
Buildbot Documentation
Release 0.9.1

Brian Warner

Nov 01, 2016

Contents

1 Buildbot Tutorial 3
1.1 First Run . 3
1.2 First Buildbot run with Docker . 6
1.3 A Quick Tour . 8
1.4 Further Reading . 16

2 Buildbot Manual 23
2.1 Introduction . 23
2.2 Installation . 28
2.3 Concepts . 42
2.4 Configuration . 53
2.5 Transition to “worker” terminology . 208
2.6 Customization . 213
2.7 New-Style Build Steps . 232
2.8 Command-line Tool . 235
2.9 Resources . 245
2.10 Optimization . 245
2.11 Plugin Infrastructure in Buildbot . 246
2.12 Deployment . 247

3 Buildbot Development 249
3.1 General Documents . 249
3.2 APIs . 324
3.3 Python3 compatibility . 408
3.4 Classes . 411

4 Release Notes for Buildbot |version| 445
4.1 Master . 445
4.2 Worker . 445
4.3 Details . 445
4.4 Older Versions . 445

5 Indices and Tables 501

6 Copyright 503

Buildmaster Configuration Index 505

Scheduler Index 507

Change Source Index 509

Build Step Index 511

i

Reporter Target Index 513

Build Worker Index 515

Command Line Index 517

Data API Event Index 519

REST/Data API Resource Type Index 521

REST/Data API Path Index 523

REST/Data API Actions Index 525

Python Module Index 527

ii

Buildbot Documentation, Release 0.9.1

This is the Buildbot documentation for Buildbot version |version|.

If you are evaluating Buildbot and would like to get started quickly, start with the Tutorial. Regular users of
Buildbot should consult the Manual, and those wishing to modify Buildbot directly will want to be familiar with
the Developer’s Documentation.

Contents 1

Buildbot Documentation, Release 0.9.1

2 Contents

CHAPTER 1

Buildbot Tutorial

Contents:

1.1 First Run

1.1.1 Goal

This tutorial will take you from zero to running your first buildbot master and worker as quickly as possible,
without changing the default configuration.

This tutorial is all about instant gratification and the five minute experience: in five minutes we want to convince
you that this project Works, and that you should seriously consider spending some more time learning the system.
In this tutorial no configuration or code changes are done.

This tutorial assumes that you are running on Unix, but might be adaptable easily to Windows.

Thanks to virtualenv (https://pypi.python.org/pypi/virtualenv), installing buildbot in a standalone environment is
very easy. For those more familiar with Docker (https://docker.com), there also exists a docker version of these
instructions.

You should be able to cut and paste each shell block from this tutorial directly into a terminal.

1.1.2 Getting ready

There are many ways to get the code on your machine. We will use here the easiest one: via pip in a vir-
tualenv (https://pypi.python.org/pypi/virtualenv). It has the advantage of not polluting your operating system, as
everything will be contained in the virtualenv.

To make this work, you will need the following installed:

• Python (https://www.python.org/) and the development packages for it

• virtualenv (https://pypi.python.org/pypi/virtualenv)

Preferably, use your distribution package manager to install these.

You will also need a working Internet connection, as virtualenv and pip will need to download other projects from
the Internet.

Note: Buildbot does not require root access. Run the commands in this tutorial as a normal, unprivileged user.

3

https://pypi.python.org/pypi/virtualenv
https://docker.com
https://pypi.python.org/pypi/virtualenv
https://pypi.python.org/pypi/virtualenv
https://www.python.org/
https://pypi.python.org/pypi/virtualenv

Buildbot Documentation, Release 0.9.1

1.1.3 Creating a master

The first necessary step is to create a virtualenv for our master. All our operations will happen in this directory:

cd
mkdir tmp
cd tmp
virtualenv --no-site-packages bb-master
cd bb-master

Now that we are ready, we need to install buildbot:

./bin/pip install buildbot[bundle]

Now that buildbot is installed, it’s time to create the master:

./bin/buildbot create-master master

Buildbot’s activity is controlled by a configuration file. We will use the sample configuration file unchanged:

mv master/master.cfg.sample master/master.cfg

Finally, start the master:

./bin/buildbot start master

You will now see some log information from the master in this terminal. It should ends with lines like these:

2014-11-01 15:52:55+0100 [-] BuildMaster is running
The buildmaster appears to have (re)started correctly.

From now on, feel free to visit the web status page running on the port 8010: http://localhost:8010/

Our master now needs (at least) a worker to execute its commands. For that, heads on to the next section !

1.1.4 Creating a worker

The worker will be executing the commands sent by the master. In this tutorial, we are using the pyflakes project
as an example. As a consequence of this, your worker will need access to the git (http://git-scm.com/) command
in order to checkout some code. Be sure that it is installed, or the builds will fail.

Same as we did for our master, we will create a virtualenv for our worker next to the other one. It would however
be completely ok to do this on another computer - as long as the worker computer is able to connect to the master
one:

cd
cd tmp
virtualenv --no-site-packages bb-worker
cd bb-worker

Install the buildbot-worker command:

./bin/pip install buildbot-worker

Now, create the worker:

./bin/buildbot-worker create-worker worker localhost example-worker pass

Note: If you decided to create this from another computer, you should replace localhost with the name of
the computer where your master is running.

4 Chapter 1. Buildbot Tutorial

http://localhost:8010/
http://git-scm.com/

Buildbot Documentation, Release 0.9.1

The username (example-worker), and password (pass) should be the same as those in
master/master.cfg; verify this is the case by looking at the section for c['workers']:

cat master/master.cfg

And finally, start the worker:

./bin/buildbot-worker start worker

Check the worker’s output. It should end with lines like these:

2014-11-01 15:56:51+0100 [-] Connecting to localhost:9989
2014-11-01 15:56:51+0100 [Broker,client] message from master: attached
The worker appears to have (re)started correctly.

Meanwhile, from the other terminal, in the master log (:file:twisted.log in the master directory), you should
see lines like these:

2014-11-01 15:56:51+0100 [Broker,1,127.0.0.1] worker 'example-worker' attaching
→˓from IPv4Address(TCP, '127.0.0.1', 54015)
2014-11-01 15:56:51+0100 [Broker,1,127.0.0.1] Got workerinfo from 'example-worker'
2014-11-01 15:56:51+0100 [-] bot attached

You should now be able to go to http://localhost:8010, where you will see a web page similar to:

Click on the Waterfall Display link (http://localhost:8010/waterfall) and you get this:

1.1. First Run 5

http://localhost:8010
http://localhost:8010/waterfall

Buildbot Documentation, Release 0.9.1

Your master is now quietly waiting for new commits to Pyflakes. This doesn’t happen very often though. In the
next section, we’ll see how to manually start a build.

We just wanted to get you to dip your toes in the water. It’s easy to take your first steps, but this is about as far as
we can go without touching the configuration.

You’ve got a taste now, but you’re probably curious for more. Let’s step it up a little in the second tutorial by
changing the configuration and doing an actual build. Continue on to A Quick Tour.

1.2 First Buildbot run with Docker

Note: Docker can be tricky to get working correctly if you haven’t used it before. If you’re having trouble, first
determine whether it is a Buildbot issue or a Docker issue by running:

docker run ubuntu:12.04 apt-get update

If that fails, look for help with your Docker install. On the other hand, if that succeeds, then you may have better
luck getting help from members of the Buildbot community.

Docker (https://www.docker.com) is a tool that makes building and deploying custom environments a breeze.
It uses lightweight linux containers (LXC) and performs quickly, making it a great instrument for the testing
community. The next section includes a Docker pre-flight check. If it takes more that 3 minutes to get the
‘Success’ message for you, try the Buildbot pip-based first run instead.

1.2.1 Current Docker dependencies

• Linux system, with at least kernel 3.8 and AUFS support. For example, Standard Ubuntu, Debian and Arch
systems.

• Packages: lxc, iptables, ca-certificates, and bzip2 packages.

• Local clock on time or slightly in the future for proper SSL communication.

• This tutorial uses docker-compose to run a master, a worker, and a postgresql database server

1.2.2 Installation

• Use the Docker installation instructions (https://docs.docker.com/engine/installation/) for your operating
system.

• Make sure you install docker-compose. As root or inside a virtualenv, run:

pip install docker-compose

• Test docker is happy in your environment:

sudo docker run -i busybox /bin/echo Success

1.2.3 Building and running Buildbot

clone the example repository
git clone --depth 1 https://github.com/buildbot/buildbot-docker-example-config

Build the Buildbot container (it will take a few minutes to download packages)
cd buildbot-docker-example-config/simple
docker-compose up

6 Chapter 1. Buildbot Tutorial

https://www.docker.com
https://docs.docker.com/engine/installation/

Buildbot Documentation, Release 0.9.1

You should now be able to go to http://localhost:8010 and see a web page similar to:

Click on the Waterfall Display link (http://localhost:8010/#/waterfall) and you get this:

1.2.4 Overview of the docker-compose configuration

This docker-compose configuration is made as a basis for what you would put in production

• Separated containers for each component

• A solid database backend with postgresql

• A buildbot master that exposes its configuration to the docker host

• A buildbot worker that can be cloned in order to add additional power

• Containers are linked together so that the only port exposed to external is the web server

• The default master container is based on Alpine linux for minimal footprint

• The default worker container is based on more widely known Ubuntu distribution, as this is the container
you want to customize.

• Download the config from a tarball accessible via a web server

1.2. First Buildbot run with Docker 7

http://localhost:8010
http://localhost:8010/#/waterfall

Buildbot Documentation, Release 0.9.1

1.2.5 Playing with your Buildbot containers

If you’ve come this far, you have a Buildbot environment that you can freely experiment with.

In order to modify the configuration, you need to fork the project on github https://github.com/buildbot/
buildbot-docker-example-config Then you can clone your own fork, and start the docker-compose again.

To modify your config, edit the master.cfg file, commit your changes, and push to your fork. You can use the
command buildbot check-config in order to make sure the config is valid before the push. You will need to change
docker-compose.yml the variable BUILDBOT_CONFIG_URL in order to point to your github fork.

The BUILDBOT_CONFIG_URL may point to a .tar.gz file accessible from HTTP. Several git servers
like github can generate that tarball automatically from the master branch of a git repository If the
BUILDBOT_CONFIG_URL does not end with .tar.gz, it is considered to be the URL to a master.cfg
file accessible from HTTP.

1.2.6 Customize your Worker container

It is advised to customize you worker container in order to suit your project’s build dependencies and need. An
example DockerFile is available in the contrib directory of buildbot:

https://github.com/buildbot/buildbot/blob/master/master/contrib/docker/pythonnode_worker/Dockerfile

1.2.7 Multi-master

A multi-master environment can be setup using the multimaster/docker-compose.yml file in the exam-
ple repository

Build the Buildbot container (it will take a few minutes to download packages) cd buildbot-docker-
example-config/simple docker-compose up -d docker-compose scale buildbot=4

1.2.8 Going forward

You’ve got a taste now, but you’re probably curious for more. Let’s step it up a little in the second tutorial by
changing the configuration and doing an actual build. Continue on to A Quick Tour.

1.3 A Quick Tour

1.3.1 Goal

This tutorial will expand on the First Run tutorial by taking a quick tour around some of the features of buildbot that
are hinted at in the comments in the sample configuration. We will simply change parts of the default configuration
and explain the activated features.

As a part of this tutorial, we will make buildbot do a few actual builds.

This section will teach you how to:

• make simple configuration changes and activate them

• deal with configuration errors

• force builds

• enable and control the IRC bot

• enable ssh debugging

• add a ‘try’ scheduler

8 Chapter 1. Buildbot Tutorial

https://github.com/buildbot/buildbot-docker-example-config
https://github.com/buildbot/buildbot-docker-example-config
https://github.com/buildbot/buildbot/blob/master/master/contrib/docker/pythonnode_worker/Dockerfile

Buildbot Documentation, Release 0.9.1

1.3.2 Setting Project Name and URL

Let’s start simple by looking at where you would customize the buildbot’s project name and URL.

We continue where we left off in the First Run tutorial.

Open a new terminal, and first enter the same sandbox you created before (where $EDITOR is your editor of
choice like vim, gedit, or emacs):

cd
cd tmp/buildbot
source sandbox/bin/activate
$EDITOR master/master.cfg

Now, look for the section marked PROJECT IDENTITY which reads:

####### PROJECT IDENTITY

the 'title' string will appear at the top of this buildbot installation's
home pages (linked to the 'titleURL').

c['title'] = "Pyflakes"
c['titleURL'] = "http://divmod.org/trac/wiki/DivmodPyflakes"

If you want, you can change either of these links to anything you want to see what happens when you change
them.

After making a change go into the terminal and type:

buildbot reconfig master

You will see a handful of lines of output from the master log, much like this:

2011-12-04 10:11:09-0600 [-] loading configuration from /home/dustin/tmp/buildbot/
→˓master/master.cfg
2011-12-04 10:11:09-0600 [-] configuration update started
2011-12-04 10:11:09-0600 [-] builder runtests is unchanged
2011-12-04 10:11:09-0600 [-] removing IStatusReceiver <WebStatus on port tcp:8010
→˓at 0x2aee368>
2011-12-04 10:11:09-0600 [-] (TCP Port 8010 Closed)
2011-12-04 10:11:09-0600 [-] Stopping factory <buildbot.status.web.baseweb.
→˓RotateLogSite instance at 0x2e36638>
2011-12-04 10:11:09-0600 [-] adding IStatusReceiver <WebStatus on port tcp:8010 at
→˓0x2c2d950>
2011-12-04 10:11:09-0600 [-] RotateLogSite starting on 8010
2011-12-04 10:11:09-0600 [-] Starting factory <buildbot.status.web.baseweb.
→˓RotateLogSite instance at 0x2e36e18>
2011-12-04 10:11:09-0600 [-] Setting up http.log rotating 10 files of 10000000
→˓bytes each
2011-12-04 10:11:09-0600 [-] WebStatus using (/home/dustin/tmp/buildbot/master/
→˓public_html)
2011-12-04 10:11:09-0600 [-] removing 0 old schedulers, updating 0, and adding 0
2011-12-04 10:11:09-0600 [-] adding 1 new changesources, removing 1
2011-12-04 10:11:09-0600 [-] gitpoller: using workdir '/home/dustin/tmp/buildbot/
→˓master/gitpoller-workdir'
2011-12-04 10:11:09-0600 [-] GitPoller repository already exists
2011-12-04 10:11:09-0600 [-] configuration update complete

Reconfiguration appears to have completed successfully.

The important lines are the ones telling you that it is loading the new configuration at the top, and the one at the
bottom saying that the update is complete.

1.3. A Quick Tour 9

Buildbot Documentation, Release 0.9.1

Now, if you go back to the waterfall page (http://localhost:8010/waterfall), you will see that the project’s name is
whatever you may have changed it to and when you click on the URL of the project name at the bottom of the
page it should take you to the link you put in the configuration.

1.3.3 Configuration Errors

It is very common to make a mistake when configuring buildbot, so you might as well see now what happens in
that case and what you can do to fix the error.

Open up the config again and introduce a syntax error by removing the first single quote in the two lines you
changed, so they read:

c[title'] = "Pyflakes
c[titleURL'] = "http://divmod.org/trac/wiki/DivmodPyflakes"

This creates a Python SyntaxError. Now go ahead and reconfig the buildmaster:

buildbot reconfig master

This time, the output looks like:

2015-08-14 18:40:46+0000 [-] beginning configuration update
2015-08-14 18:40:46+0000 [-] Loading configuration from '/data/buildbot/master/
→˓master.cfg'
2015-08-14 18:40:46+0000 [-] error while parsing config file:

Traceback (most recent call last):
File "/usr/local/lib/python2.7/dist-packages/buildbot/master.py", line

→˓265, in reconfig
d = self.doReconfig()

File "/usr/local/lib/python2.7/dist-packages/twisted/internet/defer.py",
→˓line 1274, in unwindGenerator

return _inlineCallbacks(None, gen, Deferred())
File "/usr/local/lib/python2.7/dist-packages/twisted/internet/defer.py",

→˓line 1128, in _inlineCallbacks
result = g.send(result)

File "/usr/local/lib/python2.7/dist-packages/buildbot/master.py", line
→˓289, in doReconfig

self.configFileName)
--- <exception caught here> ---
File "/usr/local/lib/python2.7/dist-packages/buildbot/config.py", line

→˓156, in loadConfig
exec f in localDict

exceptions.SyntaxError: EOL while scanning string literal (master.cfg,
→˓line 103)

2015-08-14 18:40:46+0000 [-] error while parsing config file: EOL while scanning
→˓string literal (master.cfg, line 103) (traceback in logfile)
2015-08-14 18:40:46+0000 [-] reconfig aborted without making any changes

Reconfiguration failed. Please inspect the master.cfg file for errors,
correct them, then try 'buildbot reconfig' again.

This time, it’s clear that there was a mistake in the configuration. Luckily, the Buildbot master will ignore the
wrong configuration and keep running with the previous configuration.

The message is clear enough, so open the configuration again, fix the error, and reconfig the master.

1.3.4 Your First Build

By now you’re probably thinking: “All this time spent and still not done a single build? What was the name of
this project again?”

10 Chapter 1. Buildbot Tutorial

http://localhost:8010/waterfall

Buildbot Documentation, Release 0.9.1

On the waterfall (http://localhost:8010/waterfall) page, click on the runtests link. You’ll see a builder page, and
in the upper-right corner is a box where you can login. The default username and password are both “pyflakes”.
Once you’ve logged in, you will see some new options that allow you to force a build:

Click Force Build - there’s no need to fill in any of the fields in this case. Next, click on view in waterfall
(http://localhost:8010/waterfall?show=runtests).

You will now see:

1.3. A Quick Tour 11

http://localhost:8010/waterfall
http://localhost:8010/waterfall?show=runtests

Buildbot Documentation, Release 0.9.1

1.3.5 Enabling the IRC Bot

Buildbot includes an IRC bot that you can tell to join a channel and control to report on the status of buildbot.

First, start an IRC client of your choice, connect to irc.freenode.org and join an empty channel. In this example
we will use #buildbot-test, so go join that channel. (Note: please do not join the main buildbot channel!)

Edit :file:’master.cfg‘ and look for the STATUS TARGETS section. At the end of that section add the lines:

from buildbot.status import irc
c['status'].append(irc.IRC(host="irc.freenode.org", nick="bbtest",

channels=["#buildbot-test"]))

Reconfigure the build master then do:

grep -i irc master/twistd.log

The log output should contain a line like this:

2015-08-14 20:00:33+0000 [-] Starting factory <buildbot.status.words.
→˓IrcStatusFactory instance at 0x7fee15c640e0>
2015-08-14 20:00:48+0000 [IrcStatusBot,client] <buildbot.status.words.IrcStatusBot
→˓instance at 0x7fee1653f1b8>: I have joined #buildbot-test

You should see the bot now joining in your IRC client. In your IRC channel, type:

bbtest: commands

to get a list of the commands the bot supports.

Let’s tell the bot to notify certain events, to learn which EVENTS we can notify on:

12 Chapter 1. Buildbot Tutorial

Buildbot Documentation, Release 0.9.1

bbtest: help notify

Now let’s set some event notifications:

bbtest: notify on started
bbtest: notify on finished
bbtest: notify on failure

The bot should have responded to each of the commands:

<@lsblakk> bbtest: notify on started
<bbtest> The following events are being notified: ['started']
<@lsblakk> bbtest: notify on finished
<bbtest> The following events are being notified: ['started', 'finished']
<@lsblakk> bbtest: notify on failure
<bbtest> The following events are being notified: ['started', 'failure', 'finished
→˓']

Now, go back to the web interface and force another build.

Notice how the bot tells you about the start and finish of this build:

< bbtest> build #1 of runtests started, including []
< bbtest> build #1 of runtests is complete: Success [build successful] Build
→˓details are at http://localhost:8010/builders/runtests/builds/1

You can also use the bot to force a build:

bbtest: force build runtests test build

But to allow this, you’ll need to have allowForce in the IRC configuration:

c['status'].append(irc.IRC(host="irc.freenode.org", nick="bbtest",
allowForce=True,
channels=["#buildbot-test"]))

This time, the bot is giving you more output, as it’s specifically responding to your direct request to force a build,
and explicitly tells you when the build finishes:

<@lsblakk> bbtest: force build runtests test build
< bbtest> build #2 of runtests started, including []
< bbtest> build forced [ETA 0 seconds]
< bbtest> I'll give a shout when the build finishes
< bbtest> build #2 of runtests is complete: Success [build successful] Build
→˓details are at http://localhost:8010/builders/runtests/builds/2

You can also see the new builds in the web interface.

1.3. A Quick Tour 13

Buildbot Documentation, Release 0.9.1

1.3.6 Setting Authorized Web Users

Further down, look for the WebStatus configuration:

c['status'] = []

from buildbot.status import html
from buildbot.status.web import authz, auth

authz_cfg=authz.Authz(
change any of these to True to enable; see the manual for more
options
auth=auth.BasicAuth([("pyflakes","pyflakes")]),
gracefulShutdown = False,
forceBuild = 'auth', # use this to test your worker once it is set up
forceAllBuilds = False,
pingBuilder = False,
stopBuild = False,
stopAllBuilds = False,
cancelPendingBuild = False,

)
c['status'].append(html.WebStatus(http_port=8010, authz=authz_cfg))

The auth.BasicAuth() define authorized users and their passwords. You can change these or add new ones.

1.3.7 Debugging with Manhole

You can do some debugging by using manhole, an interactive Python shell. It exposes full access to the buildmas-
ter’s account (including the ability to modify and delete files), so it should not be enabled with a weak or easily
guessable password.

To use this you will need to install an additional package or two to your virtualenv:

14 Chapter 1. Buildbot Tutorial

Buildbot Documentation, Release 0.9.1

cd
cd tmp/buildbot
source sandbox/bin/activate
easy_install pycrypto
easy_install pyasn1

In your master.cfg find:

c = BuildmasterConfig = {}

Insert the following to enable debugging mode with manhole:

####### DEBUGGING
from buildbot import manhole
c['manhole'] = manhole.PasswordManhole("tcp:1234:interface=127.0.0.1","admin",
→˓"passwd")

After restarting the master, you can ssh into the master and get an interactive Python shell:

ssh -p1234 admin@127.0.0.1
enter passwd at prompt

Note: The pyasn1-0.1.1 release has a bug which results in an exception similar to this on startup:

exceptions.TypeError: argument 2 must be long, not int

If you see this, the temporary solution is to install the previous version of pyasn1:

pip install pyasn1-0.0.13b

If you wanted to check which workers are connected and what builders those workers are assigned to you could
do:

>>> master.workers.workers
{'example-worker': <Worker 'example-worker', current builders: runtests>}

Objects can be explored in more depth using dir(x) or the helper function show(x).

1.3.8 Adding a ‘try’ scheduler

Buildbot includes a way for developers to submit patches for testing without committing them to the source code
control system. (This is really handy for projects that support several operating systems or architectures.)

To set this up, add the following lines to master.cfg:

from buildbot.scheduler import Try_Userpass
c['schedulers'] = []
c['schedulers'].append(Try_Userpass(

name='try',
builderNames=['runtests'],
port=5555,
userpass=[('sampleuser','samplepass')]))

Then you can submit changes using the try command.

