python projects which use Twisted for their networking or application
services also use trial for their unit tests. These modules are
usually built and tested with something like the following:

% python ./setup.py build
% PYTHONPATH=build/lib.linux-i686-2.3 trial -v PROJECTNAME.test
% python ./setup.py install

Unfortunately, the build/lib directory into which the
built/copied .py files are placed is actually architecture-dependent,
and I do not yet know of a simple way to calculate its value. For many
projects it is sufficient to import their libraries in place from
the tree's base directory (PYTHONPATH=.).

In addition, the PROJECTNAME value where the test files are
located is project-dependent: it is usually just the project's
top-level library directory, as common practice suggests the unit test
files are put in the test sub-module. This value cannot be
guessed, the Trial class must be told where to find the test
files.

The Trial class provides support for building and testing
projects which use distutils and trial. If the test module name is
specified, trial will be invoked. The library path used for testing
can also be set.

One advantage of trial is that the Buildbot happens to know how to
parse trial output, letting it identify which tests passed and which
ones failed. The Buildbot can then provide fine-grained reports about
how many tests have failed, when individual tests fail when they had
been passing previously, etc.

Another feature of trial is that you can give it a series of source
.py files, and it will search them for special test-case-name
tags that indicate which test cases provide coverage for that file.
Trial can then run just the appropriate tests. This is useful for
quick builds, where you want to only run the test cases that cover the
changed functionality.

Arguments:

	testpath

	Provides a directory to add to PYTHONPATH when running the unit
tests, if tests are being run. Defaults to . to include the
project files in-place. The generated build library is frequently
architecture-dependent, but may simply be build/lib for
pure-python modules.

	python

	which python executable to use. This list will form the start of
the argv array that will launch trial. If you use this,
you should set trial to an explicit path (like
/usr/bin/trial or ./bin/trial). The parameter defaults
to None, which
leaves it out entirely (running trial args instead of
python ./bin/trial args). Likely values are ['python'],
['python2.2'], or ['python', '-Wall'].

	trial

	provides the name of the trial command. It is occasionally
useful to use an alternate executable, such as trial2.2 which
might run the tests under an older version of Python. Defaults to
trial.

	trialMode

	a list of arguments to pass to trial, specifically to set the reporting mode.
This defaults to ['--reporter=bwverbose'], which only works for
Twisted-2.1.0 and later.

	trialArgs

	a list of arguments to pass to trial, available to turn on any extra flags you
like. Defaults to [].

	tests

	Provides a module name or names which contain the unit tests for this
project. Accepts a string, typically PROJECTNAME.test, or a
list of strings. Defaults to None, indicating that no tests should be
run. You must either set this or testChanges.

	testChanges

	if True, ignore the tests parameter and instead ask the Build for all
the files that make up the Changes going into this build. Pass these filenames
to trial and ask it to look for test-case-name tags, running just the tests
necessary to cover the changes.

	recurse

	If True, tells Trial (with the --recurse argument) to look in all
subdirectories for additional test cases.

	reactor

	which reactor to use, like 'gtk' or 'java'. If not provided, the Twisted's
usual platform-dependent default is used.

	randomly

	If True, tells Trial (with the --random=0 argument) to
run the test cases in random order, which sometimes catches subtle
inter-test dependency bugs. Defaults to False.

The step can also take any of the ShellCommand arguments, e.g.,
haltOnFailure.

Unless one of tests or testChanges are set, the step will
generate an exception.

 Copyright Buildbot Team Members.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 	v0.8.7

 	v0.8.6p1

 	v0.8.6

 	v0.8.5

 	v0.8.4

 Properties

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Buildbot 0.8.7-61-g6a0fea1 documentation

 	Buildbot Manual

 	Configuration

Properties

Build properties are a generalized way to provide configuration information to
build steps; see Build Properties for the conceptual overview of
properties.

Some build properties come from external sources and are set before the build
begins; others are set during the build, and available for later steps. The
sources for properties are:

	global configuration -- These properties apply to all
builds.

	schedulers -- A scheduler can specify
properties that become available to all builds it starts.

	changes -- A change can have properties attached to
it, supplying extra information gathered by the change source. This is most
commonly used with the sendchange command.

	forced builds -- The "Force Build" form allows users
to specify properties

	buildslaves -- A buildslave can pass properties on to
the builds it performs.

	builds -- A build automatically sets a
number of properties on itself.

	builders -- A builder can set properties on all the
builds it runs.

	steps -- The steps of a build can set properties that are available to subsequent steps.
In particular, source steps set the got_revision property.