Let’s try this out by making a one-line change to pyflakes, say, to make it trace the tree by default:

1.3. A Quick Tour 15

Buildbot Documentation, Release 0.9.1

git clone git://github.com/buildbot/pyflakes.git pyflakes-git
cd pyflakes-git/pyflakes
$EDITOR checker.py
change "traceTree = False" on line 185 to "traceTree = True"

Then run buildbot’s try command as follows:

source ~/tmp/buildbot/sandbox/bin/activate
buildbot try --connect=pb --master=127.0.0.1:5555 --username=sampleuser --
→˓passwd=samplepass --vc=git

This will do git diff for you and send the resulting patch to the server for build and test against the latest
sources from Git.

Now go back to the waterfall (http://localhost:8010/waterfall) page, click on the runtests link, and scroll down.
You should see that another build has been started with your change (and stdout for the tests should be chock-full
of parse trees as a result). The “Reason” for the job will be listed as “‘try’ job”, and the blamelist will be empty.

To make yourself show up as the author of the change, use the --who=emailaddr option on buildbot try
to pass your email address.

To make a description of the change show up, use the --properties=comment="this is a comment"
option on buildbot try.

To use ssh instead of a private username/password database, see Try_Jobdir.

1.4 Further Reading

See the following user-contributed tutorials for other highlights and ideas:

1.4.1 Buildbot in 5 minutes - a user-contributed tutorial

(Ok, maybe 10.)

Buildbot is really an excellent piece of software, however it can be a bit confusing for a newcomer (like me when I
first started looking at it). Typically, at first sight it looks like a bunch of complicated concepts that make no sense
and whose relationships with each other are unclear. After some time and some reread, it all slowly starts to be
more and more meaningful, until you finally say “oh!” and things start to make sense. Once you get there, you
realize that the documentation is great, but only if you already know what it’s about.

This is what happened to me, at least. Here I’m going to (try to) explain things in a way that would have helped
me more as a newcomer. The approach I’m taking is more or less the reverse of that used by the documentation,
that is, I’m going to start from the components that do the actual work (the builders) and go up the chain from
there up to change sources. I hope purists will forgive this unorthodoxy. Here I’m trying to clarify the concepts
only, and will not go into the details of each object or property; the documentation explains those quite well.

Installation

I won’t cover the installation; both Buildbot master and worker are available as packages for the major distribu-
tions, and in any case the instructions in the official documentation are fine. This document will refer to Buildbot
0.8.5 which was current at the time of writing, but hopefully the concepts are not too different in other versions.
All the code shown is of course python code, and has to be included in the master.cfg master configuration file.

We won’t cover the basic things such as how to define the workers, project names, or other administrative infor-
mation that is contained in that file; for that, again the official documentation is fine.

16 Chapter 1. Buildbot Tutorial

http://localhost:8010/waterfall

Buildbot Documentation, Release 0.9.1

Builders: the workhorses

Since Buildbot is a tool whose goal is the automation of software builds, it makes sense to me to start from where
we tell Buildbot how to build our software: the builder (or builders, since there can be more than one).

Simply put, a builder is an element that is in charge of performing some action or sequence of actions, normally
something related to building software (for example, checking out the source, or make all), but it can also run
arbitrary commands.

A builder is configured with a list of workers that it can use to carry out its task. The other fundamental piece
of information that a builder needs is, of course, the list of things it has to do (which will normally run on the
chosen worker). In Buildbot, this list of things is represented as a BuildFactory object, which is essentially a
sequence of steps, each one defining a certain operation or command.

Enough talk, let’s see an example. For this example, we are going to assume that our super software project
can be built using a simple make all, and there is another target make packages that creates rpm, deb and
tgz packages of the binaries. In the real world things are usually more complex (for example there may be a
configure step, or multiple targets), but the concepts are the same; it will just be a matter of adding more steps
to a builder, or creating multiple builders, although sometimes the resulting builders can be quite complex.

So to perform a manual build of our project we would type this from the command line (assuming we are at the
root of the local copy of the repository):

$ make clean # clean remnants of previous builds
...
$ svn update
...
$ make all
...
$ make packages
...
optional but included in the example: copy packages to some central machine
$ scp packages/*.rpm packages/*.deb packages/*.tgz someuser@somehost:/repository
...

Here we’re assuming the repository is SVN, but again the concepts are the same with git, mercurial or any other
VCS.

Now, to automate this, we create a builder where each step is one of the commands we typed above. A step can be
a shell command object, or a dedicated object that checks out the source code (there are various types for different
repositories, see the docs for more info), or yet something else:

from buildbot.plugins import steps, util

first, let's create the individual step objects

step 1: make clean; this fails if the worker has no local copy, but
is harmless and will only happen the first time
makeclean = steps.ShellCommand(name="make clean",

command=["make", "clean"],
description="make clean")

step 2: svn update (here updates trunk, see the docs for more
on how to update a branch, or make it more generic).
checkout = steps.SVN(baseURL='svn://myrepo/projects/coolproject/trunk',

mode="update",
username="foo",
password="bar",
haltOnFailure=True)

step 3: make all
makeall = steps.ShellCommand(name="make all",

command=["make", "all"],

1.4. Further Reading 17

Buildbot Documentation, Release 0.9.1

haltOnFailure=True,
description="make all")

step 4: make packages
makepackages = steps.ShellCommand(name="make packages",

command=["make", "packages"],
haltOnFailure=True,
description="make packages")

step 5: upload packages to central server. This needs passwordless ssh
from the worker to the server (set it up in advance as part of worker setup)
uploadpackages = steps.ShellCommand(name="upload packages",

description="upload packages",
command="scp packages/*.rpm packages/*.deb

→˓packages/*.tgz someuser@somehost:/repository",
haltOnFailure=True)

create the build factory and add the steps to it
f_simplebuild = util.BuildFactory()
f_simplebuild.addStep(makeclean)
f_simplebuild.addStep(checkout)
f_simplebuild.addStep(makeall)
f_simplebuild.addStep(makepackages)
f_simplebuild.addStep(uploadpackages)

finally, declare the list of builders. In this case, we only have one builder
c['builders'] = [

util.BuilderConfig(name="simplebuild", workernames=['worker1', 'worker2',
→˓'worker3'], factory=f_simplebuild)
]

So our builder is called simplebuild and can run on either of worker1, worker2 and worker3. If our
repository has other branches besides trunk, we could create another one or more builders to build them; in
the example, only the checkout step would be different, in that it would need to check out the specific branch.
Depending on how exactly those branches have to be built, the shell commands may be recycled, or new ones
would have to be created if they are different in the branch. You get the idea. The important thing is that all the
builders be named differently and all be added to the c['builders'] value (as can be seen above, it is a list of
BuilderConfig objects).

Of course the type and number of steps will vary depending on the goal; for example, to just check that a commit
doesn’t break the build, we could include just up to the make all step. Or we could have a builder that performs
a more thorough test by also doing make test or other targets. You get the idea. Note that at each step except
the very first we use haltOnFailure=True because it would not make sense to execute a step if the previous
one failed (ok, it wouldn’t be needed for the last step, but it’s harmless and protects us if one day we add another
step after it).

Schedulers

Now this is all nice and dandy, but who tells the builder (or builders) to run, and when? This is the job of the
scheduler, which is a fancy name for an element that waits for some event to happen, and when it does, based on
that information decides whether and when to run a builder (and which one or ones). There can be more than one
scheduler. I’m being purposely vague here because the possibilities are almost endless and highly dependent on
the actual setup, build purposes, source repository layout and other elements.

So a scheduler needs to be configured with two main pieces of information: on one hand, which events to react
to, and on the other hand, which builder or builders to trigger when those events are detected. (It’s more complex
than that, but if you understand this, you can get the rest of the details from the docs).

A simple type of scheduler may be a periodic scheduler: when a configurable amount of time has passed, run a
certain builder (or builders). In our example, that’s how we would trigger a build every hour:

18 Chapter 1. Buildbot Tutorial

Buildbot Documentation, Release 0.9.1

from buildbot.plugins import schedulers

define the periodic scheduler
hourlyscheduler = schedulers.Periodic(name="hourly",

builderNames=["simplebuild"],
periodicBuildTimer=3600)

define the available schedulers
c['schedulers'] = [hourlyscheduler]

That’s it. Every hour this hourly scheduler will run the simplebuild builder. If we have more than one
builder that we want to run every hour, we can just add them to the builderNames list when defining the
scheduler and they will all be run. Or since multiple scheduler are allowed, other schedulers can be defined and
added to c['schedulers'] in the same way.

Other types of schedulers exist; in particular, there are schedulers that can be more dynamic than the periodic one.
The typical dynamic scheduler is one that learns about changes in a source repository (generally because some
developer checks in some change), and triggers one or more builders in response to those changes. Let’s assume
for now that the scheduler “magically” learns about changes in the repository (more about this later); here’s how
we would define it:

from buildbot.plugins import schedulers

define the dynamic scheduler
trunkchanged = schedulers.SingleBranchScheduler(name="trunkchanged",

change_filter=util.
→˓ChangeFilter(branch=None),

treeStableTimer=300,
builderNames=["simplebuild"])

define the available schedulers
c['schedulers'] = [trunkchanged]

This scheduler receives changes happening to the repository, and among all of them, pays attention to those
happening in “trunk” (that’s what branch=None means). In other words, it filters the changes to react only to
those it’s interested in. When such changes are detected, and the tree has been quiet for 5 minutes (300 seconds),
it runs the simplebuild builder. The treeStableTimer helps in those situations where commits tend to
happen in bursts, which would otherwise result in multiple build requests queuing up.

What if we want to act on two branches (say, trunk and 7.2)? First we create two builders, one for each branch
(see the builders paragraph above), then we create two dynamic schedulers:

from buildbot.plugins import schedulers

define the dynamic scheduler for trunk
trunkchanged = schedulers.SingleBranchScheduler(name="trunkchanged",

change_filter=util.
→˓ChangeFilter(branch=None),

treeStableTimer=300,
builderNames=["simplebuild-trunk"])

define the dynamic scheduler for the 7.2 branch
branch72changed = schedulers.SingleBranchScheduler(name="branch72changed",

change_filter=util.
→˓ChangeFilter(branch='branches/7.2'),

treeStableTimer=300,
builderNames=["simplebuild-72"])

define the available schedulers
c['schedulers'] = [trunkchanged, branch72changed]

The syntax of the change filter is VCS-dependent (above is for SVN), but again once the idea is clear, the docu-

1.4. Further Reading 19

Buildbot Documentation, Release 0.9.1

mentation has all the details. Another feature of the scheduler is that is can be told which changes, within those
it’s paying attention to, are important and which are not. For example, there may be a documentation directory
in the branch the scheduler is watching, but changes under that directory should not trigger a build of the binary.
This finer filtering is implemented by means of the fileIsImportant argument to the scheduler (full details
in the docs and - alas - in the sources).

Change sources

Earlier we said that a dynamic scheduler “magically” learns about changes; the final piece of the puzzle are
change sources, which are precisely the elements in Buildbot whose task is to detect changes in the repository and
communicate them to the schedulers. Note that periodic schedulers don’t need a change source, since they only
depend on elapsed time; dynamic schedulers, on the other hand, do need a change source.

A change source is generally configured with information about a source repository (which is where changes
happen); a change source can watch changes at different levels in the hierarchy of the repository, so for example
it is possible to watch the whole repository or a subset of it, or just a single branch. This determines the extent of
the information that is passed down to the schedulers.

There are many ways a change source can learn about changes; it can periodically poll the repository for changes,
or the VCS can be configured (for example through hook scripts triggered by commits) to push changes into the
change source. While these two methods are probably the most common, they are not the only possibilities; it is
possible for example to have a change source detect changes by parsing some email sent to a mailing list when a
commit happens, and yet other methods exist. The manual again has the details.

To complete our example, here’s a change source that polls a SVN repository every 2 minutes:

from buildbot.plugins import changes, util

svnpoller = changes.SVNPoller(repourl="svn://myrepo/projects/coolproject",
svnuser="foo",
svnpasswd="bar",
pollinterval=120,
split_file=util.svn.split_file_branches)

c['change_source'] = svnpoller

This poller watches the whole “coolproject” section of the repository, so it will detect changes in all the branches.
We could have said:

repourl = "svn://myrepo/projects/coolproject/trunk"

or:

repourl = "svn://myrepo/projects/coolproject/branches/7.2"

to watch only a specific branch.

To watch another project, you need to create another change source – and you need to filter changes by project.
For instance, when you add a change source watching project ‘superproject’ to the above example, you need to
change:

trunkchanged = schedulers.SingleBranchScheduler(name="trunkchanged",
change_filter=filter.

→˓ChangeFilter(branch=None),
...
)

to e.g.:

trunkchanged = schedulers.SingleBranchScheduler(name="trunkchanged",
change_filter=filter.

→˓ChangeFilter(project="coolproject", branch=None),

20 Chapter 1. Buildbot Tutorial

Buildbot Documentation, Release 0.9.1

...
)

else coolproject will be built when there’s a change in superproject.

Since we’re watching more than one branch, we need a method to tell in which branch the change occurred when
we detect one. This is what the split_file argument does, it takes a callable that Buildbot will call to do the
job. The split_file_branches function, which comes with Buildbot, is designed for exactly this purpose so that’s
what the example above uses.

And of course this is all SVN-specific, but there are pollers for all the popular VCSs.

But note: if you have many projects, branches, and builders it probably pays to not hardcode all the schedulers and
builders in the configuration, but generate them dynamically starting from list of all projects, branches, targets etc.
and using loops to generate all possible combinations (or only the needed ones, depending on the specific setup),
as explained in the documentation chapter about Customization.

Status targets

Now that the basics are in place, let’s go back to the builders, which is where the real work happens. Status targets
are simply the means Buildbot uses to inform the world about what’s happening, that is, how builders are doing.
There are many status targets: a web interface, a mail notifier, an IRC notifier, and others. They are described
fairly well in the manual.

One thing I’ve found useful is the ability to pass a domain name as the lookup argument to a mailNotifier,
which allows you to take an unqualified username as it appears in the SVN change and create a valid email address
by appending the given domain name to it:

from buildbot.plugins import status

if jsmith commits a change, mail for the build is sent to jsmith@example.org
notifier = status.MailNotifier(fromaddr="buildbot@example.org",

sendToInterestedUsers=True,
lookup="example.org")

c['status'].append(notifier)

The mail notifier can be customized at will by means of the messageFormatter argument, which is a class
that Buildbot calls to format the body of the email, and to which it makes available lots of information about the
build. Here all the details.

Conclusion

Please note that this article has just scratched the surface; given the complexity of the task of build automation,
the possibilities are almost endless. So there’s much, much more to say about Buildbot. However, hopefully this
is a preparation step before reading the official manual. Had I found an explanation as the one above when I was
approaching Buildbot, I’d have had to read the manual just once, rather than multiple times. Hope this can help
someone else.

(Thanks to Davide Brini for permission to include this tutorial, derived from one he originally posted at http:
//backreference.org .)

This is the Buildbot manual for Buildbot version |version|.

1.4. Further Reading 21

http://backreference.org
http://backreference.org

Buildbot Documentation, Release 0.9.1

22 Chapter 1. Buildbot Tutorial

CHAPTER 2

Buildbot Manual

2.1 Introduction

Buildbot is a system to automate the compile/test cycle required by most software projects to validate code
changes. By automatically rebuilding and testing the tree each time something has changed, build problems
are pinpointed quickly, before other developers are inconvenienced by the failure. The guilty developer can be
identified and harassed without human intervention. By running the builds on a variety of platforms, developers
who do not have the facilities to test their changes everywhere before checkin will at least know shortly afterwards
whether they have broken the build or not. Warning counts, lint checks, image size, compile time, and other build
parameters can be tracked over time, are more visible, and are therefore easier to improve.

The overall goal is to reduce tree breakage and provide a platform to run tests or code-quality checks that are too
annoying or pedantic for any human to waste their time with. Developers get immediate (and potentially public)
feedback about their changes, encouraging them to be more careful about testing before checkin.

Features:

• run builds on a variety of worker platforms

• arbitrary build process: handles projects using C, Python, whatever

• minimal host requirements: Python and Twisted

• workers can be behind a firewall if they can still do checkout

• status delivery through web page, email, IRC, other protocols

• track builds in progress, provide estimated completion time

• flexible configuration by subclassing generic build process classes

• debug tools to force a new build, submit fake Changes, query worker status

• released under the GPL (https://opensource.org/licenses/gpl-2.0.php)

2.1.1 History and Philosophy

The Buildbot was inspired by a similar project built for a development team writing a cross-platform embedded
system. The various components of the project were supposed to compile and run on several flavors of unix
(linux, solaris, BSD), but individual developers had their own preferences and tended to stick to a single platform.
From time to time, incompatibilities would sneak in (some unix platforms want to use string.h, some prefer
strings.h), and then the tree would compile for some developers but not others. The buildbot was written to
automate the human process of walking into the office, updating a tree, compiling (and discovering the breakage),
finding the developer at fault, and complaining to them about the problem they had introduced. With multiple
platforms it was difficult for developers to do the right thing (compile their potential change on all platforms); the
buildbot offered a way to help.

Another problem was when programmers would change the behavior of a library without warning its users, or
change internal aspects that other code was (unfortunately) depending upon. Adding unit tests to the codebase

23

https://opensource.org/licenses/gpl-2.0.php

Buildbot Documentation, Release 0.9.1

helps here: if an application’s unit tests pass despite changes in the libraries it uses, you can have more confidence
that the library changes haven’t broken anything. Many developers complained that the unit tests were inconve-
nient or took too long to run: having the buildbot run them reduces the developer’s workload to a minimum.

In general, having more visibility into the project is always good, and automation makes it easier for developers
to do the right thing. When everyone can see the status of the project, developers are encouraged to keep the tree
in good working order. Unit tests that aren’t run on a regular basis tend to suffer from bitrot just like code does:
exercising them on a regular basis helps to keep them functioning and useful.

The current version of the Buildbot is additionally targeted at distributed free-software projects, where resources
and platforms are only available when provided by interested volunteers. The workers are designed to require
an absolute minimum of configuration, reducing the effort a potential volunteer needs to expend to be able to
contribute a new test environment to the project. The goal is for anyone who wishes that a given project would
run on their favorite platform should be able to offer that project a worker, running on that platform, where they
can verify that their portability code works, and keeps working.

2.1.2 System Architecture

The Buildbot consists of a single buildmaster and one or more workers, connected in a star topology. The build-
master makes all decisions about what, when, and how to build. It sends commands to be run on the workers,
which simply execute the commands and return the results. (certain steps involve more local decision making,
where the overhead of sending a lot of commands back and forth would be inappropriate, but in general the
buildmaster is responsible for everything).

The buildmaster is usually fed Changes by some sort of version control system (Change Sources), which may
cause builds to be run. As the builds are performed, various status messages are produced, which are then sent to
any registered Reporters.

The buildmaster is configured and maintained by the buildmaster admin, who is generally the project team member
responsible for build process issues. Each worker is maintained by a worker admin, who do not need to be quite
as involved. Generally workers are run by anyone who has an interest in seeing the project work well on their
favorite platform.

Worker Connections

The workers are typically run on a variety of separate machines, at least one per platform of interest. These
machines connect to the buildmaster over a TCP connection to a publically-visible port. As a result, the workers
can live behind a NAT box or similar firewalls, as long as they can get to buildmaster. The TCP connections are
initiated by the worker and accepted by the buildmaster, but commands and results travel both ways within this
connection. The buildmaster is always in charge, so all commands travel exclusively from the buildmaster to the
worker.

24 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.1

To perform builds, the workers must typically obtain source code from a CVS/SVN/etc repository. Therefore they
must also be able to reach the repository. The buildmaster provides instructions for performing builds, but does
not provide the source code itself.

Buildmaster Architecture

The buildmaster consists of several pieces:

Change Sources Which create a Change object each time something is modified in the VC repository. Most
ChangeSources listen for messages from a hook script of some sort. Some sources actively poll the
repository on a regular basis. All Changes are fed to the schedulers.

2.1. Introduction 25

Buildbot Documentation, Release 0.9.1

Schedulers Which decide when builds should be performed. They collect Changes into BuildRequests,
which are then queued for delivery to Builders until a worker is available.

Builders Which control exactly how each build is performed (with a series of BuildSteps, configured in a
BuildFactory). Each Build is run on a single worker.

Status plugins Which deliver information about the build results through protocols like HTTP, mail, and IRC.

Each Builder is configured with a list of Workers that it will use for its builds. These workers are expected
to behave identically: the only reason to use multiple Workers for a single Builder is to provide a measure of
load-balancing.

Within a single Worker, each Builder creates its own WorkerForBuilder instance. These
WorkerForBuilders operate independently from each other. Each gets its own base directory to work in.
It is quite common to have many Builders sharing the same worker. For example, there might be two workers:
one for i386, and a second for PowerPC. There may then be a pair of Builders that do a full compile/test run,
one for each architecture, and a lone Builder that creates snapshot source tarballs if the full builders complete
successfully. The full builders would each run on a single worker, whereas the tarball creation step might run on
either worker (since the platform doesn’t matter when creating source tarballs). In this case, the mapping would
look like:

Builder(full-i386) -> Workers(worker-i386)
Builder(full-ppc) -> Workers(worker-ppc)
Builder(source-tarball) -> Workers(worker-i386, worker-ppc)

and each Worker would have two WorkerForBuilders inside it, one for a full builder, and a second for the
source-tarball builder.

Once a WorkerForBuilder is available, the Builder pulls one or more BuildRequests off its incoming
queue. (It may pull more than one if it determines that it can merge the requests together; for example, there
may be multiple requests to build the current HEAD revision). These requests are merged into a single Build
instance, which includes the SourceStamp that describes what exact version of the source code should be used
for the build. The Build is then randomly assigned to a free WorkerForBuilder and the build begins.

The behaviour when BuildRequests are merged can be customized, Collapsing Build Requests.

Status Delivery Architecture

The buildmaster maintains a central Status object, to which various status plugins are connected. Through this
Status object, a full hierarchy of build status objects can be obtained.

26 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.1

The configuration file controls which status plugins are active. Each status plugin gets a reference to the top-level
Status object. From there they can request information on each Builder, Build, Step, and LogFile.
This query-on-demand interface is used by the html.Waterfall plugin to create the main status page each
time a web browser hits the main URL.

The status plugins can also subscribe to hear about new Builds as they occur: this is used by the
MailNotifier to create new email messages for each recently-completed Build.

The Status object records the status of old builds on disk in the buildmaster’s base directory. This allows it to
return information about historical builds.

There are also status objects that correspond to Schedulers and Workers. These allow status plugins to report
information about upcoming builds, and the online/offline status of each worker.

2.1.3 Control Flow

A day in the life of the buildbot:

• A developer commits some source code changes to the repository. A hook script or commit trigger of some
sort sends information about this change to the buildmaster through one of its configured Change Sources.
This notification might arrive via email, or over a network connection (either initiated by the buildmaster
as it subscribes to changes, or by the commit trigger as it pushes Changes towards the buildmaster).

2.1. Introduction 27

Buildbot Documentation, Release 0.9.1

The Change contains information about who made the change, what files were modified, which revision
contains the change, and any checkin comments.

• The buildmaster distributes this change to all of its configured schedulers. Any important changes cause
the tree-stable-timer to be started, and the Change is added to a list of those that will go into
a new Build. When the timer expires, a Build is started on each of a set of configured Builders, all
compiling/testing the same source code. Unless configured otherwise, all Builds run in parallel on the
various workers.

• The Build consists of a series of Steps. Each Step causes some number of commands to be invoked on
the remote worker associated with that Builder. The first step is almost always to perform a checkout of
the appropriate revision from the same VC system that produced the Change. The rest generally perform a
compile and run unit tests. As each Step runs, the worker reports back command output and return status
to the buildmaster.

• As the Build runs, status messages like “Build Started”, “Step Started”, “Build Finished”, etc, are pub-
lished to a collection of Status Targets. One of these targets is usually the HTML Waterfall display,
which shows a chronological list of events, and summarizes the results of the most recent build at the top
of each column. Developers can periodically check this page to see how their changes have fared. If they
see red, they know that they’ve made a mistake and need to fix it. If they see green, they know that they’ve
done their duty and don’t need to worry about their change breaking anything.

• If a MailNotifier status target is active, the completion of a build will cause email to be sent to any
developers whose Changes were incorporated into this Build. The MailNotifier can be configured
to only send mail upon failing builds, or for builds which have just transitioned from passing to failing.
Other status targets can provide similar real-time notification via different communication channels, like
IRC.

2.2 Installation

2.2.1 Buildbot Components

Buildbot is shipped in two components: the buildmaster (called buildbot for legacy reasons) and the worker.
The worker component has far fewer requirements, and is more broadly compatible than the buildmaster. You will
need to carefully pick the environment in which to run your buildmaster, but the worker should be able to run just
about anywhere.

It is possible to install the buildmaster and worker on the same system, although for anything but the smallest
installation this arrangement will not be very efficient.

2.2.2 Requirements

Common Requirements

At a bare minimum, you’ll need the following for both the buildmaster and a worker:

Python: https://www.python.org

Both Buildbot master and Buildbot worker require Python-2.6, although Python-2.7 is recommended.

Note: This should be a “normal” build of Python. Builds of Python with debugging enabled or other
unusual build parameters are likely to cause incorrect behavior.

Twisted: http://twistedmatrix.com

Buildbot requires Twisted-11.0.0 or later on the master, and Twisted-8.1.0 on the worker. In upcoming
versions of Buildbot, a newer Twisted will also be required on the worker. As always, the most recent
version is recommended. Note that Twisted requires ZopeInterface to be installed as well.

28 Chapter 2. Buildbot Manual

https://www.python.org
http://twistedmatrix.com

Buildbot Documentation, Release 0.9.1

Future:

As part of ongoing (but as-yet incomplete) work to make Buildbot compatible with Python 3, the
master requires the future module.

Of course, your project’s build process will impose additional requirements on the workers. These hosts must
have all the tools necessary to compile and test your project’s source code.

Windows Support

Buildbot - both master and worker - runs well natively on Windows. The worker runs well on Cygwin, but because
of problems with SQLite on Cygwin, the master does not.

Buildbot’s windows testing is limited to the most recent Twisted and Python versions. For best results, use the
most recent available versions of these libraries on Windows.

Pywin32: http://sourceforge.net/projects/pywin32/

Twisted requires PyWin32 in order to spawn processes on Windows.

Buildmaster Requirements

Note that all of these requirements aside from SQLite can easily be installed from the Python package repository,
PyPI.

sqlite3: http://www.sqlite.org

Buildbot requires a database to store its state, and by default uses SQLite. Version 3.7.0 or higher is
recommended, although Buildbot will run down to 3.6.16 – at the risk of “Database is locked” errors.
The minimum version is 3.4.0, below which parallel database queries and schema introspection fail.

Please note that Python ships with sqlite3 by default since Python 2.6. Python2.6 for Windows ships
with sqlite 3.6.2, thus you will not be able to run buildbot with sqlite on Windows and Python 2.6.

If you configure a different database engine, then SQLite is not required. however note that Buildbot’s
own unit tests require SQLite.

Jinja2: http://jinja.pocoo.org/

Buildbot requires Jinja version 2.1 or higher.

Jinja2 is a general purpose templating language and is used by Buildbot to generate the HTML output.

SQLAlchemy: http://www.sqlalchemy.org/

Buildbot requires SQLAlchemy version 0.8.0 or higher. SQLAlchemy allows Buildbot to build
database schemas and queries for a wide variety of database systems.

SQLAlchemy-Migrate: https://sqlalchemy-migrate.readthedocs.io/en/latest/

Buildbot requires SQLAlchemy-Migrate version 0.9.0 or higher. Buildbot uses SQLAlchemy-
Migrate to manage schema upgrades from version to version.

Python-Dateutil: http://labix.org/python-dateutil

Buildbot requires Python-Dateutil in version 1.5 or higher (the last version to support Python-2.x).
This is a small, pure-Python library.

Autobahn:

The master requires Autobahn version 0.10.2 or higher

2.2. Installation 29

http://sourceforge.net/projects/pywin32/
http://www.sqlite.org
http://jinja.pocoo.org/
http://www.sqlalchemy.org/
https://sqlalchemy-migrate.readthedocs.io/en/latest/
http://labix.org/python-dateutil

Buildbot Documentation, Release 0.9.1

2.2.3 Installing the code

The Buildbot Packages

Buildbot comes in several parts: buildbot (the buildmaster), buildbot-worker (the worker),
buildbot-www, and several web plugins such as buildbot-waterfall-view.

The worker and buildmaster can be installed individually or together. The base web (buildbot.www) and web
plugins are required to run a master with a web interface (the common configuration).

Installation From PyPI

The preferred way to install Buildbot is using pip. For the master:

pip install buildbot

and for the worker:

pip install buildbot-worker

When using pip to install instead of distribution specific package manangers, e.g. via apt-get or ports, it is
simpler to choose exactly which version one wants to use. It may however be easier to install via distribution
specific package mangers but note that they may provide an earlier version than what is available via pip.

If you plan to use TLS or SSL in master configuration (e.g. to fetch resources over HTTPS using
twisted.web.client), you need to install Buildbot with tls extras:

pip install buildbot[tls]

Installation From Tarballs

Buildbot master and buildbot-worker are installed using the standard Python distutils
(http://docs.python.org/library/distutils.html) process. For either component, after unpacking the tarball,
the process is:

python setup.py build
python setup.py install

where the install step may need to be done as root. This will put the bulk of the code in somewhere like
/usr/lib/pythonx.y/site-packages/buildbot. It will also install the buildbot command-line
tool in /usr/bin/buildbot.

If the environment variable $NO_INSTALL_REQS is set to 1, then setup.py will not try to install Buildbot’s
requirements. This is usually only useful when building a Buildbot package.

To test this, shift to a different directory (like /tmp), and run:

buildbot --version
or
buildbot-worker --version

If it shows you the versions of Buildbot and Twisted, the install went ok. If it says “no such command” or it gets
an ImportError when it tries to load the libraries, then something went wrong. pydoc buildbot is another
useful diagnostic tool.

Windows users will find these files in other places. You will need to make sure that Python can find the libraries,
and will probably find it convenient to have buildbot on your PATH.

30 Chapter 2. Buildbot Manual

http://docs.python.org/library/distutils.html

Buildbot Documentation, Release 0.9.1

Installation in a Virtualenv

If you cannot or do not wish to install the buildbot into a site-wide location like /usr or /usr/local,
you can also install it into the account’s home directory or any other location using a tool like virtualenv
(http://pypi.python.org/pypi/virtualenv).

Running Buildbot’s Tests (optional)

If you wish, you can run the buildbot unit test suite. First, ensure you have the mock
(http://pypi.python.org/pypi/mock) Python module installed from PyPI. You must not be using a Python wheels
packaged version of Buildbot or have specified the bdist_wheel command when building. The test suite is not
included with the PyPi packaged version. This module is not required for ordinary Buildbot operation - only to
run the tests. Note that this is not the same as the Fedora mock package!

You can check with

python -mmock

Then, run the tests:

PYTHONPATH=. trial buildbot.test
or
PYTHONPATH=. trial buildbot_worker.test

Nothing should fail, although a few might be skipped.

If any of the tests fail for reasons other than a missing mock, you should stop and investigate the cause before
continuing the installation process, as it will probably be easier to track down the bug early. In most cases, the
problem is incorrectly installed Python modules or a badly configured PYTHONPATH. This may be a good time
to contact the Buildbot developers for help.

2.2.4 Upgrading to Nine

Upgrading a Buildbot instance from 0.8.x to 0.9.x may require a number of changes to the master configuration.
Those changes are summarized here. If you are starting fresh with 0.9.0 or later, you can safely skip this section.

First important note is that Buildbot does not support an upgrade of a 0.8.x instance to 0.9.x. Notably the build data
and logs will not be accessible anymore if you upgraded, thus the database migration scripts have been dropped.

You should not pip upgrade -U buildbot, but rather start from a clean virtualenv aside from your old
master. You can keep your old master instance to serve the old build status.

Buildbot is now composed of several Python packages and Javascript UI, and the easiest way to install it is to run
the following command within a virtualenv:

pip install 'buildbot[bundle]'

Config File Syntax

In preparation for compatibility with Python 3, Buildbot coniguration files no longer allow the print statement:

print "foo"

To fix, simply enclose the print arguments in parentheses:

print("foo")

2.2. Installation 31

http://pypi.python.org/pypi/virtualenv
http://pypi.python.org/pypi/mock

Buildbot Documentation, Release 0.9.1

Plugins

Although plugin support was available in 0.8.12, its use is now highly recommended. Instead of importing modules
directly in master.cfg, import the plugin kind from buildbot.plugins:

from buildbot.plugins import steps

Then access the plugin itself as an attribute:

steps.SetProperty(..)

See Plugin Infrastructure in Buildbot for more information.

Web Status

The most prominent change is that the existing WebStatus class is now gone, replaced by the new www func-
tionality.

Thus an html.WebStatus entry in c['status'] should be removed and replaced with configuration in
c['www']`. For example, replace:

from buildbot.status import html
c['status'].append(html.WebStatus(http_port=8010, allowForce=True)

with:

c['www'] = dict(port=8010,
plugins=dict(waterfall_view={},
console_view={}))

See www for more information.

Status Classes

Where in 0.8.x most of the data about a build was available synchronously, it must now be fetched dynamically
using the Data API. All classes under the Python package buildbot.status should be considered deprecated.
Many have already been removed, and the remainder have limited functionality. Any custom code which refers to
these classes must be rewritten to use the Data API. Avoid the temptatation to reach into the Buildbot source code
to find other useful-looking methods!

Common uses of the status API are:

• getBuild in a custom renderable

• MailNotifier message formatters (see below for upgrade hints)

• doIf funtions on steps

Import paths for several classes under the buildbot.status package but which remain useful have changed.
Most of these are now available as plugins (see above), but for the remainder, consult the source code.

BuildRequest Merging

Buildbot 0.9.x has replaced the old concept of request merging (mergeRequests) with a more flexible request-
collapsing mechanism. See collapseRequests for more information.

32 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.1

Status Reporters

In fact, the whole c['status'] configuration parameter is gone.

Many of the status listeners used in the status hierarchy in 0.8.x have been replaced with “reporters” that are
available as buildbot plugins. However, note that not all status listeners have yet been ported. See the release notes
for details.

Including the "status" key in the configuration object will cause a configuration error. All reporters should be
included in c['services'] as described in Reporters.

The available reporters as of 0.9.0 are

• MailNotifier

• IRC

• HttpStatusPush

• GerritStatusPush

• GitHubStatusPush (replaces buildbot.status.github.GitHubStatus)

See the reporter index for the full, current list.

A few notes on changes to the configuration of these reporters:

• MailNotifier argument messageFormatter should now be a
buildbot.reporters.message.MessageFormatter, due to the removal of the status classes
(see above), such formatters must be re-implemented using the Data API.

• MailNotifier argument previousBuildGetter is not supported anymore

• MailNotifier no longer forces SSL 3.0 when useTls is true.

• GerritStatusPush callbacks slightly changed signature, and include a master reference instead of a
status reference.

• GitHubStatusPush now accepts a context parameter to be passed to the GitHub Status API.

• buildbot.status.builder.Results and the constants buildbot.status.results.SUCCESS
should be imported from the buildbot.process.results module instead.

Steps

Buildbot-0.8.9 introduced “new-style steps”, with an asynchronous run method. In the remaining 0.8.x releases,
use of new-style and old-style steps were supported side-by-side. In 0.9.x, old-style steps are emulated using a
collection of hacks to allow asynchronous calls to be called from synchronous code. This emulation is imperfect,
and you are strongly encouraged to rewrite any custom steps as New-Style Build Steps.

Note that new-style steps now “push” their status when it changes, so the describe method no longer exists.

Identifiers

Many strings in Buildbot must now be identifiers. Identifiers are designed to fit easily and unambiguously into
URLs, AMQP routes, and the like. An “identifier” is a nonempty unicode string of limited length, containing only
ASCII alphanumeric characters along with - (dash) and _ (underscore), and not beginning with a digit

Unfortunately, many existing names do not fit this pattern.

The following fields are identifiers:

• worker name (50-character)

• builder name (20-character)

• step name (50-character)

2.2. Installation 33

Buildbot Documentation, Release 0.9.1

Serving static files

Since version 0.9.0 Buildbot doesn’t use and don’t serve master’s public_html directory. You need to use
third-party HTTP server for serving static files.

Transition to “worker” terminology

Since version 0.9.0 of Buildbot “slave”-based terminology is deprecated in favor of “worker”-based terminology.

All identifiers, messages and documentation were updated to use “worker” instead of “slave”. Old API names are
still available, but deprecated.

For details about changed API and how to control generated warnings see Transition to “worker” terminology.

Other Config Settings

The default master.cfg file contains some new changes, which you should look over:

• c['protocols'] = {'pb': {'port': 9989}} (the default port used by the workers)

• Waterfall View: requires installation (pip install buildbot-waterfall-view) and configura-
tion (c['www'] = { ...,'plugins': {'waterfall_view': {} }).

Build History

There is no support for importing build history from 0.8.x (where the history was stored on-disk in pickle files)
into 0.9.x (where it is stored in the database).

More Information

For minor changes not mentioned here, consult the release notes for the versions over which you are upgrading.

Buildbot-0.9.0 represents several years’ work, and as such we may have missed potential migration issues. To find
the latest “gotchas” and share with other users, see http://trac.buildbot.net/wiki/NineMigrationGuide.

2.2.5 Buildmaster Setup

Creating a buildmaster

As you learned earlier (System Architecture), the buildmaster runs on a central host (usually one that is publicly
visible, so everybody can check on the status of the project), and controls all aspects of the buildbot system

You will probably wish to create a separate user account for the buildmaster, perhaps named buildmaster. Do
not run the buildmaster as root!

You need to choose a directory for the buildmaster, called the basedir. This directory will be owned by the
buildmaster. It will contain configuration, the database, and status information - including logfiles. On a large
buildmaster this directory will see a lot of activity, so it should be on a disk with adequate space and speed.

Once you’ve picked a directory, use the buildbot create-master command to create the directory and
populate it with startup files:

buildbot create-master -r basedir

You will need to create a configuration file before starting the buildmaster. Most of the rest of this manual is
dedicated to explaining how to do this. A sample configuration file is placed in the working directory, named
master.cfg.sample, which can be copied to master.cfg and edited to suit your purposes.

34 Chapter 2. Buildbot Manual

http://trac.buildbot.net/wiki/NineMigrationGuide

Buildbot Documentation, Release 0.9.1

(Internal details: This command creates a file named buildbot.tac that contains all the state necessary to
create the buildmaster. Twisted has a tool called twistd which can use this .tac file to create and launch a
buildmaster instance. Twistd takes care of logging and daemonization (running the program in the background).
/usr/bin/buildbot is a front end which runs twistd for you.)

Your master will need a database to store the various information about your builds, and its configuration. By
default, the sqlite3 backend will be used. This needs no configuration, neither extra software. All information
will be stored in the file state.sqlite. Buildbot however supports multiple backends. See Using A Database
Server for more options.

Buildmaster Options

This section lists options to the create-master command. You can also type buildbot create-master
--help for an up-to-the-moment summary.

--force
This option will allow to re-use an existing directory.

--no-logrotate
This disables internal worker log management mechanism. With this option worker does not override the
default logfile name and its behaviour giving a possibility to control those with command-line options of
twistd daemon.

--relocatable
This creates a “relocatable” buildbot.tac, which uses relative paths instead of absolute paths, so that
the buildmaster directory can be moved about.

--config
The name of the configuration file to use. This configuration file need not reside in the buildmaster directory.

--log-size
This is the size in bytes when to rotate the Twisted log files. The default is 10MiB.

--log-count
This is the number of log rotations to keep around. You can either specify a number or None to keep all
twistd.log files around. The default is 10.

--db
The database that the Buildmaster should use. Note that the same value must be added to the configuration
file.

Upgrading an Existing Buildmaster

If you have just installed a new version of the Buildbot code, and you have buildmasters that were created using
an older version, you’ll need to upgrade these buildmasters before you can use them. The upgrade process adds
and modifies files in the buildmaster’s base directory to make it compatible with the new code.

buildbot upgrade-master basedir

This command will also scan your master.cfg file for incompatibilities (by loading it and printing any errors
or deprecation warnings that occur). Each buildbot release tries to be compatible with configurations that worked
cleanly (i.e. without deprecation warnings) on the previous release: any functions or classes that are to be removed
will first be deprecated in a release, to give you a chance to start using the replacement.

The upgrade-master command is idempotent. It is safe to run it multiple times. After each upgrade of the
buildbot code, you should use upgrade-master on all your buildmasters.

In general, Buildbot workers and masters can be upgraded independently, although some new features will not be
available, depending on the master and worker versions.

Beyond this general information, read all of the sections below that apply to versions through which you are
upgrading.

2.2. Installation 35

Buildbot Documentation, Release 0.9.1

Version-specific Notes

Upgrading from Buildbot-0.8.x to Buildbot-0.9.x

See Upgrading to Nine for a guide to upgrading from 0.8.x to 0.9.x

Upgrading a Buildmaster to Buildbot-0.7.6

The 0.7.6 release introduced the public_html/ directory, which contains index.html and other files served
by the WebStatus and Waterfall status displays. The upgrade-master command will create these
files if they do not already exist. It will not modify existing copies, but it will write a new copy in e.g.
index.html.new if the new version differs from the version that already exists.

Upgrading a Buildmaster to Buildbot-0.8.0

Buildbot-0.8.0 introduces a database backend, which is SQLite by default. The upgrade-master command
will automatically create and populate this database with the changes the buildmaster has seen. Note that, as of
this release, build history is not contained in the database, and is thus not migrated.

Upgrading into a non-SQLite database

If you are not using sqlite, you will need to add an entry into your master.cfg to reflect the database version
you are using. The upgrade process does not edit your master.cfg for you. So something like:

for using mysql:
c['db_url'] = 'mysql://bbuser:<password>@localhost/buildbot'

Once the parameter has been added, invoke upgrade-master. This will extract the DB url from your configu-
ration file.

buildbot upgrade-master

See Database Specification for more options to specify a database.

2.2.6 Worker Setup

Creating a worker

Typically, you will be adding a worker to an existing buildmaster, to provide additional architecture coverage. The
buildbot administrator will give you several pieces of information necessary to connect to the buildmaster. You
should also be somewhat familiar with the project being tested, so you can troubleshoot build problems locally.

The buildbot exists to make sure that the project’s stated how to build it process actually works. To this
end, the worker should run in an environment just like that of your regular developers. Typically the project
build process is documented somewhere (README, INSTALL, etc), in a document that should mention all library
dependencies and contain a basic set of build instructions. This document will be useful as you configure the host
and account in which the worker runs.

Here’s a good checklist for setting up a worker:

1. Set up the account

It is recommended (although not mandatory) to set up a separate user account for the worker. This
account is frequently named buildbot or worker. This serves to isolate your personal working
environment from that of the worker’s, and helps to minimize the security threat posed by letting

36 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.1

possibly-unknown contributors run arbitrary code on your system. The account should have a mini-
mum of fancy init scripts.

2. Install the buildbot code

Follow the instructions given earlier (Installing the code). If you use a separate worker account,
and you didn’t install the buildbot code to a shared location, then you will need to install it with
--home=~ for each account that needs it.

3. Set up the host

Make sure the host can actually reach the buildmaster. Usually the buildmaster is running a status
webserver on the same machine, so simply point your web browser at it and see if you can get there.
Install whatever additional packages or libraries the project’s INSTALL document advises. (or not: if
your worker is supposed to make sure that building without optional libraries still works, then don’t
install those libraries.)

Again, these libraries don’t necessarily have to be installed to a site-wide shared location, but they
must be available to your build process. Accomplishing this is usually very specific to the build
process, so installing them to /usr or /usr/local is usually the best approach.

4. Test the build process

Follow the instructions in the INSTALL document, in the worker’s account. Perform a full CVS (or
whatever) checkout, configure, make, run tests, etc. Confirm that the build works without manual
fussing. If it doesn’t work when you do it by hand, it will be unlikely to work when the buildbot
attempts to do it in an automated fashion.

5. Choose a base directory

This should be somewhere in the worker’s account, typically named after the project which is being
tested. The worker will not touch any file outside of this directory. Something like ~/Buildbot or
~/Workers/fooproject is appropriate.

6. Get the buildmaster host/port, botname, and password

When the buildbot admin configures the buildmaster to accept and use your worker, they will provide
you with the following pieces of information:

• your worker’s name

• the password assigned to your worker

• the hostname and port number of the buildmaster, i.e. http://buildbot.example.org:8007

7. Create the worker

Now run the ‘worker’ command as follows:

buildbot-worker create-worker BASEDIR MASTERHOST:PORT
WORKERNAME PASSWORD

This will create the base directory and a collection of files inside, including the buildbot.tac file
that contains all the information you passed to the buildbot command.

8. Fill in the hostinfo files

When it first connects, the worker will send a few files up to the buildmaster which describe the host
that it is running on. These files are presented on the web status display so that developers have more
information to reproduce any test failures that are witnessed by the buildbot. There are sample files
in the info subdirectory of the buildbot’s base directory. You should edit these to correctly describe
you and your host.

BASEDIR/info/admin should contain your name and email address. This is the worker
admin address, and will be visible from the build status page (so you may wish to munge it
a bit if address-harvesting spambots are a concern).

2.2. Installation 37

http://buildbot.example.org:8007

Buildbot Documentation, Release 0.9.1

BASEDIR/info/host should be filled with a brief description of the host: OS, version, memory
size, CPU speed, versions of relevant libraries installed, and finally the version of the buildbot code
which is running the worker.

The optional BASEDIR/info/access_uri can specify a URI which will connect a user to the
machine. Many systems accept ssh://hostname URIs for this purpose.

If you run many workers, you may want to create a single ~worker/info file and share it among
all the workers with symlinks.