If the same property is supplied in multiple places, the final appearance takes
precedence. For example, a property set in a builder configuration will
override one supplied by a scheduler.

Properties are stored internally in JSON format, so they are limited to basic
types of data: numbers, strings, lists, and dictionaries.

Common Build Properties

The following build properties are set when the build is started, and
are available to all steps.

	got_revision

	This property is set when a Source step checks out the source tree, and provides the revision that was actually obtained from the VC system.
In general this should be the same as revision, except for non-absolute sourcestamps, where got_revision indicates what revision was current when the checkout was performed.
This can be used to rebuild the same source code later.

Note

For some VC systems (Darcs in particular), the revision is a
large string containing newlines, and is not suitable for interpolation
into a filename.

For multi-codebase builds (where codebase is not the default ''), this property is a dictionary, keyed by codebase.

	buildername

	This is a string that indicates which Builder the build was a part of.
The combination of buildername and buildnumber uniquely identify a
build.

	buildnumber

	Each build gets a number, scoped to the Builder (so the first build
performed on any given Builder will have a build number of 0). This
integer property contains the build's number.

	slavename

	This is a string which identifies which buildslave the build is
running on.

	scheduler

	If the build was started from a scheduler, then this property will
contain the name of that scheduler.

	workdir

	The absolute path of the base working directory on the slave, of the current
builder.

For single codebase builds, where the codebase is '', the following Source Stamp Attributes are also available as properties: branch, revision, repository, and project .

Source Stamp Attributes

branch
revision
repository
project
codebase

For details of these attributes see Concepts.

changes

This attribute is a list of dictionaries reperesnting the changes that make up this sourcestamp.

has_patch
patch_level
patch_body
patch_subdir
patch_author
patch_comment

These attributes are set if the source stamp was created by a try scheduler.

Using Properties in Steps

For the most part, properties are used to alter the behavior of build steps
during a build. This is done by annotating the step definition in
master.cfg with placeholders. When the step is executed, these
placeholders will be replaced using the current values of the build properties.

Note

Properties are defined while a build is in progress; their values are
not available when the configuration file is parsed. This can sometimes
confuse newcomers to Buildbot! In particular, the following is a common error:

if Property('release_train') == 'alpha':
 f.addStep(...)

This does not work because the value of the property is not available when
the if statement is executed. However, Python will not detect this as
an error - you will just never see the step added to the factory.

You can use build properties in most step paramaters. Please file bugs for any
parameters which do not accept properties.

Property

The simplest form of annotation is to wrap the property name with
Property:

from buildbot.steps.shell import ShellCommand
from buildbot.process.properties import Property

f.addStep(ShellCommand(command=['echo', 'buildername:', Property('buildername')]))

You can specify a default value by passing a default keyword argument:

f.addStep(ShellCommand(command=['echo', 'warnings:',
 Property('warnings', default='none')]))

The default value is used when the property doesn't exist, or when the value is
something Python regards as False. The defaultWhenFalse argument can be
set to False to force buildbot to use the default argument only if the
parameter is not set:

f.addStep(ShellCommand(command=['echo', 'warnings:',
 Property('warnings', default='none', defaultWhenFalse=False)]))

The default value can reference other properties, e.g.,

command=Property('command', default=Property('default-command'))

Interpolate

Property can only be used to replace an entire argument: in the
example above, it replaces an argument to echo. Often, properties need to
be interpolated into strings, instead. The tool for that job is
Interpolate.

The more common pattern is to use python dictionary-style string interpolation by using the %(prop:<propname>)s syntax.
In this form, the property name goes in the parentheses, as above.
A common mistake is to omit the trailing "s", leading to a rather obscure error from Python ("ValueError: unsupported format character").

from buildbot.steps.shell import ShellCommand
from buildbot.process.properties import Interpolate
f.addStep(ShellCommand(command=['make', Interpolate('REVISION=%(prop:got_revision)s'),
 'dist']))

This example will result in a make command with an argument like
REVISION=12098.

The syntax of dictionary-style interpolation is a selector, followed by a colon, followed by a selector specific key, optionally followed by a colon and a string indicating how to interpret the value produced by the key.