Worker Options

There are a handful of options you might want to use when creating the worker with the buildbot-worker
create-worker <options> DIR <params> command. You can type buildbot-worker
create-worker --help for a summary. To use these, just include them on the buildbot-worker
create-worker command line, like this

buildbot-worker create-worker --umask=022 ~/worker buildmaster.example.org:42012
→˓{myworkername} {mypasswd}

--no-logrotate
This disables internal worker log management mechanism. With this option worker does not override the
default logfile name and its behaviour giving a possibility to control those with command-line options of
twistd daemon.

--umask
This is a string (generally an octal representation of an integer) which will cause the worker process’ umask
value to be set shortly after initialization. The twistd daemonization utility forces the umask to 077 at
startup (which means that all files created by the worker or its child processes will be unreadable by any
user other than the worker account). If you want build products to be readable by other accounts, you can
add --umask=022 to tell the worker to fix the umask after twistd clobbers it. If you want build products
to be writable by other accounts too, use --umask=000, but this is likely to be a security problem.

--keepalive
This is a number that indicates how frequently keepalive messages should be sent from the worker to
the buildmaster, expressed in seconds. The default (600) causes a message to be sent to the buildmaster at
least once every 10 minutes. To set this to a lower value, use e.g. --keepalive=120.

If the worker is behind a NAT box or stateful firewall, these messages may help to keep the connection alive:
some NAT boxes tend to forget about a connection if it has not been used in a while. When this happens,
the buildmaster will think that the worker has disappeared, and builds will time out. Meanwhile the worker
will not realize than anything is wrong.

--maxdelay
This is a number that indicates the maximum amount of time the worker will wait between connection
attempts, expressed in seconds. The default (300) causes the worker to wait at most 5 minutes before trying
to connect to the buildmaster again.

--log-size
This is the size in bytes when to rotate the Twisted log files.

--log-count
This is the number of log rotations to keep around. You can either specify a number or None to keep all
twistd.log files around. The default is 10.

--allow-shutdown
Can also be passed directly to the Worker constructor in buildbot.tac. If set, it allows the worker to
initiate a graceful shutdown, meaning that it will ask the master to shut down the worker when the current
build, if any, is complete.

Setting allow_shutdown to filewill cause the worker to watch shutdown.stamp in basedir for updates
to its mtime. When the mtime changes, the worker will request a graceful shutdown from the master. The
file does not need to exist prior to starting the worker.

38 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.1

Setting allow_shutdown to signal will set up a SIGHUP handler to start a graceful shutdown. When the
signal is received, the worker will request a graceful shutdown from the master.

The default value is None, in which case this feature will be disabled.

Both master and worker must be at least version 0.8.3 for this feature to work.

Other Worker Configuration

unicode_encoding This represents the encoding that buildbot should use when converting unicode comman-
dline arguments into byte strings in order to pass to the operating system when spawning new processes.

The default value is what Python’s sys.getfilesystemencoding returns, which on Windows is
‘mbcs’, on Mac OSX is ‘utf-8’, and on Unix depends on your locale settings.

If you need a different encoding, this can be changed in your worker’s buildbot.tac file by adding a
unicode_encoding argument to the Worker constructor.

s = Worker(buildmaster_host, port, workername, passwd, basedir,
keepalive, usepty, umask=umask, maxdelay=maxdelay,
unicode_encoding='utf-8', allow_shutdown='signal')

Upgrading an Existing Worker

Version-specific Notes

During project lifetime worker has transitioned over few states:

1. Before Buildbot version 0.8.1 worker were integral part of buildbot package distribution.

2. Starting from Buildbot version 0.8.1 worker were extracted from buildbot package to
buildbot-slave package.

3. Starting from Buildbot version 0.9.0 the buildbot-slave package was renamed to
buildbot-worker.

Upgrading a Worker to buildbot-slave 0.8.1

Before Buildbot version 0.8.1, the Buildbot master and worker were part of the same distribution. As of version
0.8.1, the worker is a separate distribution.

As of this release, you will need to install buildbot-slave to run a worker.

Any automatic startup scripts that had run buildbot start for previous versions should be changed to run
buildslave start instead.

If you are running a version later than 0.8.1, then you can skip the remainder of this section: the upgrade-slave
command will take care of this. If you are upgrading directly to 0.8.1, read on.

The existing buildbot.tac for any workers running older versions will need to be edited or replaced. If the
loss of cached worker state (e.g., for Source steps in copy mode) is not problematic, the easiest solution is to
simply delete the worker directory and re-run buildslave create-slave.

If deleting the worker directory is problematic, the change to buildbot.tac is simple. On line 3, replace:

from buildbot.slave.bot import BuildSlave

with:

from buildslave.bot import BuildSlave

After this change, the worker should start as usual.

2.2. Installation 39

Buildbot Documentation, Release 0.9.1

Upgrading from 0.8.1 to the latest 0.8.* version of buildbot-slave

If you have just installed a new version of Buildbot-slave, you may need to take some steps to upgrade it. If you
are upgrading to version 0.8.2 or later, you can run

buildslave upgrade-slave /path/to/worker/dir

Upgrading from the latest version of buildbot-slave to buildbot-worker

If the loss of cached worker state (e.g., for Source steps in copy mode) is not problematic, the easiest solution is
to simply delete the worker directory and re-run buildbot-worker create-worker.

If deleting the worker directory is problematic, you can change buildbot.tac in the following way:

1. Replace:

from buildslave.bot import BuildSlave

with:

from buildbot_worker.bot import Worker

2. Replace:

application = service.Application('buildslave')

with:

application = service.Application('buildbot-worker')

3. Replace:

s = BuildSlave(buildmaster_host, port, slavename, passwd, basedir,
keepalive, usepty, umask=umask, maxdelay=maxdelay,
numcpus=numcpus, allow_shutdown=allow_shutdown)

with:

s = Worker(buildmaster_host, port, slavename, passwd, basedir,
keepalive, umask=umask, maxdelay=maxdelay,
numcpus=numcpus, allow_shutdown=allow_shutdown)

See Transition to “Worker” Terminology for details of changes in version Buildbot 0.9.0.

2.2.7 Next Steps

Launching the daemons

Both the buildmaster and the worker run as daemon programs. To launch them, pass the working directory to the
buildbot and buildbot-worker commands, as appropriate:

start a master
buildbot start [BASEDIR]
start a worker
buildbot-worker start [WORKER_BASEDIR]

The BASEDIR is option and can be omitted if the current directory contains the buildbot configuration (the
buildbot.tac file).

40 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.1

buildbot start

This command will start the daemon and then return, so normally it will not produce any output. To verify that
the programs are indeed running, look for a pair of files named twistd.log and twistd.pid that should be
created in the working directory. twistd.pid contains the process ID of the newly-spawned daemon.

When the worker connects to the buildmaster, new directories will start appearing in its base directory. The
buildmaster tells the worker to create a directory for each Builder which will be using that worker. All build
operations are performed within these directories: CVS checkouts, compiles, and tests.

Once you get everything running, you will want to arrange for the buildbot daemons to be started at boot time.
One way is to use cron, by putting them in a @reboot crontab entry 1

@reboot buildbot start [BASEDIR]

When you run crontab to set this up, remember to do it as the buildmaster or worker account! If you add this
to your crontab when running as your regular account (or worse yet, root), then the daemon will run as the wrong
user, quite possibly as one with more authority than you intended to provide.

It is important to remember that the environment provided to cron jobs and init scripts can be quite different that
your normal runtime. There may be fewer environment variables specified, and the PATH may be shorter than
usual. It is a good idea to test out this method of launching the worker by using a cron job with a time in the near
future, with the same command, and then check twistd.log to make sure the worker actually started correctly.
Common problems here are for /usr/local or ~/bin to not be on your PATH, or for PYTHONPATH to not be
set correctly. Sometimes HOME is messed up too.

Some distributions may include conveniences to make starting buildbot at boot time easy. For in-
stance, with the default buildbot package in Debian-based distributions, you may only need to mod-
ify /etc/default/buildbot (see also /etc/init.d/buildbot, which reads the configuration in
/etc/default/buildbot).

Buildbot also comes with its own init scripts that provide support for controlling multi-worker and multi-master
setups (mostly because they are based on the init script from the Debian package). With a little modification
these scripts can be used both on Debian and RHEL-based distributions and may thus prove helpful to package
maintainers who are working on buildbot (or those that haven’t yet split buildbot into master and worker packages).

install as /etc/default/buildbot-worker
or /etc/sysconfig/buildbot-worker
worker/contrib/init-scripts/buildbot-worker.default

install as /etc/default/buildmaster
or /etc/sysconfig/buildmaster
master/contrib/init-scripts/buildmaster.default

install as /etc/init.d/buildbot-worker
worker/contrib/init-scripts/buildbot-worker.init.sh

install as /etc/init.d/buildmaster
master/contrib/init-scripts/buildmaster.init.sh

... and tell sysvinit about them
chkconfig buildmaster reset
... or
update-rc.d buildmaster defaults

Logfiles

While a buildbot daemon runs, it emits text to a logfile, named twistd.log. A command like tail -f
twistd.log is useful to watch the command output as it runs.

1 This @reboot syntax is understood by Vixie cron, which is the flavor usually provided with Linux systems. Other unices may have a
cron that doesn’t understand @reboot

2.2. Installation 41

Buildbot Documentation, Release 0.9.1

The buildmaster will announce any errors with its configuration file in the logfile, so it is a good idea to look at the
log at startup time to check for any problems. Most buildmaster activities will cause lines to be added to the log.

Shutdown

To stop a buildmaster or worker manually, use:

buildbot stop [BASEDIR]
or
buildbot-worker stop [WORKER_BASEDIR]

This simply looks for the twistd.pid file and kills whatever process is identified within.

At system shutdown, all processes are sent a SIGKILL. The buildmaster and worker will respond to this by
shutting down normally.

The buildmaster will respond to a SIGHUP by re-reading its config file. Of course, this only works on Unix-like
systems with signal support, and won’t work on Windows. The following shortcut is available:

buildbot reconfig [BASEDIR]

When you update the Buildbot code to a new release, you will need to restart the buildmaster and/or worker
before it can take advantage of the new code. You can do a buildbot stop BASEDIR and buildbot
start BASEDIR in quick succession, or you can use the restart shortcut, which does both steps for you:

buildbot restart [BASEDIR]

Workers can similarly be restarted with:

buildbot-worker restart [BASEDIR]

There are certain configuration changes that are not handled cleanly by buildbot reconfig. If this occurs,
buildbot restart is a more robust tool to fully switch over to the new configuration.

buildbot restart may also be used to start a stopped Buildbot instance. This behaviour is useful when
writing scripts that stop, start and restart Buildbot.

A worker may also be gracefully shutdown from the web UI. This is useful to shutdown a worker without inter-
rupting any current builds. The buildmaster will wait until the worker is finished all its current builds, and will
then tell the worker to shutdown.

2.3 Concepts

This chapter defines some of the basic concepts that the Buildbot uses. You’ll need to understand how the Buildbot
sees the world to configure it properly.

2.3.1 Source Stamps

Source code comes from repositories, provided by version control systems. Repositories are generally identified
by URLs, e.g., git://github.com/buildbot/buildbot.git.

In these days of distributed version control systems, the same codebase may appear in multi-
ple repositories. For example, https://github.com/mozilla/mozilla-central and
http://hg.mozilla.org/mozilla-release both contain the Firefox codebase, although not
exactly the same code.

Many projects are built from multiple codebases. For example, a company may build several applications based on
the same core library. The “app” codebase and the “core” codebase are in separate repositories, but are compiled
together and constitute a single project. Changes to either codebase should cause a rebuild of the application.

42 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.1

Most version control systems define some sort of revision that can be used (sometimes in combination with a
branch) to uniquely specify a particular version of the source code.

To build a project, Buildbot needs to know exactly which version of each codebase it should build. It uses a source
stamp to do so for each codebase; the collection of sourcestamps required for a project is called a source stamp
set.

2.3.2 Version Control Systems

Buildbot supports a significant number of version control systems, so it treats them abstractly.

For purposes of deciding when to perform builds, Buildbot’s change sources monitor repositories, and represent
any updates to those repositories as changes. These change sources fall broadly into two categories: pollers which
periodically check the repository for updates; and hooks, where the repository is configured to notify Buildbot
whenever an update occurs.

This concept does not map perfectly to every version control system. For example, for CVS Buildbot must guess
that version updates made to multiple files within a short time represent a single change; for DVCS’s like Git,
Buildbot records a change when a commit is pushed to the monitored repository, not when it is initially committed.
We assume that the Changes arrive at the master in the same order in which they are committed to the repository.

When it comes time to actually perform a build, a scheduler prepares a source stamp set, as described above, based
on its configuration. When the build begins, one or more source steps use the information in the source stamp set
to actually check out the source code, using the normal VCS commands.

Tree Stability

Changes tend to arrive at a buildmaster in bursts. In many cases, these bursts of changes are meant to be taken
together. For example, a developer may have pushed multiple commits to a DVCS that comprise the same new
feature or bugfix. To avoid trying to build every change, Buildbot supports the notion of tree stability, by waiting
for a burst of changes to finish before starting to schedule builds. This is implemented as a timer, with builds not
scheduled until no changes have occurred for the duration of the timer.

How Different VC Systems Specify Sources

For CVS, the static specifications are repository and module. In addition to those, each build uses a timestamp (or
omits the timestamp to mean the latest) and branch tag (which defaults to HEAD). These parameters collectively
specify a set of sources from which a build may be performed.

Subversion (http://subversion.tigris.org), combines the repository, module, and branch into a single Subversion
URL parameter. Within that scope, source checkouts can be specified by a numeric revision number (a repository-
wide monotonically-increasing marker, such that each transaction that changes the repository is indexed by a
different revision number), or a revision timestamp. When branches are used, the repository and module form a
static baseURL, while each build has a revision number and a branch (which defaults to a statically-specified
defaultBranch). The baseURL and branch are simply concatenated together to derive the repourl to
use for the checkout.

Perforce (http://www.perforce.com/) is similar. The server is specified through a P4PORT parameter. Module and
branch are specified in a single depot path, and revisions are depot-wide. When branches are used, the p4base
and defaultBranch are concatenated together to produce the depot path.

Bzr (http://bazaar-vcs.org) (which is a descendant of Arch/Bazaar, and is frequently referred to as “Bazaar”)
has the same sort of repository-vs-workspace model as Arch, but the repository data can either be stored inside
the working directory or kept elsewhere (either on the same machine or on an entirely different machine). For
the purposes of Buildbot (which never commits changes), the repository is specified with a URL and a revision
number.

The most common way to obtain read-only access to a bzr tree is via HTTP, simply by making the repository
visible through a web server like Apache. Bzr can also use FTP and SFTP servers, if the worker process has
sufficient privileges to access them. Higher performance can be obtained by running a special Bazaar-specific

2.3. Concepts 43

http://subversion.tigris.org
http://www.perforce.com/
http://bazaar-vcs.org

Buildbot Documentation, Release 0.9.1

server. None of these matter to the buildbot: the repository URL just has to match the kind of server being used.
The repoURL argument provides the location of the repository.

Branches are expressed as subdirectories of the main central repository, which means that if branches are being
used, the BZR step is given a baseURL and defaultBranch instead of getting the repoURL argument.

Darcs (http://darcs.net/) doesn’t really have the notion of a single master repository. Nor does it really have
branches. In Darcs, each working directory is also a repository, and there are operations to push and pull patches
from one of these repositories to another. For the Buildbot’s purposes, all you need to do is specify the
URL of a repository that you want to build from. The worker will then pull the latest patches from that repository
and build them. Multiple branches are implemented by using multiple repositories (possibly living on the same
server).

Builders which use Darcs therefore have a static repourl which specifies the location of the repository. If
branches are being used, the source Step is instead configured with a baseURL and a defaultBranch, and the
two strings are simply concatenated together to obtain the repository’s URL. Each build then has a specific branch
which replaces defaultBranch, or just uses the default one. Instead of a revision number, each build can have
a context, which is a string that records all the patches that are present in a given tree (this is the output of
darcs changes --context, and is considerably less concise than, e.g. Subversion’s revision number, but
the patch-reordering flexibility of Darcs makes it impossible to provide a shorter useful specification).

Mercurial (https://www.mercurial-scm.org/) is like Darcs, in that each branch is stored in a separate repository.
The repourl, baseURL, and defaultBranch arguments are all handled the same way as with Darcs. The
revision, however, is the hash identifier returned by hg identify.

Git (http://git.or.cz/) also follows a decentralized model, and each repository can have several branches and tags.
The source Step is configured with a static repourl which specifies the location of the repository. In addition,
an optional branch parameter can be specified to check out code from a specific branch instead of the default
master branch. The revision is specified as a SHA1 hash as returned by e.g. git rev-parse. No attempt is
made to ensure that the specified revision is actually a subset of the specified branch.

Monotone (http://www.monotone.ca/) is another that follows a decentralized model where each repository can
have several branches and tags. The source Step is configured with static repourl and branch parameters,
which specifies the location of the repository and the branch to use. The revision is specified as a SHA1 hash
as returned by e.g. mtn automate select w:. No attempt is made to ensure that the specified revision is
actually a subset of the specified branch.

2.3.3 Changes

Who

Each Change has a who attribute, which specifies which developer is responsible for the change. This is a
string which comes from a namespace controlled by the VC repository. Frequently this means it is a username on
the host which runs the repository, but not all VC systems require this. Each StatusNotifier will map the
who attribute into something appropriate for their particular means of communication: an email address, an IRC
handle, etc.

This who attribute is also parsed and stored into Buildbot’s database (see User Objects). Currently, only who
attributes in Changes from git repositories are translated into user objects, but in the future all incoming Changes
will have their who parsed and stored.

Files

It also has a list of files, which are just the tree-relative filenames of any files that were added, deleted, or
modified for this Change. These filenames are used by the fileIsImportant function (in the scheduler) to
decide whether it is worth triggering a new build or not, e.g. the function could use the following function to only
run a build if a C file were checked in:

44 Chapter 2. Buildbot Manual

http://darcs.net/
https://www.mercurial-scm.org/
http://git.or.cz/
http://www.monotone.ca/

Buildbot Documentation, Release 0.9.1

def has_C_files(change):
for name in change.files:

if name.endswith(".c"):
return True

return False

Certain BuildSteps can also use the list of changed files to run a more targeted series of tests, e.g. the
python_twisted.Trial step can run just the unit tests that provide coverage for the modified .py files
instead of running the full test suite.

Comments

The Change also has a comments attribute, which is a string containing any checkin comments.

Project

The project attribute of a change or source stamp describes the project to which it corresponds, as a short
human-readable string. This is useful in cases where multiple independent projects are built on the same build-
master. In such cases, it can be used to control which builds are scheduled for a given commit, and to limit status
displays to only one project.

Repository

This attribute specifies the repository in which this change occurred. In the case of DVCS’s, this information may
be required to check out the committed source code. However, using the repository from a change has security
risks: if Buildbot is configured to blindly trust this information, then it may easily be tricked into building arbitrary
source code, potentially compromising the workers and the integrity of subsequent builds.

Codebase

This attribute specifies the codebase to which this change was made. As described above, multiple repositories
may contain the same codebase. A change’s codebase is usually determined by the codebaseGenerator
configuration. By default the codebase is ‘’; this value is used automatically for single-codebase configurations.

Revision

Each Change can have a revision attribute, which describes how to get a tree with a specific state: a tree which
includes this Change (and all that came before it) but none that come after it. If this information is unavailable,
the revision attribute will be None. These revisions are provided by the ChangeSource.

Revisions are always strings.

CVS revision is the seconds since the epoch as an integer.

SVN revision is the revision number

Darcs revision is a large string, the output of darcs changes --context

Mercurial revision is a short string (a hash ID), the output of hg identify

P4 revision is the transaction number

Git revision is a short string (a SHA1 hash), the output of e.g. git rev-parse

2.3. Concepts 45

Buildbot Documentation, Release 0.9.1

Branches

The Change might also have a branch attribute. This indicates that all of the Change’s files are in the same
named branch. The schedulers get to decide whether the branch should be built or not.

For VC systems like CVS, Git and Monotone the branch name is unrelated to the filename. (That is, the branch
name and the filename inhabit unrelated namespaces.) For SVN, branches are expressed as subdirectories of the
repository, so the file’s repourl is a combination of some base URL, the branch name, and the filename within
the branch. (In a sense, the branch name and the filename inhabit the same namespace.) Darcs branches are
subdirectories of a base URL just like SVN. Mercurial branches are the same as Darcs.

CVS branch=’warner-newfeature’, files=[’src/foo.c’]

SVN branch=’branches/warner-newfeature’, files=[’src/foo.c’]

Darcs branch=’warner-newfeature’, files=[’src/foo.c’]

Mercurial branch=’warner-newfeature’, files=[’src/foo.c’]

Git branch=’warner-newfeature’, files=[’src/foo.c’]

Monotone branch=’warner-newfeature’, files=[’src/foo.c’]

Change Properties

A Change may have one or more properties attached to it, usually specified through the Force Build form or
sendchange. Properties are discussed in detail in the Build Properties section.

2.3.4 Scheduling Builds

Each Buildmaster has a set of scheduler objects, each of which gets a copy of every incoming Change. The
Schedulers are responsible for deciding when Builds should be run. Some Buildbot installations might have a
single scheduler, while others may have several, each for a different purpose.

For example, a quick scheduler might exist to give immediate feedback to developers, hoping to catch obvious
problems in the code that can be detected quickly. These typically do not run the full test suite, nor do they run on
a wide variety of platforms. They also usually do a VC update rather than performing a brand-new checkout each
time.

A separate full scheduler might run more comprehensive tests, to catch more subtle problems. configured to run
after the quick scheduler, to give developers time to commit fixes to bugs caught by the quick scheduler before
running the comprehensive tests. This scheduler would also feed multiple Builders.

Many schedulers can be configured to wait a while after seeing a source-code change - this is the tree stable timer.
The timer allows multiple commits to be “batched” together. This is particularly useful in distributed version
control systems, where a developer may push a long sequence of changes all at once. To save resources, it’s often
desirable only to test the most recent change.

Schedulers can also filter out the changes they are interested in, based on a number of criteria. For example, a
scheduler that only builds documentation might skip any changes that do not affect the documentation. Schedulers
can also filter on the branch to which a commit was made.

There is some support for configuring dependencies between builds - for example, you may want to build packages
only for revisions which pass all of the unit tests. This support is under active development in Buildbot, and is
referred to as “build coordination”.

Periodic builds (those which are run every N seconds rather than after new Changes arrive) are triggered by a
special Periodic scheduler.

Each scheduler creates and submits BuildSet objects to the BuildMaster, which is then responsible for
making sure the individual BuildRequests are delivered to the target Builders.

Scheduler instances are activated by placing them in the schedulers list in the buildmaster config file. Each
scheduler must have a unique name.

46 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.1

2.3.5 BuildSets

A BuildSet is the name given to a set of Builds that all compile/test the same version of the tree on multiple
Builders. In general, all these component Builds will perform the same sequence of Steps, using the same
source code, but on different platforms or against a different set of libraries.

The BuildSet is tracked as a single unit, which fails if any of the component Builds have failed, and therefore
can succeed only if all of the component Builds have succeeded. There are two kinds of status notification
messages that can be emitted for a BuildSet: the firstFailure type (which fires as soon as we know
the BuildSet will fail), and the Finished type (which fires once the BuildSet has completely finished,
regardless of whether the overall set passed or failed).

A BuildSet is created with set of one or more source stamp tuples of
(branch,revision,changes,patch), some of which may be None, and a list of Builders on
which it is to be run. They are then given to the BuildMaster, which is responsible for creating a separate
BuildRequest for each Builder.

There are a couple of different likely values for the SourceStamp:

(revision=None,changes=CHANGES,patch=None) This is a SourceStamp used when a series of
Changes have triggered a build. The VC step will attempt to check out a tree that contains CHANGES (and
any changes that occurred before CHANGES, but not any that occurred after them.)

(revision=None,changes=None,patch=None) This builds the most recent code on the default branch.
This is the sort of SourceStamp that would be used on a Build that was triggered by a user request, or
a Periodic scheduler. It is also possible to configure the VC Source Step to always check out the latest
sources rather than paying attention to the Changes in the SourceStamp, which will result in same
behavior as this.

(branch=BRANCH,revision=None,changes=None,patch=None) This builds the most recent code
on the given BRANCH. Again, this is generally triggered by a user request or a Periodic scheduler.

(revision=REV,changes=None,patch=(LEVEL,DIFF,SUBDIR_ROOT)) This checks out the tree
at the given revision REV, then applies a patch (using patch -pLEVEL <DIFF) from inside the relative
directory SUBDIR_ROOT. Item SUBDIR_ROOT is optional and defaults to the builder working directory.
The try command creates this kind of SourceStamp. If patch is None, the patching step is bypassed.

The buildmaster is responsible for turning the BuildSet into a set of BuildRequest objects and queueing
them on the appropriate Builders.

2.3.6 BuildRequests

A BuildRequest is a request to build a specific set of source code (specified by one ore more source stamps)
on a single Builder. Each Builder runs the BuildRequest as soon as it can (i.e. when an associated
worker becomes free). BuildRequests are prioritized from oldest to newest, so when a worker becomes free,
the Builder with the oldest BuildRequest is run.

The BuildRequest contains one SourceStamp specification per codebase. The actual process of running
the build (the series of Steps that will be executed) is implemented by the Build object. In the future this might
be changed, to have the Build define what gets built, and a separate BuildProcess (provided by the Builder)
to define how it gets built.

The BuildRequest may be mergeable with other compatible BuildRequests. Builds that are triggered by
incoming Changes will generally be mergeable. Builds that are triggered by user requests are generally not,
unless they are multiple requests to build the latest sources of the same branch. A merge of buildrequests is
performed per codebase, thus on changes having the same codebase.

2.3.7 Builders

The Buildmaster runs a collection of Builders, each of which handles a single type of build (e.g. full versus
quick), on one or more workers. Builders serve as a kind of queue for a particular type of build. Each Builder

2.3. Concepts 47

Buildbot Documentation, Release 0.9.1

gets a separate column in the waterfall display. In general, each Builder runs independently (although various
kinds of interlocks can cause one Builder to have an effect on another).

Each builder is a long-lived object which controls a sequence of Builds. Each Builder is created when the
config file is first parsed, and lives forever (or rather until it is removed from the config file). It mediates the
connections to the workers that do all the work, and is responsible for creating the Build objects - Builds.

Each builder gets a unique name, and the path name of a directory where it gets to do all its work (there is a
buildmaster-side directory for keeping status information, as well as a worker-side directory where the actual
checkout/compile/test commands are executed).

2.3.8 Build Factories

A builder also has a BuildFactory, which is responsible for creating new Build instances: because the
Build instance is what actually performs each build, choosing the BuildFactory is the way to specify what
happens each time a build is done (Builds).

2.3.9 Workers

Each builder is associated with one of more Workers. A builder which is used to perform Mac OS X builds (as
opposed to Linux or Solaris builds) should naturally be associated with a Mac worker.

If multiple workers are available for any given builder, you will have some measure of redundancy: in case one
worker goes offline, the others can still keep the Builder working. In addition, multiple workers will allow
multiple simultaneous builds for the same Builder, which might be useful if you have a lot of forced or try
builds taking place.

If you use this feature, it is important to make sure that the workers are all, in fact, capable of running the given
build. The worker hosts should be configured similarly, otherwise you will spend a lot of time trying (unsuc-
cessfully) to reproduce a failure that only occurs on some of the workers and not the others. Different platforms,
operating systems, versions of major programs or libraries, all these things mean you should use separate Builders.

2.3.10 Builds

A build is a single compile or test run of a particular version of the source code, and is comprised of a series of
steps. It is ultimately up to you what constitutes a build, but for compiled software it is generally the checkout,
configure, make, and make check sequence. For interpreted projects like Python modules, a build is generally a
checkout followed by an invocation of the bundled test suite.

A BuildFactory describes the steps a build will perform. The builder which starts a build uses its configured
build factory to determine the build’s steps.

2.3.11 Users

Buildbot has a somewhat limited awareness of users. It assumes the world consists of a set of developers, each
of whom can be described by a couple of simple attributes. These developers make changes to the source code,
causing builds which may succeed or fail.

Users also may have different levels of authorization when issuing Buildbot commands, such as forcing a build
from the web interface or from an IRC channel.

Each developer is primarily known through the source control system. Each Change object that arrives is tagged
with a who field that typically gives the account name (on the repository machine) of the user responsible for that
change. This string is displayed on the HTML status pages and in each Build‘s blamelist.

To do more with the User than just refer to them, this username needs to be mapped into an address of some sort.
The responsibility for this mapping is left up to the status module which needs the address. In the future, the
responsibility for managing users will be transferred to User Objects.

48 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.1

The who fields in git Changes are used to create User Objects, which allows for more control and flexibility in
how Buildbot manages users.

User Objects

User Objects allow Buildbot to better manage users throughout its various interactions with users (see Change
Sources and Reporters). The User Objects are stored in the Buildbot database and correlate the various attributes
that a user might have: irc, Git, etc.

Changes

Incoming Changes all have a who attribute attached to them that specifies which developer is responsible for that
Change. When a Change is first rendered, the who attribute is parsed and added to the database if it doesn’t exist
or checked against an existing user. The who attribute is formatted in different ways depending on the version
control system that the Change came from.

git who attributes take the form Full Name <Email>.

svn who attributes are of the form Username.

hg who attributes are free-form strings, but usually adhere to similar conventions as git attributes (Full Name
<Email>).

cvs who attributes are of the form Username.

darcs who attributes contain an Email and may also include a Full Name like git attributes.

bzr who attributes are free-form strings like hg, and can include a Username, Email, and/or Full Name.

Tools

For managing users manually, use the buildbot user command, which allows you to add, remove, update,
and show various attributes of users in the Buildbot database (see Command-line Tool).

Uses

Correlating the various bits and pieces that Buildbot views as users also means that one attribute of a user can be
translated into another. This provides a more complete view of users throughout Buildbot.

One such use is being able to find email addresses based on a set of Builds to notify users through the
MailNotifier. This process is explained more clearly in Email Addresses.

Another way to utilize User Objects is through UsersAuth for web authentication. To use UsersAuth, you need
to set a bb_username and bb_password via the buildbot user command line tool to check against. The
password will be encrypted before storing in the database along with other user attributes.

Doing Things With Users

Each change has a single user who is responsible for it. Most builds have a set of changes: the build generally
represents the first time these changes have been built and tested by the Buildbot. The build has a blamelist that is
the union of the users responsible for all the build’s changes. If the build was created by a Try Schedulers this list
will include the submitter of the try job, if known.

The build provides a list of users who are interested in the build – the interested users. Usually this is equal to the
blamelist, but may also be expanded, e.g., to include the current build sherrif or a module’s maintainer.

If desired, the buildbot can notify the interested users until the problem is resolved.

2.3. Concepts 49

Buildbot Documentation, Release 0.9.1

Email Addresses

The MailNotifier is a status target which can send email about the results of each build. It accepts a static
list of email addresses to which each message should be delivered, but it can also be configured to send mail to
the Build‘s Interested Users. To do this, it needs a way to convert User names into email addresses.

For many VC systems, the User Name is actually an account name on the system which hosts the repository. As
such, turning the name into an email address is a simple matter of appending @repositoryhost.com. Some
projects use other kinds of mappings (for example the preferred email address may be at project.org despite
the repository host being named cvs.project.org), and some VC systems have full separation between the
concept of a user and that of an account on the repository host (like Perforce). Some systems (like Git) put a full
contact email address in every change.

To convert these names to addresses, the MailNotifier uses an EmailLookup object. This provides a
getAddress method which accepts a name and (eventually) returns an address. The default MailNotifier
module provides an EmailLookup which simply appends a static string, configurable when the notifier is cre-
ated. To create more complex behaviors (perhaps using an LDAP lookup, or using finger on a central host to
determine a preferred address for the developer), provide a different object as the lookup argument.

If an EmailLookup object isn’t given to the MailNotifier, the MailNotifier will try to find emails through User
Objects. This will work the same as if an EmailLookup object was used if every user in the Build’s Interested
Users list has an email in the database for them. If a user whose change led to a Build doesn’t have an email
attribute, that user will not receive an email. If extraRecipients is given, those users are still sent mail when
the EmailLookup object is not specified.

In the future, when the Problem mechanism has been set up, the Buildbot will need to send mail to arbitrary Users.
It will do this by locating a MailNotifier-like object among all the buildmaster’s status targets, and asking it
to send messages to various Users. This means the User-to-address mapping only has to be set up once, in your
MailNotifier, and every email message the buildbot emits will take advantage of it.

IRC Nicknames

Like MailNotifier, the buildbot.status.words.IRC class provides a status target which can an-
nounce the results of each build. It also provides an interactive interface by responding to online queries posted in
the channel or sent as private messages.

In the future, the buildbot can be configured map User names to IRC nicknames, to watch for the recent presence
of these nicknames, and to deliver build status messages to the interested parties. Like MailNotifier does for
email addresses, the IRC object will have an IRCLookup which is responsible for nicknames. The mapping can
be set up statically, or it can be updated by online users themselves (by claiming a username with some kind of
buildbot: i am user warner commands).

Once the mapping is established, the rest of the buildbot can ask the IRC object to send messages to various users.
It can report on the likelihood that the user saw the given message (based upon how long the user has been inactive
on the channel), which might prompt the Problem Hassler logic to send them an email message instead.

These operations and authentication of commands issued by particular nicknames will be implemented in User
Objects.

2.3.12 Build Properties

Each build has a set of Build Properties, which can be used by its build steps to modify their actions. These
properties, in the form of key-value pairs, provide a general framework for dynamically altering the behavior of a
build based on its circumstances.

Properties form a simple kind of variable in a build. Some properties are set when the build starts, and properties
can be changed as a build progresses – properties set or changed in one step may be accessed in subsequent steps.
Property values can be numbers, strings, lists, or dictionaries - basically, anything that can be represented in JSON.

Properties are very flexible, and can be used to implement all manner of functionality. Here are some examples:

50 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.1

Most Source steps record the revision that they checked out in the got_revision property. A later step could
use this property to specify the name of a fully-built tarball, dropped in an easily-accessible directory for later
testing.

Note: In builds with more than one codebase, the got_revision property is a dictionary, keyed by codebase.

Some projects want to perform nightly builds as well as building in response to committed changes. Such a project
would run two schedulers, both pointing to the same set of builders, but could provide an is_nightly property
so that steps can distinguish the nightly builds, perhaps to run more resource-intensive tests.

Some projects have different build processes on different systems. Rather than create a build factory for each
worker, the steps can use worker properties to identify the unique aspects of each worker and adapt the build
process dynamically.

2.3.13 Multiple-Codebase Builds

What if an end-product is composed of code from several codebases? Changes may arrive from different reposi-
tories within the tree-stable-timer period. Buildbot will not only use the source-trees that contain changes but also
needs the remaining source-trees to build the complete product.

For this reason a Scheduler can be configured to base a build on a set of several source-trees that can (partly) be
overridden by the information from incoming Changes.

As described above, the source for each codebase is identified by a source stamp, containing its repository, branch
and revision. A full build set will specify a source stamp set describing the source to use for each codebase.

Configuring all of this takes a coordinated approach. A complete multiple repository configuration consists of:

a codebase generator

Every relevant change arriving from a VC must contain a codebase. This is done by a
codebaseGenerator that is defined in the configuration. Most generators examine the repos-
itory of a change to determine its codebase, using project-specific rules.

some schedulers

Each scheduler has to be configured with a set of all required codebases to build a product.
These codebases indicate the set of required source-trees. In order for the scheduler to be able to
produce a complete set for each build, the configuration can give a default repository, branch, and
revision for each codebase. When a scheduler must generate a source stamp for a codebase that has
received no changes, it applies these default values.

multiple source steps - one for each codebase

A Builders‘s build factory must include a source step for each codebase. Each of the source steps
has a codebase attribute which is used to select an appropriate source stamp from the source stamp
set for a build. This information comes from the arrived changes or from the scheduler’s configured
default values.

Note: Each source step has to have its own workdir set in order for the checkout to be done for
each codebase in its own directory.

Note: Ensure you specify the codebase within your source step’s Interpolate() calls (ex.
http://.../svn/%(src:codebase:branch)s). See Interpolate for details.

Warning: Defining a codebaseGenerator that returns non-empty (not '') codebases will change the
behavior of all the schedulers.

2.3. Concepts 51

Buildbot Documentation, Release 0.9.1

2.3.14 Multimaster

Buildbot supports interconnection of several masters. This has to be done through a multi-master enabled message
queue backend. As of now the only one supported is wamp and crossbar.io. see wamp

There are then several strategy for introducing multimaster in your buildbot infra. A simple way to say it is by
adding the concept of symmetrics and asymmetrics multimaster (like there is SMP and AMP for multi core CPUs)

Symmetric multimaster is when each master share the exact same configuration. They run the same builders, same
schedulers, same everything, the only difference is that workers are connected evenly between the masters (by any
means (e.g. DNS load balancing, etc)) Symmetric multimaster is good to use to scale buildbot horizontally.

Asymmetric multimaster is when each master have different configuration. Each master may have a specific
responsibility (e.g schedulers, set of builder, UI). This was more how you did in 0.8, also because of its own
technical limitations. A nice feature of asymmetric multimaster is that you can have the UI only handled by some
masters.

Separating the UI from the controlling will greatly help in the performance of the UI, because badly written
BuildSteps?? can stall the reactor for several seconds.

The fanciest configuration would probably be a symmetric configuration for everything but the UI. You would
scale the number of UI master according to your number of UI users, and scale the number of engine masters to
the number of workers.

Depending on your workload and size of master host, it is probably a good idea to start thinking of multimaster
starting from a hundred workers connected.

Multimaster can also be used for high availability, and seamless upgrade of configuration code. Complex con-
figuration indeed requires sometimes to restart the master to reload custom steps or code, or just to upgrade the
upstream buildbot version.

In this case, you will implement following procedure:

• Start new master(s) with new code and configuration.

• Send a graceful shutdown to the old master(s).

• New master(s) will start taking the new jobs, while old master(s) will just finish managing the running
builds.

52 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.1

• As an old master is finishing the running builds, it will drop the connections from the workers, who will
then reconnect automatically, and by the mean of load balancer will get connected to a new master to run
new jobs.

As buildbot nine has been designed to allow such procedure, it has not been implemented in production yet as
we know. There is probably a new REST api needed in order to graceful shutdown a master, and the details of
gracefully dropping the connection to the workers to be sorted out.

2.4 Configuration

The following sections describe the configuration of the various Buildbot components. The information available
here is sufficient to create basic build and test configurations, and does not assume great familiarity with Python.

In more advanced Buildbot configurations, Buildbot acts as a framework for a continuous-integration applica-
tion. The next section, Customization, describes this approach, with frequent references into the development
documentation.

2.4.1 Configuring Buildbot

The buildbot’s behavior is defined by the config file, which normally lives in the master.cfg file in the build-
master’s base directory (but this can be changed with an option to the buildbot create-master command).
This file completely specifies which Builders are to be run, which workers they should use, how Changes
should be tracked, and where the status information is to be sent. The buildmaster’s buildbot.tac file names
the base directory; everything else comes from the config file.

A sample config file was installed for you when you created the buildmaster, but you will need to edit it before
your buildbot will do anything useful.

This chapter gives an overview of the format of this file and the various sections in it. You will need to read the
later chapters to understand how to fill in each section properly.

Config File Format

The config file is, fundamentally, just a piece of Python code which defines a dictionary named
BuildmasterConfig, with a number of keys that are treated specially. You don’t need to know Python to
do basic configuration, though, you can just copy the syntax of the sample file. If you are comfortable writing
Python code, however, you can use all the power of a full programming language to achieve more complicated
configurations.

The BuildmasterConfig name is the only one which matters: all other names defined during the execution
of the file are discarded. When parsing the config file, the Buildmaster generally compares the old configuration
with the new one and performs the minimum set of actions necessary to bring the buildbot up to date: Builders
which are not changed are left untouched, and Builders which are modified get to keep their old event history.

The beginning of the master.cfg file typically starts with something like:

BuildmasterConfig = c = {}

Therefore a config key like change_source will usually appear in master.cfg as
c['change_source'].

See cfg for a full list of BuildMasterConfig keys.

Basic Python Syntax

The master configuration file is interpreted as Python, allowing the full flexibility of the language. For the con-
figurations described in this section, a detailed knowledge of Python is not required, but the basic syntax is easily
described.

2.4. Configuration 53

Buildbot Documentation, Release 0.9.1

Python comments start with a hash character #, tuples are defined with (parenthesis,pairs),
and lists (arrays) are defined with [square,brackets]. Tuples and lists are mostly interchange-
able. Dictionaries (data structures which map keys to values) are defined with curly braces: {'key1':
value1,'key2': value2}. Function calls (and object instantiation) can use named parameters, like
steps.ShellCommand(command=["trial","pyflakes"]).

The config file starts with a series of import statements, which make various kinds of Steps and Status
targets available for later use. The main BuildmasterConfig dictionary is created, then it is populated with
a variety of keys, described section-by-section in subsequent chapters.

Predefined Config File Symbols

The following symbols are automatically available for use in the configuration file.

basedir the base directory for the buildmaster. This string has not been expanded, so it may start with a tilde.
It needs to be expanded before use. The config file is located in:

os.path.expanduser(os.path.join(basedir, 'master.cfg'))

__file__ the absolute path of the config file. The config file’s directory is located in
os.path.dirname(__file__).

Testing the Config File

To verify that the config file is well-formed and contains no deprecated or invalid elements, use the
checkconfig command, passing it either a master directory or a config file.

% buildbot checkconfig master.cfg
Config file is good!
or
% buildbot checkconfig /tmp/masterdir
Config file is good!

If the config file has deprecated features (perhaps because you’ve upgraded the buildmaster and need to update
the config file to match), they will be announced by checkconfig. In this case, the config file will work, but you
should really remove the deprecated items and use the recommended replacements instead:

% buildbot checkconfig master.cfg
/usr/lib/python2.4/site-packages/buildbot/master.py:559: DeprecationWarning: c[
→˓'sources'] is
deprecated as of 0.7.6 and will be removed by 0.8.0 . Please use c['change_source
→˓'] instead.
Config file is good!

If you have errors in your configuration file, checkconfig will let you know:

% buildbot checkconfig master.cfg
Configuration Errors:
c['workers'] must be a list of Worker instances
no workers are configured
builder 'smoketest' uses unknown workers 'linux-002'

If the config file is simply broken, that will be caught too:

% buildbot checkconfig master.cfg
error while parsing config file:
Traceback (most recent call last):
File "/home/buildbot/master/bin/buildbot", line 4, in <module>

runner.run()
File "/home/buildbot/master/buildbot/scripts/runner.py", line 1358, in run

54 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.1

if not doCheckConfig(so):
File "/home/buildbot/master/buildbot/scripts/runner.py", line 1079, in
→˓doCheckConfig

return cl.load(quiet=quiet)
File "/home/buildbot/master/buildbot/scripts/checkconfig.py", line 29, in load

self.basedir, self.configFileName)
--- <exception caught here> ---
File "/home/buildbot/master/buildbot/config.py", line 147, in loadConfig

exec f in localDict
exceptions.SyntaxError: invalid syntax (master.cfg, line 52)
Configuration Errors:
error while parsing config file: invalid syntax (master.cfg, line 52) (traceback
→˓in logfile)

Loading the Config File

The config file is only read at specific points in time. It is first read when the buildmaster is launched.

Note: If the configuration is invalid, the master will display the errors in the console output, but will not exit.

Reloading the Config File (reconfig)

If you are on the system hosting the buildmaster, you can send a SIGHUP signal to it: the buildbot tool has a
shortcut for this:

buildbot reconfig BASEDIR

This command will show you all of the lines from twistd.log that relate to the reconfiguration. If there are
any problems during the config-file reload, they will be displayed in these lines.

When reloading the config file, the buildmaster will endeavor to change as little as possible about the running
system. For example, although old status targets may be shut down and new ones started up, any status targets
that were not changed since the last time the config file was read will be left running and untouched. Likewise
any Builders which have not been changed will be left running. If a Builder is modified (say, the build
process is changed) while a Build is currently running, that Build will keep running with the old process until
it completes. Any previously queued Builds (or Builds which get queued after the reconfig) will use the new
process.

Warning: Buildbot’s reconfiguration system is fragile for a few difficult-to-fix reasons:

• Any modules imported by the configuration file are not automatically reloaded. Python modules such as
http://pypi.python.org/pypi/lazy-reload may help here, but reloading modules is fraught with subtleties
and difficult-to-decipher failure cases.

• During the reconfiguration, active internal objects are divorced from the service hierarchy, leading to
tracebacks in the web interface and other components. These are ordinarily transient, but with HTTP
connection caching (either by the browser or an intervening proxy) they can last for a long time.

• If the new configuration file is invalid, it is possible for Buildbot’s internal state to be corrupted, leading
to undefined results. When this occurs, it is best to restart the master.

• For more advanced configurations, it is impossible for Buildbot to tell if the configuration for a
Builder or Scheduler has changed, and thus the Builder or Scheduler will always be
reloaded. This occurs most commonly when a callable is passed as a configuration parameter.

The bbproto project (at https://github.com/dabrahams/bbproto) may help to construct large (multi-file) config-
urations which can be effectively reloaded and reconfigured.

2.4. Configuration 55

http://pypi.python.org/pypi/lazy-reload
https://github.com/dabrahams/bbproto

Buildbot Documentation, Release 0.9.1

2.4.2 Global Configuration

The keys in this section affect the operations of the buildmaster globally.

• Database Specification

• MQ Specification

• Multi-master mode

• Site Definitions

• Log Handling

• Data Lifetime

• Merging Build Requests

• Prioritizing Builders

• Setting the PB Port for Workers

• Defining Global Properties

• Manhole

• Metrics Options

• Statistics Service

• BuildbotNetUsageData

• Users Options

• Input Validation

• Revision Links

• Codebase Generator

Database Specification

Buildbot requires a connection to a database to maintain certain state information, such as tracking pending build
requests. In the default configuration Buildbot uses a file-based SQLite database, stored in the state.sqlite
file of the master’s base directory. Override this configuration with the db_url parameter.