The following selectors are supported.

	prop

	The key is the name of a property.

	src

	The key is a codebase and source stamp attribute, seperated by a colon.

	kw

	The key refers to a keyword argument passed to Interpolate.

The following ways of interpreting the value are available.

	-replacement

	If the key exists, substitute its value; otherwise,
substitute replacement. replacement may be empty
(%(prop:propname:-)s). This is the default.

	~replacement

	Like -replacement, but only substitutes the value
of the key if it is something Python regards as True.
Python considers None, 0, empty lists, and the empty string to be
false, so such values will be replaced by replacement.

	+replacement

	If the key exists, substitute replacement; otherwise,
substitute an empty string.

?|sub_if_exists|sub_if_missing

	#?|sub_if_true|sub_if_false

	Ternary substitution, depending on either the key being present (with
?, similar to +) or being True (with #?, like ~).
Notice that there is a pipe immediately following the question mark and
between the two substitution alternatives. The character that follows the
question mark is used as the delimeter between the two alternatives. In the
above examples, it is a pipe, but any character other than (can be used.

Although these are similar to shell substitutions, no other substitutions are currently supported.

Example

from buildbot.steps.shell import ShellCommand
from buildbot.process.properties import Interpolate
f.addStep(ShellCommand(command=['make', Interpolate('REVISION=%(prop:got_revision:-%(src::revision:-unknown)s)s')
 'dist']))

In addition, Interpolate supports using positional string interpolation.
Here, %s is used as a placeholder, and the substitutions (which may themselves be placeholders), are given as subsequent arguments:

.. note:

Like python, you can use either positional interpolation or
dictionary-style interpolation, not both. Thus you cannot use a string
like Interpolate("foo-%(src::revision)s-%s", "branch").

Renderer

While Interpolate can handle many simple cases, and even some common conditionals, more complex cases are best handled with Python code.
The renderer decorator creates a renderable object that will be replaced with the result of the function, called when the step it's passed to begins.
The function receives an IProperties object, which it can use to examine the values of any and all properties. For example:

 @properties.renderer
 def makeCommand(props):
 command = ['make']
 cpus = props.getProperty('CPUs')
 if cpus:
 command += ['-j', str(cpus+1)]
 else:
 command += ['-j', '2']
 command += ['all']
 return command
f.addStep(ShellCommand(command=makeCommand))

You can think of renderer as saying "call this function when the step starts".

WithProperties

Warning

This placeholder is deprecated. It is an older version of Interpolate.
It exists for compatability with older configs.

The simplest use of this class is with positional string interpolation. Here,
%s is used as a placeholder, and property names are given as subsequent
arguments:

from buildbot.steps.shell import ShellCommand
from buildbot.process.properties import WithProperties
f.addStep(ShellCommand(
 command=["tar", "czf",
 WithProperties("build-%s-%s.tar.gz", "branch", "revision"),
 "source"]))

If this BuildStep were used in a tree obtained from Git, it would
create a tarball with a name like
build-master-a7d3a333db708e786edb34b6af646edd8d4d3ad9.tar.gz.

The more common pattern is to use python dictionary-style string interpolation
by using the %(propname)s syntax. In this form, the property name goes in
the parentheses, as above. A common mistake is to omit the trailing "s",
leading to a rather obscure error from Python ("ValueError: unsupported format
character").

from buildbot.steps.shell import ShellCommand
from buildbot.process.properties import WithProperties
f.addStep(ShellCommand(command=['make', WithProperties('REVISION=%(got_revision)s'),
 'dist']))

This example will result in a make command with an argument like
REVISION=12098.

The dictionary-style interpolation supports a number of more advanced
syntaxes in the parentheses.

	propname:-replacement

	If propname exists, substitute its value; otherwise,
substitute replacement. replacement may be empty
(%(propname:-)s)

	propname:~replacement

	Like propname:-replacement, but only substitutes the value
of property propname if it is something Python regards as True.
Python considers None, 0, empty lists, and the empty string to be
false, so such values will be replaced by replacement.

	propname:+replacement

	If propname exists, substitute replacement; otherwise,
substitute an empty string.

Although these are similar to shell substitutions, no other
substitutions are currently supported, and replacement in the
above cannot contain more substitutions.

Note: like python, you can use either positional interpolation or
dictionary-style interpolation, not both. Thus you cannot use a string like
WithProperties("foo-%(revision)s-%s", "branch").