Buildbot accepts a database configuration in a dictionary named db. All keys are optional:

c['db'] = {
'db_url' : 'sqlite:///state.sqlite',

}

The db_url key indicates the database engine to use. The format of this parameter is completely documented at
http://www.sqlalchemy.org/docs/dialects/, but is generally of the form:

"driver://[username:password@]host:port/database[?args]"

These parameters can be specified directly in the configuration dictionary, as c['db_url'] and
c['db_poll_interval'], although this method is deprecated.

The following sections give additional information for particular database backends:

56 Chapter 2. Buildbot Manual

http://www.sqlalchemy.org/docs/dialects/

Buildbot Documentation, Release 0.9.1

SQLite

For sqlite databases, since there is no host and port, relative paths are specified with sqlite:/// and absolute
paths with sqlite:////. Examples:

c['db_url'] = "sqlite:///state.sqlite"

SQLite requires no special configuration.

MySQL

c['db_url'] = "mysql://user:pass@example.com/database_name?max_idle=300"

The max_idle argument for MySQL connections is unique to Buildbot, and should be set to something less than
the wait_timeout configured for your server. This controls the SQLAlchemy pool_recycle parameter,
which defaults to no timeout. Setting this parameter ensures that connections are closed and re-opened after the
configured amount of idle time. If you see errors such as _mysql_exceptions.OperationalError:
(2006,'MySQL server has gone away'), this means your max_idle setting is probably too
high. show global variables like 'wait_timeout'; will show what the currently configured
wait_timeout is on your MySQL server.

When using MySQL 5.x, if you see errors such as BLOB,TEXT,GEOMETRY or JSON column
state_string can not have a default value make sure to add sql_mode='MYSQL40' in
your configuration cnf file.

Buildbot requires use_unique=True and charset=utf8, and will add them automatically, so they do not
need to be specified in db_url.

MySQL defaults to the MyISAM storage engine, but this can be overridden with the storage_engine URL
argument.

Postgres

c['db_url'] = "postgresql://username@hostname/dbname"

PosgreSQL requires no special configuration.

MQ Specification

Buildbot uses a message-queueing system to handle communication within the master. Messages are used to
indicate events within the master, and components that are interested in those events arrange to receive them.

The message queueing implementation is configured as a dictionary in the mq option. The type key describes
the type of MQ implemetation to be used. Note that the implementation type cannot be changed in a reconfig.

The available implemenetation types are described in the following sections.

Simple

c['mq'] = {
'type' : 'simple',
'debug' : False,

}

2.4. Configuration 57

Buildbot Documentation, Release 0.9.1

This is the default MQ implementation. Similar to SQLite, it has no additional software dependencies, but does
not support multi-master mode.

Note that this implementation also does not support message persistence across a restart of the master. For exam-
ple, if a change is received, but the master shuts down before the schedulers can create build requests for it, then
those schedulers will not be notified of the change when the master starts again.

The debug key, which defaults to False, can be used to enable logging of every message produced on this master.

Wamp

c['mq'] = {
'type' : 'wamp',
'router_url': 'ws://url/to/crossbar'
'realm': 'buildbot'
'debug' : False,
'debug_websockets' : False,
'debug_lowlevel' : False,

}

This is a MQ implementation using wamp (http://wamp.ws/) protocol. This implementation uses Python Autobahn
(http://autobahn.ws) wamp client library, and is fully asynchronous (no use of threads) To use this implementa-
tion, you need a wamp router like Crossbar (http://crossbar.io). The implementation does not yet support wamp
authentication yet. This MQ allows buildbot to run in multi-master mode.

Note that this implementation also does not support message persistence across a restart of the master. For exam-
ple, if a change is received, but the master shuts down before the schedulers can create build requests for it, then
those schedulers will not be notified of the change when the master starts again.

router_url key is mandatory, and should point to your router websocket url. Buildbot is only supporting wamp
over websocket, which is a sub-protocol of http. SSL is supported using wss:// instead of ws://. You must
use a router with very reliable connection to the master. If for some reason, the wamp connection is lost, then the
master will stop, and should be restarted via a process manager.

realm key is optional and defaults to buildbot, and configures the wamp realm to use for your buildbot mes-
sages.

The debug key, which defaults to False, can be used to enable logging of every message produced on this master.
debug_websocket and debug_lowlevel, enable more debug logs in autobahn.

Multi-master mode

Normally buildbot operates using a single master process that uses the configured database to save state.

It is possible to configure buildbot to have multiple master processes that share state in the same database. This
has been well tested using a MySQL database. There are several benefits of Multi-master mode:

• You can have large numbers of workers handling the same queue of build requests. A single master can only
handle so many workers (the number is based on a number of factors including type of builds, number of
builds, and master and worker IO and CPU capacity–there is no fixed formula). By adding another master
which shares the queue of build requests, you can attach more workers to this additional master, and increase
your build throughput.

• You can shut one master down to do maintenance, and other masters will continue to do builds.

State that is shared in the database includes:

• List of changes

• Scheduler names and internal state

• Build requests, including the builder name

Because of this shared state, you are strongly encouraged to:

58 Chapter 2. Buildbot Manual

http://wamp.ws/
http://autobahn.ws
http://crossbar.io

Buildbot Documentation, Release 0.9.1

• Ensure that each named scheduler runs on only one master. If the same scheduler runs on multiple masters,
it will trigger duplicate builds and may produce other undesirable behaviors.

• Ensure builder names are unique for a given build factory implementation. You can have the same builder
name configured on many masters, but if the build factories differ, you will get different results depending
on which master claims the build.

One suggested configuration is to have one buildbot master configured with just the scheduler and change sources;
and then other masters configured with just the builders.

To enable multi-master mode in this configuration, you will need to set the multiMaster option so that buildbot
doesn’t warn about missing schedulers or builders.

Enable multiMaster mode; disables warnings about unknown builders and
schedulers
c['multiMaster'] = True
Check for new build requests every 60 seconds
c['db'] = {

'db_url' : 'mysql://...',
}

Site Definitions

Three basic settings describe the buildmaster in status reports:

c['title'] = "Buildbot"
c['titleURL'] = "http://buildbot.sourceforge.net/"

title is a short string that will appear at the top of this buildbot installation’s home page (linked to the
titleURL).

titleURL is a URL string that must end with a slash (/). HTML status displays will show title as a link to
titleURL. This URL is often used to provide a link from buildbot HTML pages to your project’s home page.

The buildbotURL string should point to the location where the buildbot’s internal web server is visible. This
URL must end with a slash (/).

When status notices are sent to users (e.g., by email or over IRC), buildbotURL will be used to create a URL
to the specific build or problem that they are being notified about.

Log Handling

c['logCompressionLimit'] = 16384
c['logCompressionMethod'] = 'gz'
c['logMaxSize'] = 1024*1024 # 1M
c['logMaxTailSize'] = 32768
c['logEncoding'] = 'utf-8'

The logCompressionLimit enables compression of build logs on disk for logs that are bigger than the given
size, or disables that completely if set to False. The default value is 4096, which should be a reasonable default
on most file systems. This setting has no impact on status plugins, and merely affects the required disk space on
the master for build logs.

The logCompressionMethod controls what type of compression is used for build logs. The default is ‘gz’,
and the other valid option are ‘raw’ (no compression), ‘gz’ or ‘lz4’ (required lz4 package).

Please find below some stats extracted from 50x “Pyflakes” runs (results may differ according to log type).

2.4. Configuration 59

Buildbot Documentation, Release 0.9.1

Table 2.1: Space saving details

compression raw log size compressed log size space saving compression speed
bz2 2.981 MB 0.603 MB 79.77% 3.433 MB/s
gz 2.981 MB 0.568 MB 80.95% 6.604 MB/s
lz4 2.981 MB 0.844 MB 71.68% 77.668 MB/s

The logMaxSize parameter sets an upper limit (in bytes) to how large logs from an individual build step can
be. The default value is None, meaning no upper limit to the log size. Any output exceeding logMaxSize will
be truncated, and a message to this effect will be added to the log’s HEADER channel.

If logMaxSize is set, and the output from a step exceeds the maximum, the logMaxTailSize parameter
controls how much of the end of the build log will be kept. The effect of setting this parameter is that the log will
contain the first logMaxSize bytes and the last logMaxTailSize bytes of output. Don’t set this value too
high, as the the tail of the log is kept in memory.

The logEncoding parameter specifies the character encoding to use to decode bytestrings provided as logs.
It defaults to utf-8, which should work in most cases, but can be overridden if necessary. In extreme cases, a
callable can be specified for this parameter. It will be called with byte strings, and should return the corresponding
Unicode string.

This setting can be overridden for a single build step with the logEncoding step parameter. It can also be
overridden for a single log file by passing the logEncoding parameter to addLog.

Data Lifetime

Horizons

c['changeHorizon'] = 200
c['buildHorizon'] = 100
c['logHorizon'] = 40
c['buildCacheSize'] = 15

Buildbot stores historical information in its database. In a large installation, these can quickly consume disk space,
yet in many cases developers never consult this historical information.

The changeHorizon key determines how many changes the master will keep a record of. One place these
changes are displayed is on the waterfall page. This parameter defaults to 0, which means keep all changes
indefinitely.

The buildHorizon specifies the minimum number of builds for each builder which should be kept. The
logHorizon gives the minimum number of builds for which logs should be maintained; this parameter must
be less than or equal to buildHorizon. Builds older than logHorizon but not older than buildHorizon
will maintain their overall status and the status of each step, but the logfiles will be deleted.

Caches

c['caches'] = {
'Changes' : 100, # formerly c['changeCacheSize']
'Builds' : 500, # formerly c['buildCacheSize']
'chdicts' : 100,
'BuildRequests' : 10,
'SourceStamps' : 20,
'ssdicts' : 20,
'objectids' : 10,
'usdicts' : 100,

}

60 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.1

The caches configuration key contains the configuration for Buildbot’s in-memory caches. These caches keep
frequently-used objects in memory to avoid unnecessary trips to the database. Caches are divided by object type,
and each has a configurable maximum size.

The default size for each cache is 1, except where noted below. A value of 1 allows Buildbot to make a number
of optimizations without consuming much memory. Larger, busier installations will likely want to increase these
values.

The available caches are:

Changes the number of change objects to cache in memory. This should be larger than the number of changes
that typically arrive in the span of a few minutes, otherwise your schedulers will be reloading changes from
the database every time they run. For distributed version control systems, like Git or Hg, several thousand
changes may arrive at once, so setting this parameter to something like 10000 isn’t unreasonable.

This parameter is the same as the deprecated global parameter changeCacheSize. Its default value is
10.

Builds The buildCacheSize parameter gives the number of builds for each builder which are cached in
memory. This number should be larger than the number of builds required for commonly-used status dis-
plays (the waterfall or grid views), so that those displays do not miss the cache on a refresh.

This parameter is the same as the deprecated global parameter buildCacheSize. Its default value is 15.

chdicts The number of rows from the changes table to cache in memory. This value should be similar to the
value for Changes.

BuildRequests The number of BuildRequest objects kept in memory. This number should be higher than
the typical number of outstanding build requests. If the master ordinarily finds jobs for BuildRequests
immediately, you may set a lower value.

SourceStamps the number of SourceStamp objects kept in memory. This number should generally be similar
to the number BuildRequesets.

ssdicts The number of rows from the sourcestamps table to cache in memory. This value should be similar
to the value for SourceStamps.

objectids The number of object IDs - a means to correlate an object in the Buildbot configuration with an
identity in the database–to cache. In this version, object IDs are not looked up often during runtime, so a
relatively low value such as 10 is fine.

usdicts The number of rows from the users table to cache in memory. Note that for a given user there will
be a row for each attribute that user has.

c[’buildCacheSize’] = 15

Merging Build Requests

c['collapseRequests'] = True

This is a global default value for builders’ collapseRequests parameter, and controls the merging of build
requests.

This parameter can be overridden on a per-builder basis. See Collapsing Build Requests for the allowed values for
this parameter.

Prioritizing Builders

def prioritizeBuilders(buildmaster, builders):
...

c['prioritizeBuilders'] = prioritizeBuilders

2.4. Configuration 61

Buildbot Documentation, Release 0.9.1

By default, buildbot will attempt to start builds on builders in order, beginning with the builder with the oldest
pending request. Customize this behavior with the prioritizeBuilders configuration key, which takes a
callable. See Builder Priority Functions for details on this callable.

This parameter controls the order that the build master can start builds, and is useful in situations where there
is resource contention between builders, e.g., for a test database. It does not affect the order in which a builder
processes the build requests in its queue. For that purpose, see Prioritizing Builds.

Setting the PB Port for Workers

c['protocols'] = {"pb": {"port": 10000}}

The buildmaster will listen on a TCP port of your choosing for connections from workers. It can also use this port
for connections from remote Change Sources, status clients, and debug tools. This port should be visible to the
outside world, and you’ll need to tell your worker admins about your choice.

It does not matter which port you pick, as long it is externally visible; however, you should probably use something
larger than 1024, since most operating systems don’t allow non-root processes to bind to low-numbered ports. If
your buildmaster is behind a firewall or a NAT box of some sort, you may have to configure your firewall to permit
inbound connections to this port.

c['protocols']['pb']['port'] is a strports specification string, defined in the
twisted.application.strports module (try pydoc twisted.application.strports to
get documentation on the format).

This means that you can have the buildmaster listen on a localhost-only port by doing:

c['protocols'] = {"pb": {"port": "tcp:10000:interface=127.0.0.1"}}

This might be useful if you only run workers on the same machine, and they are all configured to contact the
buildmaster at localhost:10000.

Note: In Buildbot versions <=0.8.8 you might see slavePortnum option. This option contains same value as
c['protocols']['pb']['port'] but not recomended to use.

Defining Global Properties

The properties configuration key defines a dictionary of properties that will be available to all builds started
by the buildmaster:

c['properties'] = {
'Widget-version' : '1.2',
'release-stage' : 'alpha'

}

Manhole

If you set manhole to an instance of one of the classes in buildbot.manhole, you can telnet or ssh into
the buildmaster and get an interactive Python shell, which may be useful for debugging buildbot internals. It is
probably only useful for buildbot developers. It exposes full access to the buildmaster’s account (including the
ability to modify and delete files), so it should not be enabled with a weak or easily guessable password.

There are three separate Manhole classes. Two of them use SSH, one uses unencrypted telnet. Two of them
use a username+password combination to grant access, one of them uses an SSH-style authorized_keys file
which contains a list of ssh public keys.

62 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.1

Note: Using any Manhole requires that pycrypto and pyasn1 be installed. These are not part of the normal
Buildbot dependencies.

manhole.AuthorizedKeysManhole You construct this with the name of a file that contains one SSH public key per
line, just like ~/.ssh/authorized_keys. If you provide a non-absolute filename, it will be interpreted
relative to the buildmaster’s base directory.

manhole.PasswordManhole This one accepts SSH connections but asks for a username and password when
authenticating. It accepts only one such pair.

manhole.TelnetManhole This accepts regular unencrypted telnet connections, and asks for a username/password
pair before providing access. Because this username/password is transmitted in the clear, and because
Manhole access to the buildmaster is equivalent to granting full shell privileges to both the buildmaster and
all the workers (and to all accounts which then run code produced by the workers), it is highly recommended
that you use one of the SSH manholes instead.

some examples:
from buildbot.plugins import util
c['manhole'] = util.AuthorizedKeysManhole(1234, "authorized_keys")
c['manhole'] = util.PasswordManhole(1234, "alice", "mysecretpassword")
c['manhole'] = util.TelnetManhole(1234, "bob", "snoop_my_password_please")

The Manhole instance can be configured to listen on a specific port. You may wish to have this listening port
bind to the loopback interface (sometimes known as lo0, localhost, or 127.0.0.1) to restrict access to clients which
are running on the same host.

from buildbot.plugins import util
c['manhole'] = util.PasswordManhole("tcp:9999:interface=127.0.0.1","admin","passwd
→˓")

To have the Manhole listen on all interfaces, use "tcp:9999" or simply 9999. This port specification uses
twisted.application.strports, so you can make it listen on SSL or even UNIX-domain sockets if you
want.

Note that using any Manhole requires that the TwistedConch (http://twistedmatrix.com/trac/wiki/TwistedConch)
package be installed.

The buildmaster’s SSH server will use a different host key than the normal sshd running on a typical unix host.
This will cause the ssh client to complain about a host key mismatch, because it does not realize there are two
separate servers running on the same host. To avoid this, use a clause like the following in your .ssh/config
file:

Host remotehost-buildbot
HostName remotehost
HostKeyAlias remotehost-buildbot
Port 9999
use 'user' if you use PasswordManhole and your name is not 'admin'.
if you use AuthorizedKeysManhole, this probably doesn't matter.
User admin

Using Manhole

After you have connected to a manhole instance, you will find yourself at a Python prompt. You have access to
two objects: master (the BuildMaster) and status (the master’s Status object). Most interesting objects on
the master can be reached from these two objects.

To aid in navigation, the show method is defined. It displays the non-method attributes of an object.

A manhole session might look like:

2.4. Configuration 63

http://twistedmatrix.com/trac/wiki/TwistedConch

Buildbot Documentation, Release 0.9.1

>>> show(master)
data attributes of <buildbot.master.BuildMaster instance at 0x7f7a4ab7df38>

basedir : '/home/dustin/code/buildbot/t/buildbot/'...
botmaster : <type 'instance'>

buildCacheSize : None
buildHorizon : None
buildbotURL : http://localhost:8010/

changeCacheSize : None
change_svc : <type 'instance'>

configFileName : master.cfg
db : <class 'buildbot.db.connector.DBConnector'>

db_url : sqlite:///state.sqlite
...

>>> show(master.botmaster.builders['win32'])
data attributes of <Builder ''builder'' at 48963528>

...
>>> win32 = _
>>> win32.category = 'w32'

Metrics Options

c['metrics'] = dict(log_interval=10, periodic_interval=10)

metrics can be a dictionary that configures various aspects of the metrics subsystem. If metrics is None,
then metrics collection, logging and reporting will be disabled.

log_interval determines how often metrics should be logged to twistd.log. It defaults to 60s. If set to 0 or
None, then logging of metrics will be disabled. This value can be changed via a reconfig.

periodic_interval determines how often various non-event based metrics are collected, such as memory
usage, uncollectable garbage, reactor delay. This defaults to 10s. If set to 0 or None, then periodic collection of
this data is disabled. This value can also be changed via a reconfig.

Read more about metrics in the Metrics section in the developer documentation.

Statistics Service

The Statistics Service (stats service for short) supports for collecting arbitrary data from within a running Buildbot
instance and export it do a number of storage backends. Currently, only InfluxDB (https://influxdata.com/time-
series-platform/influxdb/) is supported as a storage backend. Also, InfluxDB (or any other storage backend) is not
a mandatory dependency. Buildbot can run without it although StatsService will be of no use in such a case.
At present, StatsService can keep track of build properties, build times (start, end, duration) and arbitrary
data produced inside Buildbot (more on this later).

Example usage:

captures = [stats.CaptureProperty('Builder1', 'tree-size-KiB'),
stats.CaptureBuildDuration('Builder2')]

c['services'] = []
c['services'].append(stats.StatsService(

storage_backends=[
stats.InfluxStorageService('localhost', 8086, 'root', 'root', 'test',

→˓captures)
], name="StatsService"))

The services configuration value should be initialized as a list and a StatsService instance should be
appended to it as shown in the example above.

64 Chapter 2. Buildbot Manual

https://influxdata.com/time-series-platform/influxdb/

Buildbot Documentation, Release 0.9.1

Statistics Service

class buildbot.statistics.stats_service.StatsService
This is the main class for statistics service. It is initialized in the master configuration as show in the example
above. It takes two arguments:

storage_backends A list of storage backends (see Storage Backends). In the example above,
stats.InfluxStorageService is an instance of a storage backend. Each storage backend
is an instances of subclasses of statsStorageBase.

name The name of this service.

yieldMetricsValue: This method can be used to send arbitrary data for storage. (See Using StatsSer-
vice.yieldMetricsValue for more information.)

Capture Classes

class buildbot.statistics.capture.CaptureProperty
Instance of this class declares which properties must be captured and sent to the Storage Backends. It takes
the following arguments:

builder_name The name of builder in which the property is recorded.

property_name The name of property needed to be recorded as a statistic.

callback=None (Optional) A custom callback function for this class. This callback function should
take in two arguments - build_properties (dict) and property_name (str) and return a string that will be
sent for storage in the storage backends.

regex=False If this is set to True, then the property name can be a regular expression. All properties
matching this regular expression will be sent for storage.

class buildbot.statistics.capture.CapturePropertyAllBuilders
Instance of this class declares which properties must be captured on all builders and sent to the Storage
Backends. It takes the following arguments:

property_name The name of property needed to be recorded as a statistic.

callback=None (Optional) A custom callback function for this class. This callback function should
take in two arguments - build_properties (dict) and property_name (str) and return a string that will be
sent for storage in the storage backends.

regex=False If this is set to True, then the property name can be a regular expression. All properties
matching this regular expression will be sent for storage.

class buildbot.statistics.capture.CaptureBuildStartTime
Instance of this class declares which builders’ start times are to be captured and sent to Storage Backends.
It takes the following arguments:

builder_name The name of builder whose times are to be recorded.

callback=None (Optional) A custom callback function for this class. This callback function should take
in a Python datetime object and return a string that will be sent for storage in the storage backends.

class buildbot.statistics.capture.CaptureBuildStartTimeAllBuilders
Instance of this class declares start times of all builders to be captured and sent to Storage Backends. It takes
the following arguments:

callback=None (Optional) A custom callback function for this class. This callback function should take
in a Python datetime object and return a string that will be sent for storage in the storage backends.

class buildbot.statistics.capture.CaptureBuildEndTime
Exactly like CaptureBuildStartTime except it declares the builders whose end time is to be recorded.
The arguments are same as CaptureBuildStartTime.

2.4. Configuration 65

Buildbot Documentation, Release 0.9.1

class buildbot.statistics.capture.CaptureBuildEndTimeAllBuilders
Exactly like CaptureBuildStartTimeAllBuilders except it declares all builders’ end time to be
recorded. The arguments are same as CaptureBuildStartTimeAllBuilders.

class buildbot.statistics.capture.CaptureBuildDuration
Instance of this class declares the builders whose build durations are to be recorded. It takes the following
arguments:

builder_name The name of builder whose times are to be recorded.

report_in='seconds' Can be one of three: 'seconds', 'minutes', or 'hours'. This is the
units in which the build time will be reported.

callback=None (Optional) A custom callback function for this class. This callback function should
take in two Python datetime objects - a start_time and an end_time and return a string that will
be sent for storage in the storage backends.

class buildbot.statistics.capture.CaptureBuildDurationAllBuilders
Instance of this class declares build durations to be recorded for all builders. It takes the following argu-
ments:

report_in='seconds' Can be one of three: 'seconds', 'minutes', or 'hours'. This is the
units in which the build time will be reported.

callback=None (Optional) A custom callback function for this class. This callback function should
take in two Python datetime objects - a start_time and an end_time and return a string that will
be sent for storage in the storage backends.

class buildbot.statistics.capture.CaptureData
Instance of this capture class is for capturing arbitrary data that is not stored as build-data. Needs to be
used in conjunction with yieldMetricsValue (See Using StatsService.yieldMetricsValue). Takes the
following arguments:

data_name The name of data to be captured. Same as in yieldMetricsValue.

builder_name The name of builder whose times are to be recorded.

callback=None The callback function for this class. This callback receives the data sent to
yieldMetricsValue as post_data (See Using StatsService.yieldMetricsValue). It must return
a string that is to be sent to the storage backends for storage.

class buildbot.statistics.capture.CaptureDataAllBuilders
Instance of this capture class for capturing arbitrary data that is not stored as build-data on all builders. Needs
to be used in conjunction with yieldMetricsValue (See Using StatsService.yieldMetricsValue). Takes
the following arguments:

data_name The name of data to be captured. Same as in yieldMetricsValue.

callback=None The callback function for this class. This callback receives the data sent to
yieldMetricsValue as post_data (See Using StatsService.yieldMetricsValue). It must return
a string that is to be sent to the storage backends for storage.

Using StatsService.yieldMetricsValue

Advanced users can modify BuildSteps to use StatsService.yieldMetricsValue which will send
arbitrary data for storage to the StatsService. It takes the following arguments:

data_name The name of the data being sent or storage.

post_data A dictionary of key value pair that is sent for storage. The keys will act as columns in
a database and the value is stored under that column.

buildid The integer build id of the current build. Obtainable in all BuildSteps.

Along with using yieldMetricsValue, the user will also need to use the CaptureData capture class. As
an example, we can add the following to a build step:

66 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.1

yieldMetricsValue('test_data_name', {'some_data': 'some_value'}, buildid)

Then, we can add in the master configuration a capture class like this:

captures = [CaptureBuildData('test_data_name', 'Builder1')]

Pass this captures list to a storage backend (as shown in the example at the top of this section) for capturing
this data.

Storage Backends

Storage backends are responsible for storing any statistics data sent to them. A storage backend will generally be
some sort of a database-server running on a machine. (Note: This machine may be different from the one running
BuildMaster)

Currently, only InfluxDB (https://influxdata.com/time-series-platform/influxdb/) is supported as a storage back-
end.

class buildbot.statistics.storage_backends.influxdb_client.InfluxStorageService
This class is a Buildbot client to the InfluxDB storage backend. InfluxDB (https://influxdata.com/time-
series-platform/influxdb/) is a distributed, time series database that employs a key-value pair storage system.

It requires the following arguments:

url The URL where the service is running.

port The port on which the service is listening.

user Username of a InfluxDB user.

password Password for user.

db The name of database to be used.

captures A list of objects of Capture Classes. This tells which statistics are to be stored in this storage
backend.

name=None (Optional) The name of this storage backend.

BuildbotNetUsageData

Since buildbot 0.9.0, buildbot has a simple feature which sends usage analysis info to buildbot.net. This is very
important for buildbot developers to understand how the community is using the tools. This allows to better
prioritize issues, and understand what plugins are actually being used. This will also be a tool to decide whether
to keep support for very old tools. For example buildbot contains support for the venerable CVS, but we have no
information whether it actually works beyond the unit tests. We rely on the community to test and report issues
with the old features.

With BuildbotNetUsageData, we can know exactly what combination of plugins are working together, how much
people are customizing plugins, what versions of the main dependencies people run.

We take your privacy very seriously.

BuildbotNetUsageData will never send information specific to your Code or Intellectual Property. No repository
url, shell command values, host names, ip address or custom class names. If it does, then this is a bug, please
report.

We still need to track unique number for installation. This is done via doing a sha1 hash of master’s hostname,
installation path and fqdn. Using a secure hash means there is no way of knowing hostname, path and fqdn given
the hash, but still there is a different hash for each master.

You can see exactly what is sent in the master’s twisted.log. Usage data is sent every time the master is started.

BuildbotNetUsageData can be configured with 4 values:

2.4. Configuration 67

https://influxdata.com/time-series-platform/influxdb/
https://influxdata.com/time-series-platform/influxdb/

Buildbot Documentation, Release 0.9.1

• c['buildbotNetUsageData'] = None disables the feature

• c['buildbotNetUsageData'] = 'basic' sends the basic information to buildbot including:

– versions of buildbot, python and twisted

– platform information (CPU, OS, distribution, python flavor (i.e CPython vs PyPy))

– mq and database type (mysql or sqlite?)

– www plugins usage

– Plugins usages: This counts the number of time each class of buildbot is used in your con-
figuration. This counts workers, builders, steps, schedulers, change sources. If the plugin is
subclassed, then it will be prefixed with a >

example of basic report (for the metabuildbot):

{
'versions': {

'Python': '2.7.6',
'Twisted': '15.5.0',
'Buildbot': '0.9.0rc2-176-g5fa9dbf'

},
'platform': {

'machine': 'x86_64',
'python_implementation': 'CPython',
'version': '#140-Ubuntu SMP Mon Jul',
'processor':
'x86_64',
'distro:': ('Ubuntu', '14.04', 'trusty')
},

'db': 'sqlite',
'mq': 'simple',
'plugins': {

'buildbot.schedulers.forcesched.ForceScheduler': 2,
'buildbot.schedulers.triggerable.Triggerable': 1,
'buildbot.config.BuilderConfig': 4,
'buildbot.schedulers.basic.AnyBranchScheduler': 2,
'buildbot.steps.source.git.Git': 4,
'>>buildbot.steps.trigger.Trigger': 2,
'>>>buildbot.worker.base.Worker': 4,
'buildbot.reporters.irc.IRC': 1,
'>>>buildbot.process.buildstep.LoggingBuildStep': 2},

'www_plugins': ['buildbot_travis', 'waterfall_view']
}

• c['buildbotNetUsageData'] = 'full' sends the basic information plus additional information:

– configuration of each builders: how the steps are arranged together. for ex:

{
'builders': [

['buildbot.steps.source.git.Git', '>>>buildbot.process.
→˓buildstep.LoggingBuildStep'],

['buildbot.steps.source.git.Git', '>>buildbot.steps.trigger.
→˓Trigger'],

['buildbot.steps.source.git.Git', '>>>buildbot.process.
→˓buildstep.LoggingBuildStep'],

['buildbot.steps.source.git.Git', '>>buildbot.steps.trigger.
→˓Trigger']]
}

• c['buildbotNetUsageData'] = myCustomFunction. You can also specify exactly what to
send using a callback.

68 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.1

The custom function will take the generated data from full report in the form of a dictionary, and
return a customized report as a jsonable dictionary. You can use this to filter any information
you dont want to disclose. You can use a custom http_proxy environment variable in order to not
send any data while developing your callback.

Users Options

from buildbot.plugins import util
c['user_managers'] = []
c['user_managers'].append(util.CommandlineUserManager(username="user",

passwd="userpw",
port=9990))

user_managers contains a list of ways to manually manage User Objects within Buildbot (see User Objects).
Currently implemented is a commandline tool buildbot user, described at length in user. In the future, a web
client will also be able to manage User Objects and their attributes.

As shown above, to enable the buildbot user tool, you must initialize a CommandlineUserManager instance in
your master.cfg. CommandlineUserManager instances require the following arguments:

username This is the username that will be registered on the PB connection and need to be used when calling
buildbot user.

passwd This is the passwd that will be registered on the PB connection and need to be used when calling buildbot
user.

port The PB connection port must be different than c[’protocols’][’pb’][’port’] and be specified when calling
buildbot user

Input Validation

import re
c['validation'] = {

'branch' : re.compile(r'^[\w.+/~-]*$'),
'revision' : re.compile(r'^[\w\.\-\/]*$'),
'property_name' : re.compile(r'^[\w\.\-\/\~:]*$'),
'property_value' : re.compile(r'^[\w\.\-\/\~:]*$'),

}

This option configures the validation applied to user inputs of various types. This validation is important since
these values are often included in command-line arguments executed on workers. Allowing arbitrary input from
untrusted users may raise security concerns.

The keys describe the type of input validated; the values are compiled regular expressions against which the input
will be matched. The defaults for each type of input are those given in the example, above.

Revision Links

The revlink parameter is used to create links from revision IDs in the web status to a web-view of your source
control system. The parameter’s value must be a callable.

By default, Buildbot is configured to generate revlinks for a number of open source hosting platforms.

The callable takes the revision id and repository argument, and should return an URL to the revision. Note that
the revision id may not always be in the form you expect, so code defensively. In particular, a revision of ”??”
may be supplied when no other information is available.

Note that SourceStamps that are not created from version-control changes (e.g., those created by a Nightly
or Periodic scheduler) may have an empty repository string, if the repository is not known to the scheduler.

2.4. Configuration 69

Buildbot Documentation, Release 0.9.1

Revision Link Helpers

Buildbot provides two helpers for generating revision links. buildbot.revlinks.RevlinkMatcher takes
a list of regular expressions, and replacement text. The regular expressions should all have the same number of
capture groups. The replacement text should have sed-style references to that capture groups (i.e. ‘1’ for the first
capture group), and a single ‘%s’ reference, for the revision ID. The repository given is tried against each regular
expression in turn. The results are the substituted into the replacement text, along with the revision ID to obtain
the revision link.

from buildbot.plugins import util
c['revlink'] = util.RevlinkMatch([r'git://notmuchmail.org/git/(.*)'],

r'http://git.notmuchmail.org/git/\1/commit/%s')

buildbot.revlinks.RevlinkMultiplexer takes a list of revision link callables, and tries each in turn,
returning the first successful match.

Codebase Generator

all_repositories = {
r'https://hg/hg/mailsuite/mailclient': 'mailexe',
r'https://hg/hg/mailsuite/mapilib': 'mapilib',
r'https://hg/hg/mailsuite/imaplib': 'imaplib',
r'https://github.com/mailinc/mailsuite/mailclient': 'mailexe',
r'https://github.com/mailinc/mailsuite/mapilib': 'mapilib',
r'https://github.com/mailinc/mailsuite/imaplib': 'imaplib',

}

def codebaseGenerator(chdict):
return all_repositories[chdict['repository']]

c['codebaseGenerator'] = codebaseGenerator

For any incoming change, the codebase is set to ‘’. This codebase value is sufficient if all changes come from
the same repository (or clones). If changes come from different repositories, extra processing will be needed to
determine the codebase for the incoming change. This codebase will then be a logical name for the combination
of repository and or branch etc.

The codebaseGenerator accepts a change dictionary as produced by the
buildbot.db.changes.ChangesConnectorComponent, with a changeid equal to None.

2.4.3 Change Sources

• Choosing a Change Source

• Configuring Change Sources

– Repository and Project

• Mail-parsing ChangeSources

– Subscribing the Buildmaster

– Using Maildirs

– Parsing Email Change Messages

– CVSMaildirSource

– SVNCommitEmailMaildirSource

70 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.1

– BzrLaunchpadEmailMaildirSource

• PBChangeSource

– Bzr Hook

• P4Source

– Example

• SVNPoller

• Bzr Poller

• GitPoller

• HgPoller

• BitbucketPullrequestPoller

• GerritChangeSource

• GerritChangeFilter

• Change Hooks (HTTP Notifications)

• GoogleCodeAtomPoller

A Version Control System maintains a source tree, and tells the buildmaster when it changes. The first step of
each Build is typically to acquire a copy of some version of this tree.

This chapter describes how the Buildbot learns about what Changes have occurred. For more information on VC
systems and Changes, see Version Control Systems.

Changes can be provided by a variety of ChangeSource types, although any given project will typically have
only a single ChangeSource active. This section provides a description of all available ChangeSource types
and explains how to set up each of them.

Choosing a Change Source

There are a variety of ChangeSource classes available, some of which are meant to be used in conjunction with
other tools to deliver Change events from the VC repository to the buildmaster.

As a quick guide, here is a list of VC systems and the ChangeSources that might be useful with them. Note
that some of these modules are in Buildbot’s contrib directory, meaning that they have been offered by other
users in hopes they may be useful, and might require some additional work to make them functional.

CVS

• CVSMaildirSource (watching mail sent by contrib/buildbot_cvs_mail.py script)

• PBChangeSource (listening for connections from buildbot sendchange run in a loginfo script)

• PBChangeSource (listening for connections from a long-running contrib/viewcvspoll.py
polling process which examines the ViewCVS database directly)

• Change Hooks in WebStatus

SVN

• PBChangeSource (listening for connections from contrib/svn_buildbot.py run in a postcom-
mit script)

• PBChangeSource (listening for connections from a long-running contrib/svn_watcher.py or
contrib/svnpoller.py polling process

• SVNCommitEmailMaildirSource (watching for email sent by commit-email.pl)

• SVNPoller (polling the SVN repository)

2.4. Configuration 71

Buildbot Documentation, Release 0.9.1

• Change Hooks in WebStatus

• GoogleCodeAtomPoller (polling the commit feed for a GoogleCode Git repository)

Darcs

• PBChangeSource (listening for connections from contrib/darcs_buildbot.py in a commit
script)

• Change Hooks in WebStatus

Mercurial

• Change Hooks in WebStatus (including contrib/hgbuildbot.py, configurable in a
changegroup hook)

• BitBucket change hook (specifically designed for BitBucket notifications, but requiring a publicly-
accessible WebStatus)

• HgPoller (polling a remote Mercurial repository)

• GoogleCodeAtomPoller (polling the commit feed for a GoogleCode Git repository)

• BitbucketPullrequestPoller (polling Bitbucket for pull requests)

• Mail-parsing ChangeSources, though there are no ready-to-use recipes

Bzr (the newer Bazaar)

• PBChangeSource (listening for connections from contrib/bzr_buildbot.py run in a post-
change-branch-tip or commit hook)

• BzrPoller (polling the Bzr repository)

• Change Hooks in WebStatus

Git

• PBChangeSource (listening for connections from contrib/git_buildbot.py run in the post-
receive hook)

• PBChangeSource (listening for connections from contrib/github_buildbot.py, which listens
for notifications from GitHub)

• Change Hooks in WebStatus

• GitHub change hook (specifically designed for GitHub notifications, but requiring a publicly-accessible
WebStatus)

• BitBucket change hook (specifically designed for BitBucket notifications, but requiring a publicly-
accessible WebStatus)

• GitPoller (polling a remote Git repository)

• GoogleCodeAtomPoller (polling the commit feed for a GoogleCode Git repository)

• BitbucketPullrequestPoller (polling Bitbucket for pull requests)

Repo/Gerrit

• GerritChangeSource connects to Gerrit via SSH to get a live stream of changes

Monotone

• PBChangeSource (listening for connections from monotone-buildbot.lua, which is available
with Monotone)

All VC systems can be driven by a PBChangeSource and the buildbot sendchange tool run from some
form of commit script. If you write an email parsing function, they can also all be driven by a suitable mail-
parsing source. Additionally, handlers for web-based notification (i.e. from GitHub) can be used with WebStatus’
change_hook module. The interface is simple, so adding your own handlers (and sharing!) should be a breeze.

See chsrc for a full list of change sources.

72 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.1

Configuring Change Sources

The change_source configuration key holds all active change sources for the configuration.

Most configurations have a single ChangeSource, watching only a single tree, e.g.,

from buildbot.plugins import changes

c['change_source'] = changes.PBChangeSource()

For more advanced configurations, the parameter can be a list of change sources:

source1 = ...
source2 = ...
c['change_source'] = [

source1, source1
]

Repository and Project

ChangeSources will, in general, automatically provide the proper repository attribute for any changes they
produce. For systems which operate on URL-like specifiers, this is a repository URL. Other ChangeSources
adapt the concept as necessary.

Many ChangeSources allow you to specify a project, as well. This attribute is useful when building from sev-
eral distinct codebases in the same buildmaster: the project string can serve to differentiate the different codebases.
Schedulers can filter on project, so you can configure different builders to run for each project.

Mail-parsing ChangeSources

Many projects publish information about changes to their source tree by sending an email message out to a mailing
list, frequently named PROJECT-commits or PROJECT-changes. Each message usually contains a descrip-
tion of the change (who made the change, which files were affected) and sometimes a copy of the diff. Humans
can subscribe to this list to stay informed about what’s happening to the source tree.

The Buildbot can also be subscribed to a -commits mailing list, and can trigger builds in response to Changes that
it hears about. The buildmaster admin needs to arrange for these email messages to arrive in a place where the
buildmaster can find them, and configure the buildmaster to parse the messages correctly. Once that is in place,
the email parser will create Change objects and deliver them to the schedulers (see Schedulers) just like any other
ChangeSource.

There are two components to setting up an email-based ChangeSource. The first is to route the email messages
to the buildmaster, which is done by dropping them into a maildir. The second is to actually parse the messages,
which is highly dependent upon the tool that was used to create them. Each VC system has a collection of favorite
change-emailing tools, and each has a slightly different format, so each has a different parsing function. There is
a separate ChangeSource variant for each parsing function.

Once you’ve chosen a maildir location and a parsing function, create the change source and put it in
change_source:

from buildbot.plugins import changes

c['change_source'] = changes.CVSMaildirSource("~/maildir-buildbot",
prefix="/trunk/")

Subscribing the Buildmaster

The recommended way to install the Buildbot is to create a dedicated account for the buildmaster. If you do this,
the account will probably have a distinct email address (perhaps buildmaster@example.org). Then just arrange

2.4. Configuration 73

Buildbot Documentation, Release 0.9.1

for this account’s email to be delivered to a suitable maildir (described in the next section).

If the Buildbot does not have its own account, extension addresses can be used to distinguish between email
intended for the buildmaster and email intended for the rest of the account. In most modern MTAs, the e.g.
foo@example.org account has control over every email address at example.org which begins with “foo”, such
that email addressed to account-foo@example.org can be delivered to a different destination than account-
bar@example.org. qmail does this by using separate .qmail files for the two destinations (.qmail-foo
and .qmail-bar, with .qmail controlling the base address and .qmail-default controlling all other
extensions). Other MTAs have similar mechanisms.

Thus you can assign an extension address like foo-buildmaster@example.org to the buildmaster, and retain
foo@example.org for your own use.

Using Maildirs

A maildir is a simple directory structure originally developed for qmail that allows safe atomic update without
locking. Create a base directory with three subdirectories: new, tmp, and cur. When messages arrive, they are
put into a uniquely-named file (using pids, timestamps, and random numbers) in tmp. When the file is complete, it
is atomically renamed into new. Eventually the buildmaster notices the file in new, reads and parses the contents,
then moves it into cur. A cronjob can be used to delete files in cur at leisure.

Maildirs are frequently created with the maildirmake tool, but a simple mkdir -p
~/MAILDIR/cur,new,tmp is pretty much equivalent.

Many modern MTAs can deliver directly to maildirs. The usual .forward or .procmailrc syntax is to name
the base directory with a trailing slash, so something like ~/MAILDIR/. qmail and postfix are maildir-capable
MTAs, and procmail is a maildir-capable MDA (Mail Delivery Agent).

Here is an example procmail config, located in ~/.procmailrc:

.procmailrc
routes incoming mail to appropriate mailboxes
PATH=/usr/bin:/usr/local/bin
MAILDIR=$HOME/Mail
LOGFILE=.procmail_log
SHELL=/bin/sh

:0

*
new

If procmail is not setup on a system wide basis, then the following one-line .forward file will invoke it.

!/usr/bin/procmail

For MTAs which cannot put files into maildirs directly, the safecat tool can be executed from a .forward file to
accomplish the same thing.

The Buildmaster uses the linux DNotify facility to receive immediate notification when the maildir’s new directory
has changed. When this facility is not available, it polls the directory for new messages, every 10 seconds by
default.

Parsing Email Change Messages

The second component to setting up an email-based ChangeSource is to parse the actual notices. This is highly
dependent upon the VC system and commit script in use.

A couple of common tools used to create these change emails, along with the Buildbot tools to parse them, are:

CVS

Buildbot CVS MailNotifier CVSMaildirSource

74 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.1

SVN

svnmailer http://opensource.perlig.de/en/svnmailer/

commit-email.pl SVNCommitEmailMaildirSource

Bzr

Launchpad BzrLaunchpadEmailMaildirSource

Mercurial

NotifyExtension https://www.mercurial-scm.org/wiki/NotifyExtension

Git

post-receive-email http://git.kernel.org/?p=git/git.git;a=blob;f=contrib/hooks/post-receive-email;hb=
HEAD

The following sections describe the parsers available for each of these tools.

Most of these parsers accept a prefix= argument, which is used to limit the set of files that the buildmaster pays
attention to. This is most useful for systems like CVS and SVN which put multiple projects in a single repository
(or use repository names to indicate branches). Each filename that appears in the email is tested against the prefix:
if the filename does not start with the prefix, the file is ignored. If the filename does start with the prefix, that prefix
is stripped from the filename before any further processing is done. Thus the prefix usually ends with a slash.

CVSMaildirSource

class buildbot.changes.mail.CVSMaildirSource

This parser works with the buildbot_cvs_maildir.py script in the contrib directory.

The script sends an email containing all the files submitted in one directory. It is invoked by using the
CVSROOT/loginfo facility.

The Buildbot’s CVSMaildirSource knows how to parse these messages and turn them into Change objects. It
takes the directory name of the maildir root. For example:

from buildbot.plugins import changes

c['change_source'] = changes.CVSMaildirSource("/home/buildbot/Mail")

Configuration of CVS and buildbot_cvs_mail.py

CVS must be configured to invoke the buildbot_cvs_mail.py script when files are checked in. This is done
via the CVS loginfo configuration file.

To update this, first do:

cvs checkout CVSROOT

cd to the CVSROOT directory and edit the file loginfo, adding a line like:

SomeModule /cvsroot/CVSROOT/buildbot_cvs_mail.py --cvsroot :ext:example.com:/
→˓cvsroot -e buildbot -P SomeModule %@{sVv@}

Note: For cvs version 1.12.x, the --path %p option is required. Version 1.11.x and 1.12.x report the directory
path differently.

2.4. Configuration 75

http://opensource.perlig.de/en/svnmailer/
https://www.mercurial-scm.org/wiki/NotifyExtension
http://git.kernel.org/?p=git/git.git;a=blob;f=contrib/hooks/post-receive-email;hb=HEAD
http://git.kernel.org/?p=git/git.git;a=blob;f=contrib/hooks/post-receive-email;hb=HEAD

Buildbot Documentation, Release 0.9.1

The above example you put the buildbot_cvs_mail.py script under /cvsroot/CVSROOT. It can be any-
where. Run the script with –help to see all the options. At the very least, the options -e (email) and -P (project)
should be specified. The line must end with %{sVv}. This is expanded to the files that were modified.

Additional entries can be added to support more modules.

See buildbot_cvs_mail.py --help‘ for more information on the available options.

SVNCommitEmailMaildirSource

class buildbot.changes.mail.SVNCommitEmailMaildirSource

SVNCommitEmailMaildirSource parses message sent out by the commit-email.pl script, which is
included in the Subversion distribution.

It does not currently handle branches: all of the Change objects that it creates will be associated with the default
(i.e. trunk) branch.

from buildbot.plugins import changes

c['change_source'] = changes.SVNCommitEmailMaildirSource("~/maildir-buildbot")

BzrLaunchpadEmailMaildirSource

class buildbot.changes.mail.BzrLaunchpadEmailMaildirSource

BzrLaunchpadEmailMaildirSource parses the mails that are sent to addresses that subscribe to branch
revision notifications for a bzr branch hosted on Launchpad.

The branch name defaults to lp:Launchpad path. For example lp:~maria-captains/maria/5.1.

If only a single branch is used, the default branch name can be changed by setting defaultBranch.