Custom Renderables

If the options described above are not sufficient, more complex substitutions can be achieved by writting custom renderables.

Renderables are objects providing the IRenderable interface.
That interface is simple - objects must provide a getRenderingFor method.
The method should take one argument - an IProperties provider - and should return a string.
Pass instances of the class anywhere other renderables are accepted.
For example:

class DetermineFoo(object):
 implements(IRenderable)
 def getRenderingFor(self, props)
 if props.hasProperty('bar'):
 return props['bar']
 elif props.hasProperty('baz'):
 return props['baz']
 return 'qux'
ShellCommand(command=['echo', DetermineFoo()])

or, more practically,

class Now(object):
 implements(IRenderable)
 def getRenderingFor(self, props)
 return time.clock()
ShellCommand(command=['make', Interpolate('TIME=%(kw:now)', now=Now())])

This is equivalent to:

@renderer
def now(props):
 return time.clock()
ShellCommand(command=['make', Interpolate('TIME=%(kw:now)', now=now)])

Note that a custom renderable must be instantiated (and its constructor can take whatever arguments you'd like), whereas a renderer can be used directly.

 Copyright Buildbot Team Members.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 	v0.8.7

 	v0.8.6p1

 	v0.8.6

 	v0.8.5

 	v0.8.4

 Build Steps

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Buildbot 0.8.7-61-g6a0fea1 documentation

 	Buildbot Manual

 	Configuration

Build Steps

BuildSteps are usually specified in the buildmaster's
configuration file, in a list that goes into the BuildFactory.
The BuildStep instances in this list are used as templates to
construct new independent copies for each build (so that state can be
kept on the BuildStep in one build without affecting a later
build). Each BuildFactory can be created with a list of steps,
or the factory can be created empty and then steps added to it using
the addStep method:

from buildbot.steps import source, shell
from buildbot.process import factory

f = factory.BuildFactory()
f.addStep(source.SVN(svnurl="http://svn.example.org/Trunk/"))
f.addStep(shell.ShellCommand(command=["make", "all"]))
f.addStep(shell.ShellCommand(command=["make", "test"]))

The basic behavior for a BuildStep is to:

	run for a while, then stop

	possibly invoke some RemoteCommands on the attached build slave

	possibly produce a set of log files

	finish with a status described by one of four values defined in
buildbot.status.builder: SUCCESS, WARNINGS, FAILURE, SKIPPED

	provide a list of short strings to describe the step

The rest of this section describes all the standard BuildStep objects
available for use in a Build, and the parameters which can be used to
control each. A full list of build steps is available in the Build Step Index.

Common Parameters

All BuildSteps accept some common parameters. Some of these control
how their individual status affects the overall build. Others are used
to specify which Locks (see Interlocks) should be
acquired before allowing the step to run.

Arguments common to all BuildStep subclasses:

	name

	the name used to describe the step on the status display. It is also
used to give a name to any LogFiles created by this step.

	haltOnFailure

	if True, a FAILURE of this build step will cause the build to halt
immediately. Steps with alwaysRun=True are still run. Generally
speaking, haltOnFailure implies flunkOnFailure (the default for most
BuildSteps). In some cases, particularly series of tests, it makes sense
to haltOnFailure if something fails early on but not flunkOnFailure.
This can be achieved with haltOnFailure=True, flunkOnFailure=False.

	flunkOnWarnings

	when True, a WARNINGS or FAILURE of this build step will mark the
overall build as FAILURE. The remaining steps will still be executed.

	flunkOnFailure

	when True, a FAILURE of this build step will mark the overall build as
a FAILURE. The remaining steps will still be executed.

	warnOnWarnings

	when True, a WARNINGS or FAILURE of this build step will mark the
overall build as having WARNINGS. The remaining steps will still be
executed.

	warnOnFailure

	when True, a FAILURE of this build step will mark the overall build as
having WARNINGS. The remaining steps will still be executed.

	alwaysRun

	if True, this build step will always be run, even if a previous buildstep
with haltOnFailure=True has failed.

	doStepIf

	A step can be configured to only run under certain conditions. To do this, set
the step's doStepIf to a boolean value, or to a function that returns a
boolean value or Deferred. If the value or function result is false, then the step will
return SKIPPED without doing anything. Oherwise, the step will be executed
normally. If you set doStepIf to a function, that function should
accept one parameter, which will be the Step object itself.

	hideStepIf

	A step can be optionally hidden from the waterfall and build details web pages. To do
this, set the step's hideStepIf to a boolean value, or to a function that takes one
parameter, the BuildStepStatus and returns a boolean value. Steps are always
shown while they execute, however after the step as finished, this parameter
is evaluated (if a function) and if the value is True, the step is hidden.
For example, in order to hide the step if the step has been skipped,

factory.addStep(Foo(..., hideStepIf=lambda s, result: result==SKIPPED))

	locks

	a list of Locks (instances of buildbot.locks.SlaveLock or
buildbot.locks.MasterLock) that should be acquired before starting this
Step. The Locks will be released when the step is complete. Note that this is a
list of actual Lock instances, not names. Also note that all Locks must have
unique names. See Interlocks.

Source Checkout

At the moment, Buildbot contains two implementations of most source steps. The
new implementation handles most of the logic on the master side, and has a
simpler, more unified approach. The older implementation
(Source Checkout (Slave-Side)) handles the logic on the slave side, and
some of the classes have a bewildering array of options.

Caution

Master-side source checkout steps are recently developed and not
stable yet. If you find any bugs please report them on the Buildbot Trac [http://trac.buildbot.net/newticket]. The older Slave-side described source
steps are Source Checkout (Slave-Side).

The old source steps are imported like this:

from buildbot.steps.source import Git

while new source steps are in separate source-packages for each
version-control system:

from buildbot.steps.source.git import Git

New users should, where possible, use the new implementations. The old
implementations will be deprecated in a later release. Old users should take
this opportunity to switch to the new implementations while both are supported
by Buildbot.

Some version control systems have not yet been implemented as master-side
steps. If you are interested in continued support for such a version control
system, please consider helping the Buildbot developers to create such an
implementation. In particular, version-control systems with proprietary
licenses will not be supported without access to the version-control system
for development.

Common Parameters

All source checkout steps accept some common parameters to control how they get
the sources and where they should be placed. The remaining per-VC-system
parameters are mostly to specify where exactly the sources are coming from.

mode
method

These two parameters specify the means by which the source is checked out.
mode specifies the type of checkout and method tells about the
way to implement it.

factory = BuildFactory()
from buildbot.steps.source.mercurial import Mercurial
factory.addStep(Mercurial(repourl='path/to/repo', mode='full', method='fresh'))

The mode parameter a string describing the kind of VC operation that is
desired, defaulting to incremental. The options are

	incremental

	Update the source to the desired revision, but do not remove any other files
generated by previous builds. This allows compilers to take advantage of
object files from previous builds. This mode is exactly same as the old
update mode.

	full

	Update the source, but delete remnants of previous builds. Build steps that
follow will need to regenerate all object files.

Methods are specific to the version-control system in question, as they may
take advantage of special behaviors in that version-control system that can
make checkouts more efficient or reliable.

	workdir

	like all Steps, this indicates the directory where the build will take
place. Source Steps are special in that they perform some operations
outside of the workdir (like creating the workdir itself).

	alwaysUseLatest

	if True, bypass the usual behavior of checking out the revision in the
source stamp, and always update to the latest revision in the repository
instead.

	retry

	If set, this specifies a tuple of (delay, repeats) which means
that when a full VC checkout fails, it should be retried up to
repeats times, waiting delay seconds between attempts. If
you don't provide this, it defaults to None, which means VC
operations should not be retried. This is provided to make life easier
for buildslaves which are stuck behind poor network connections.

	repository

	The name of this parameter might vary depending on the Source step you
are running. The concept explained here is common to all steps and
applies to repourl as well as for baseURL (when
applicable).

A common idiom is to pass Property('repository', 'url://default/repo/path')
as repository. This grabs the repository from the source stamp of the
build. This can be a security issue, if you allow force builds from the
web, or have the WebStatus change hooks enabled; as the buildslave
will download code from an arbitrary repository.

	codebase

	This specifies which codebase the source step should use to select the right
source stamp. The default codebase value is ''. The codebase must correspond
to a codebase assigned by the codebaseGenerator. If there is no
codebaseGenerator defined in the master then codebase doesn't need to be set,
the default value will then match all changes.

	timeout

	Specifies the timeout for slave-side operations, in seconds. If
your repositories are particularly large, then you may need to
increase this value from its default of 1200 (20 minutes).

	logEnviron

	If this option is true (the default), then the step's logfile will
describe the environment variables on the slave. In situations
where the environment is not relevant and is long, it may be
easier to set logEnviron=False.

	env

	a dictionary of environment strings which will be added to the child
command's environment. The usual property interpolations can be used in
environment variable names and values - see Properties.

Mercurial

	
class buildbot.steps.source.mercurial.Mercurial

	

The Mercurial build step performs a Mercurial [http://selenic.com/mercurial]
(aka hg) checkout or update.

Branches are available in two modes: dirname, where the name of the branch is
a suffix of the name of the repository, or inrepo, which uses hg's
named-branches support. Make sure this setting matches your changehook, if you
have that installed.

from buildbot.steps.source.mercurial import Mercurial
factory.addStep(Mercurial(repourl='path/to/repo', mode='full',
 method='fresh', branchType='inrepo'))

The Mercurial step takes the following arguments:

	repourl

	where the Mercurial source repository is available.

	defaultBranch

	this specifies the name of the branch to use when a Build does not provide
one of its own. This will be appended to repourl to create the
string that will be passed to the hg clone command.

	branchType

	either 'dirname' (default) or 'inrepo' depending on whether the
branch name should be appended to the repourl or the branch
is a mercurial named branch and can be found within the repourl.

	clobberOnBranchChange

	boolean, defaults to True. If set and using inrepos branches,
clobber the tree at each branch change. Otherwise, just update to
the branch.

mode
method

Mercurial's incremental mode does not require a method. The full mode has
three methods defined:

	clobber

	It removes the build directory entirely then makes full clone
from repo. This can be slow as it need to clone whole repository

	fresh

	This remove all other files except those tracked by VCS. First
it does hg purge --all then pull/update

	clean

	All the files which are tracked by Mercurial and listed ignore
files are not deleted. Remaining all other files will be deleted
before pull/update. This is equivalent to hg purge
then pull/update.

Git

	
class buildbot.steps.source.git.Git

	

The Git build step clones or updates a Git [http://git.or.cz/]
repository and checks out the specified branch or revision. Note that
the buildbot supports Git version 1.2.0 and later: earlier versions
(such as the one shipped in Ubuntu 'Dapper') do not support the
git init command that the buildbot uses.

from buildbot.steps.source.git import Git
factory.addStep(Git(repourl='git://path/to/repo', mode='full',
 method='clobber', submodules=True))

The Git step takes the following arguments:

	repourl

	(required): the URL of the upstream Git repository.

	branch

	(optional): this specifies the name of the branch to use when a
Build does not provide one of its own. If this this parameter is
not specified, and the Build does not provide a branch, the
master branch will be used.

	submodules

	(optional): when initializing/updating a Git repository, this
decides whether or not buildbot should consider git submodules.
Default: False.

	shallow

	(optional): instructs git to attempt shallow clones (--depth
1). If the user/scheduler asks for a specific revision, this
parameter is ignored.

	progress

	(optional): passes the (--progress) flag to (git
fetch). This solves issues of long fetches being killed due to
lack of output, but requires Git 1.7.2 or later.

	retryFetch

	(optional): this value defaults to False. In any case if
fetch fails buildbot retries to fetch again instead of failing the
entire source checkout.

	clobberOnFailure

	(optional): defaults to False. If a fetch or full clone
fails we can checkout source removing everything. This way new
repository will be cloned. If retry fails it fails the source
checkout step.

mode
method

Git's incremental mode does not require a method. The full mode has
four methods defined:

	clobber

	It removes the build directory entirely then makes full clone
from repo. This can be slow as it need to clone whole repository

	fresh

	This remove all other files except those tracked by Git. First
it does git clean -d -f -x then fetch/checkout to a
specified revision(if any). This option is equal to update mode
with ignore_ignores=True in old steps.

	clean

	All the files which are tracked by Git and listed ignore files
are not deleted. Remaining all other files will be deleted
before fetch/checkout. This is equivalent to git clean
-d -f then fetch. This is equivalent to
ignore_ignores=False in old steps.

	copy

	This first checkout source into source directory then copy the
source directory to build directory then performs the
build operation in the copied directory. This way we make fresh
builds with very less bandwidth to download source. The behavior
of source checkout follows exactly same as incremental. It
performs all the incremental checkout behavior in source
directory.

getDescription

(optional) After checkout, invoke a git describe on the revision and save
the result in a property; the property's name is