For multiple branches, pass a dictionary as the value of the branchMap option to map specific repository paths
to specific branch names (see example below). The leading lp: prefix of the path is optional.

The prefix option is not supported (it is silently ignored). Use the branchMap and defaultBranch instead
to assign changes to branches (and just do not subscribe the Buildbot to branches that are not of interest).

The revision number is obtained from the email text. The bzr revision id is not available in the mails sent by
Launchpad. However, it is possible to set the bzr append_revisions_only option for public shared repositories to
avoid new pushes of merges changing the meaning of old revision numbers.

from buildbot.plugins import changes

bm = {
'lp:~maria-captains/maria/5.1': '5.1',
'lp:~maria-captains/maria/6.0': '6.0'

}
c['change_source'] = changes.BzrLaunchpadEmailMaildirSource("~/maildir-buildbot",

branchMap=bm)

PBChangeSource

class buildbot.changes.pb.PBChangeSource

PBChangeSource actually listens on a TCP port for clients to connect and push change notices into the Build-
master. This is used by the built-in buildbot sendchange notification tool, as well as several version-control
hook scripts. This change is also useful for creating new kinds of change sources that work on a push model in-
stead of some kind of subscription scheme, for example a script which is run out of an email .forward file. This

76 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.1

ChangeSource always runs on the same TCP port as the workers. It shares the same protocol, and in fact shares
the same space of “usernames”, so you cannot configure a PBChangeSource with the same name as a worker.

If you have a publicly accessible worker port, and are using PBChangeSource, you must establish a secure
username and password for the change source. If your sendchange credentials are known (e.g., the defaults), then
your buildmaster is susceptible to injection of arbitrary changes, which (depending on the build factories) could
lead to arbitrary code execution on workers.

The PBChangeSource is created with the following arguments.

port which port to listen on. If None (which is the default), it shares the port used for worker connections.

user The user account that the client program must use to connect. Defaults to change

passwd The password for the connection - defaults to changepw. Do not use this default on a publicly exposed
port!

prefix The prefix to be found and stripped from filenames delivered over the connection, defaulting to None.
Any filenames which do not start with this prefix will be removed. If all the filenames in a given Change are
removed, the that whole Change will be dropped. This string should probably end with a directory separator.

This is useful for changes coming from version control systems that represent branches as par-
ent directories within the repository (like SVN and Perforce). Use a prefix of trunk/ or
project/branches/foobranch/ to only follow one branch and to get correct tree-relative file-
names. Without a prefix, the PBChangeSource will probably deliver Changes with filenames like
trunk/foo.c instead of just foo.c. Of course this also depends upon the tool sending the Changes
in (like buildbot sendchange) and what filenames it is delivering: that tool may be filtering and
stripping prefixes at the sending end.

For example:

from buildbot.plugins import changes

c['change_source'] = changes.PBChangeSource(port=9999, user='laura', passwd='fpga')

The following hooks are useful for sending changes to a PBChangeSource:

Bzr Hook

Bzr is also written in Python, and the Bzr hook depends on Twisted to send the changes.

To install, put contrib/bzr_buildbot.py in one of your plugins locations a bzr plugins directory (e.g.,
~/.bazaar/plugins). Then, in one of your bazaar conf files (e.g., ~/.bazaar/locations.conf), set
the location you want to connect with Buildbot with these keys:

• buildbot_on one of ‘commit’, ‘push, or ‘change’. Turns the plugin on to report changes via commit,
changes via push, or any changes to the trunk. ‘change’ is recommended.

• buildbot_server (required to send to a Buildbot master) the URL of the Buildbot master to which you
will connect (as of this writing, the same server and port to which workers connect).

• buildbot_port (optional, defaults to 9989) the port of the Buildbot master to which you will connect
(as of this writing, the same server and port to which workers connect)

• buildbot_pqm (optional, defaults to not pqm) Normally, the user that commits the revision is the user that
is responsible for the change. When run in a pqm (Patch Queue Manager, see https://launchpad.net/pqm)
environment, the user that commits is the Patch Queue Manager, and the user that committed the parent
revision is responsible for the change. To turn on the pqm mode, set this value to any of (case-insensitive)
“Yes”, “Y”, “True”, or “T”.

• buildbot_dry_run (optional, defaults to not a dry run) Normally, the post-commit hook will attempt
to communicate with the configured Buildbot server and port. If this parameter is included and any of (case-
insensitive) “Yes”, “Y”, “True”, or “T”, then the hook will simply print what it would have sent, but not
attempt to contact the Buildbot master.

2.4. Configuration 77

https://launchpad.net/pqm

Buildbot Documentation, Release 0.9.1

• buildbot_send_branch_name (optional, defaults to not sending the branch name) If your Buildbot’s
bzr source build step uses a repourl, do not turn this on. If your buildbot’s bzr build step uses a baseURL,
then you may set this value to any of (case-insensitive) “Yes”, “Y”, “True”, or “T” to have the Buildbot
master append the branch name to the baseURL.

Note: The bzr smart server (as of version 2.2.2) doesn’t know how to resolve bzr:// urls into absolute paths
so any paths in locations.conf won’t match, hence no change notifications will be sent to Buildbot. Set-
ting configuration parameters globally or in-branch might still work. When Buildbot no longer has a hardcoded
password, it will be a configuration option here as well.

Here’s a simple example that you might have in your ~/.bazaar/locations.conf.

[chroot-*:///var/local/myrepo/mybranch]
buildbot_on = change
buildbot_server = localhost

P4Source

The P4Source periodically polls a Perforce (http://www.perforce.com/) depot for changes. It accepts the fol-
lowing arguments:

p4port The Perforce server to connect to (as host:port).

p4user The Perforce user.

p4passwd The Perforce password.

p4base The base depot path to watch, without the trailing ‘/...’.

p4bin An optional string parameter. Specify the location of the perforce command line binary (p4). You only
need to do this if the perforce binary is not in the path of the Buildbot user. Defaults to p4.

split_file A function that maps a pathname, without the leading p4base, to a (branch, filename) tuple. The
default just returns (None,branchfile), which effectively disables branch support. You should supply
a function which understands your repository structure.

pollInterval How often to poll, in seconds. Defaults to 600 (10 minutes).

project Set the name of the project to be used for the P4Source. This will then be set in any changes
generated by the P4Source, and can be used in a Change Filter for triggering particular builders.

pollAtLaunch Determines when the first poll occurs. True = immediately on launch, False = wait for one
pollInterval (default).

histmax The maximum number of changes to inspect at a time. If more than this number occur since the last
poll, older changes will be silently ignored.

encoding The character encoding of p4‘s output. This defaults to “utf8”, but if your commit messages are in
another encoding, specify that here. For example, if you’re using Perforce on Windows, you may need to
use “cp437” as the encoding if “utf8” generates errors in your master log.

server_tz The timezone of the Perforce server, using the usual timezone format (e.g:
"Europe/Stockholm") in case it’s not in UTC.

use_tickets Set to True to use ticket-based authentication, instead of passwords (but you still need to specify
p4passwd).

ticket_login_interval How often to get a new ticket, in seconds, when use_tickets is enabled.
Defaults to 86400 (24 hours).

78 Chapter 2. Buildbot Manual

http://www.perforce.com/

Buildbot Documentation, Release 0.9.1

Example

This configuration uses the P4PORT, P4USER, and P4PASSWD specified in the buildmaster’s environment. It
watches a project in which the branch name is simply the next path component, and the file is all path components
after.

from buildbot.plugins import changes

s = changes.P4Source(p4base='//depot/project/',
split_file=lambda branchfile: branchfile.split('/',1))

c['change_source'] = s

SVNPoller

class buildbot.changes.svnpoller.SVNPoller

The SVNPoller is a ChangeSource which periodically polls a Subversion (http://subversion.tigris.org/) reposi-
tory for new revisions, by running the svn log command in a subshell. It can watch a single branch or multiple
branches.

SVNPoller accepts the following arguments:

repourl The base URL path to watch, like svn://svn.twistedmatrix.com/svn/Twisted/trunk,
or http://divmod.org/svn/Divmo/, or even file:///home/svn/Repository/ProjectA/branches/1.5/.
This must include the access scheme, the location of the repository (both the hostname for remote ones, and
any additional directory names necessary to get to the repository), and the sub-path within the repository’s
virtual filesystem for the project and branch of interest.

The SVNPoller will only pay attention to files inside the subdirectory specified by the complete repourl.

split_file A function to convert pathnames into (branch,relative_pathname) tuples. Use this to
explain your repository’s branch-naming policy to SVNPoller. This function must accept a single string
(the pathname relative to the repository) and return a two-entry tuple. Directory pathnames always end with
a right slash to distinguish them from files, like trunk/src/, or src/. There are a few utility functions in
buildbot.changes.svnpoller that can be used as a split_file function; see below for details.

For directories, the relative pathname returned by split_file should end with a right slash but an
empty string is also accepted for the root, like ("branches/1.5.x","") being converted from
"branches/1.5.x/".

The default value always returns (None,path), which indicates that all files are on the trunk.

Subclasses of SVNPoller can override the split_file method instead of using the split_file=
argument.

project Set the name of the project to be used for the SVNPoller. This will then be set in any changes
generated by the SVNPoller, and can be used in a Change Filter for triggering particular builders.

svnuser An optional string parameter. If set, the option –user argument will be added to all svn commands.
Use this if you have to authenticate to the svn server before you can do svn info or svn log commands.

svnpasswd Like svnuser, this will cause a option –password argument to be passed to all svn commands.

pollInterval How often to poll, in seconds. Defaults to 600 (checking once every 10 minutes). Lower this
if you want the Buildbot to notice changes faster, raise it if you want to reduce the network and CPU load
on your svn server. Please be considerate of public SVN repositories by using a large interval when polling
them.

pollAtLaunch Determines when the first poll occurs. True = immediately on launch, False = wait for one
pollInterval (default).

histmax The maximum number of changes to inspect at a time. Every pollInterval seconds, the
SVNPoller asks for the last histmax changes and looks through them for any revisions it does not al-
ready know about. If more than histmax revisions have been committed since the last poll, older changes

2.4. Configuration 79

http://subversion.tigris.org/

Buildbot Documentation, Release 0.9.1

will be silently ignored. Larger values of histmax will cause more time and memory to be consumed on
each poll attempt. histmax defaults to 100.

svnbin This controls the svn executable to use. If subversion is installed in a weird place on your system
(outside of the buildmaster’s PATH), use this to tell SVNPoller where to find it. The default value of svn
will almost always be sufficient.

revlinktmpl This parameter is deprecated in favour of specifying a global revlink option. This parameter
allows a link to be provided for each revision (for example, to websvn or viewvc). These links appear
anywhere changes are shown, such as on build or change pages. The proper form for this parameter
is an URL with the portion that will substitute for a revision number replaced by ‘’%s’‘. For example,
'http://myserver/websvn/revision.php?rev=%s' could be used to cause revision links to
be created to a websvn repository viewer.

cachepath If specified, this is a pathname of a cache file that SVNPoller will use to store its state between
restarts of the master.

extra_args If specified, the extra arguments will be added to the svn command args.

Several split file functions are available for common SVN repository layouts. For a poller that is only monitoring
trunk, the default split file function is available explicitly as split_file_alwaystrunk:

from buildbot.plugins import changes, util

c['change_source'] = changes.SVNPoller(
repourl="svn://svn.twistedmatrix.com/svn/Twisted/trunk",
split_file=util.svn.split_file_alwaystrunk)

For repositories with the /trunk and /branches/BRANCH layout, split_file_branches will do the
job:

from buildbot.plugins import changes, util

c['change_source'] = changes.SVNPoller(
repourl="https://amanda.svn.sourceforge.net/svnroot/amanda/amanda",
split_file=util.svn.split_file_branches)

When using this splitter the poller will set the project attribute of any changes to the project attribute of the
poller.

For repositories with the PROJECT/trunk and PROJECT/branches/BRANCH layout,
split_file_projects_branches will do the job:

from buildbot.plugins import changes, util

c['change_source'] = changes.SVNPoller(
repourl="https://amanda.svn.sourceforge.net/svnroot/amanda/",
split_file=util.svn.split_file_projects_branches)

When using this splitter the poller will set the project attribute of any changes to the project determined by the
splitter.

The SVNPoller is highly adaptable to various Subversion layouts. See Customizing SVNPoller for details and
some common scenarios.

Bzr Poller

If you cannot insert a Bzr hook in the server, you can use the BzrPoller. To use it, put
contrib/bzr_buildbot.py somewhere that your Buildbot configuration can import it. Even putting it
in the same directory as the master.cfg should work. Install the poller in the Buildbot configuration as with
any other change source. Minimally, provide a URL that you want to poll (bzr://, bzr+ssh://, or lp:),
making sure the Buildbot user has necessary privileges.

80 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.1

put bzr_buildbot.py file to the same directory as master.cfg
from bzr_buildbot import BzrPoller

c['change_source'] = BzrPoller(
url='bzr://hostname/my_project',
poll_interval=300)

The BzrPoller parameters are:

url The URL to poll.

poll_interval The number of seconds to wait between polls. Defaults to 10 minutes.

branch_name Any value to be used as the branch name. Defaults to None, or specify a string, or specify the
constants from bzr_buildbot.py SHORT or FULL to get the short branch name or full branch address.

blame_merge_author normally, the user that commits the revision is the user that is responsible for the
change. When run in a pqm (Patch Queue Manager, see https://launchpad.net/pqm) environment, the user
that commits is the Patch Queue Manager, and the user that committed the merged, parent revision is
responsible for the change. Set this value to True if this is pointed against a PQM-managed branch.

GitPoller

If you cannot take advantage of post-receive hooks as provided by contrib/git_buildbot.py for example,
then you can use the GitPoller.

The GitPoller periodically fetches from a remote Git repository and processes any changes. It requires its
own working directory for operation. The default should be adequate, but it can be overridden via the workdir
property.

Note: There can only be a single GitPoller pointed at any given repository.

The GitPoller requires Git-1.7 and later. It accepts the following arguments:

repourl the git-url that describes the remote repository, e.g. git@example.com:foobaz/myrepo.git
(see the git fetch help for more info on git-url formats)

branches One of the following:

• a list of the branches to fetch.

• True indicating that all branches should be fetched

• a callable which takes a single argument. It should take a remote refspec (such as
'refs/heads/master', and return a boolean indicating whether that branch should be fetched.

branch accepts a single branch name to fetch. Exists for backwards compatibility with old configurations.

pollInterval interval in seconds between polls, default is 10 minutes

pollAtLaunch Determines when the first poll occurs. True = immediately on launch, False = wait for one
pollInterval (default).

buildPushesWithNoCommits Determine if a push on a new branch with already known commits should
trigger a build. (defaults to False).

gitbin path to the Git binary, defaults to just 'git'

category Set the category to be used for the changes produced by the GitPoller. This will then be set in
any changes generated by the GitPoller, and can be used in a Change Filter for triggering particular
builders.

project Set the name of the project to be used for the GitPoller. This will then be set in any changes
generated by the GitPoller, and can be used in a Change Filter for triggering particular builders.

2.4. Configuration 81

https://launchpad.net/pqm

Buildbot Documentation, Release 0.9.1

usetimestamps parse each revision’s commit timestamp (default is True), or ignore it in favor of the current
time (so recently processed commits appear together in the waterfall page)

encoding Set encoding will be used to parse author’s name and commit message. Default encoding is
'utf-8'. This will not be applied to file names since Git will translate non-ascii file names to unreadable
escape sequences.

workdir the directory where the poller should keep its local repository. The default is gitpoller_work. If
this is a relative path, it will be interpreted relative to the master’s basedir. Multiple Git pollers can share
the same directory.

A configuration for the Git poller might look like this:

from buildbot.plugins import changes

c['change_source'] = changes.GitPoller(repourl='git@example.com:foobaz/myrepo.git',
branches=['master', 'great_new_feature'])

HgPoller

The HgPoller periodically pulls a named branch from a remote Mercurial repository and processes any changes.
It requires its own working directory for operation, which must be specified via the workdir property.

The HgPoller requires a working hg executable, and at least a read-only access to the repository it polls
(possibly through ssh keys or by tweaking the hgrc of the system user Buildbot runs as).

The HgPoller will not transmit any change if there are several heads on the watched named branch. This is
similar (although not identical) to the Mercurial executable behaviour. This exceptional condition is usually the
result of a developer mistake, and usually does not last for long. It is reported in logs. If fixed by a later merge,
the buildmaster administrator does not have anything to do: that merge will be transmitted, together with the
intermediate ones.

The HgPoller accepts the following arguments:

name the name of the poller. This must be unique, and defaults to the repourl.

repourl the url that describes the remote repository, e.g. http://hg.example.com/projects/myrepo.
Any url suitable for hg pull can be specified.

branch the desired branch to pull, will default to 'default'

workdir the directory where the poller should keep its local repository. It is mandatory for now, although later
releases may provide a meaningful default.

It also serves to identify the poller in the buildmaster internal database. Changing it may result in re-
processing all changes so far.

Several HgPoller instances may share the same workdir for mutualisation of the common history
between two different branches, thus easing on local and remote system resources and bandwidth.

If relative, the workdir will be interpreted from the master directory.

pollInterval interval in seconds between polls, default is 10 minutes

pollAtLaunch Determines when the first poll occurs. True = immediately on launch, False = wait for one
pollInterval (default).

hgbin path to the Mercurial binary, defaults to just 'hg'

category Set the category to be used for the changes produced by the HgPoller. This will then be set in any
changes generated by the HgPoller, and can be used in a Change Filter for triggering particular builders.

project Set the name of the project to be used for the HgPoller. This will then be set in any changes
generated by the HgPoller, and can be used in a Change Filter for triggering particular builders.

usetimestamps parse each revision’s commit timestamp (default is True), or ignore it in favor of the current
time (so recently processed commits appear together in the waterfall page)

82 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.1

encoding Set encoding will be used to parse author’s name and commit message. Default encoding is
'utf-8'.

A configuration for the Mercurial poller might look like this:

from buildbot.plugins import changes

c['change_source'] = changes.HgPoller(repourl='http://hg.example.org/projects/
→˓myrepo',

branch='great_new_feature',
workdir='hg-myrepo')

BitbucketPullrequestPoller

class buildbot.changes.bitbucket.BitbucketPullrequestPoller

This BitbucketPullrequestPoller periodically polls Bitbucket for new or
updated pull requests. It uses Bitbuckets powerful Pull Request REST API
(https://confluence.atlassian.com/display/BITBUCKET/pullrequests+Resource) to gather the information
needed.

The BitbucketPullrequestPoller accepts the following arguments:

owner The owner of the Bitbucket repository. All Bitbucket Urls are of the form
https://bitbucket.org/owner/slug/.

slug The name of the Bitbucket repository.

branch A single branch or a list of branches which should be processed. If it is None (the default) all pull
requests are used.

pollInterval Interval in seconds between polls, default is 10 minutes.

pollAtLaunch Determines when the first poll occurs. True = immediately on launch, False = wait for one
pollInterval (default).

category Set the category to be used for the changes produced by the BitbucketPullrequestPoller.
This will then be set in any changes generated by the BitbucketPullrequestPoller, and can be
used in a Change Filter for triggering particular builders.

project Set the name of the project to be used for the BitbucketPullrequestPoller. This will then
be set in any changes generated by the BitbucketPullrequestPoller, and can be used in a Change
Filter for triggering particular builders.

pullrequest_filter A callable which takes one parameter, the decoded Python object of the pull request
JSON. If the it returns False the pull request is ignored. It can be used to define custom filters based on
the content of the pull request. See the Bitbucket documentation for more information about the format of
the response. By default the filter always returns True.

usetimestamps parse each revision’s commit timestamp (default is True), or ignore it in favor of the current
time (so recently processed commits appear together in the waterfall page)

encoding Set encoding will be used to parse author’s name and commit message. Default encoding is
'utf-8'.

A minimal configuration for the Bitbucket pull request poller might look like this:

from buildbot.plugins import changes

c['change_source'] = changes.BitbucketPullrequestPoller(
owner='myname',
slug='myrepo',

)

2.4. Configuration 83

https://confluence.atlassian.com/display/BITBUCKET/pullrequests+Resource

Buildbot Documentation, Release 0.9.1

Here is a more complex configuration using a pullrequest_filter. The pull request is only processed if at
least 3 people have already approved it:

def approve_filter(pr, threshold):
approves = 0
for participant in pr['participants']:

if participant['approved']:
approves = approves + 1

if approves < threshold:
return False

return True

from buildbot.plugins import changes
c['change_source'] = changes.BitbucketPullrequestPoller(

owner='myname',
slug='myrepo',
branch='mybranch',
project='myproject',
pullrequest_filter=lambda pr : approve_filter(pr,3),
pollInterval=600,

)

Warning: Anyone who can create pull requests for the Bitbucket repository can initiate a change, potentially
causing the buildmaster to run arbitrary code.

GerritChangeSource

class buildbot.changes.gerritchangesource.GerritChangeSource

The GerritChangeSource class connects to a Gerrit server by its SSH in-
terface and uses its event source mechanism, gerrit stream-events (https://gerrit-
documentation.storage.googleapis.com/Documentation/2.2.1/cmd-stream-events.html).

The GerritChangeSource accepts the following arguments:

gerritserver the dns or ip that host the Gerrit ssh server

gerritport the port of the Gerrit ssh server

username the username to use to connect to Gerrit

identity_file ssh identity file to for authentication (optional). Pay attention to the ssh passphrase

handled_events event to be handled (optional). By default processes patchset-created and ref-updated

debug Print Gerrit event in the log (default False). This allows to debug event content, but will eventually fill
your logs with useless Gerrit event logs.

By default this class adds a change to the Buildbot system for each of the following events:

patchset-created A change is proposed for review. Automatic checks like checkpatch.pl can be
automatically triggered. Beware of what kind of automatic task you trigger. At this point, no trusted human
has reviewed the code, and a patch could be specially crafted by an attacker to compromise your workers.

ref-updated A change has been merged into the repository. Typically, this kind of event can lead to a complete
rebuild of the project, and upload binaries to an incremental build results server.

But you can specify how to handle events:

• Any event with change and patchSet will be processed by universal collector by default.

• In case you’ve specified processing function for the given kind of events, all events of this kind will be
processed only by this function, bypassing universal collector.

84 Chapter 2. Buildbot Manual

https://gerrit-documentation.storage.googleapis.com/Documentation/2.2.1/cmd-stream-events.html

Buildbot Documentation, Release 0.9.1

An example:

from buildbot.plugins import changes

class MyGerritChangeSource(changes.GerritChangeSource):
"""Custom GerritChangeSource
"""
def eventReceived_patchset_created(self, properties, event):

"""Handler events without properties
"""
properties = {}
self.addChangeFromEvent(properties, event)

This class will populate the property list of the triggered build with the info received from Gerrit server in JSON
format.

Warning: If you selected GerritChangeSource, you must use Gerrit source step: the branch
property of the change will be target_branch/change_id and such a ref cannot be resolved, so the
Git source step would fail.

In case of patchset-created event, these properties will be:

event.change.branch Branch of the Change

event.change.id Change’s ID in the Gerrit system (the ChangeId: in commit comments)

event.change.number Change’s number in Gerrit system

event.change.owner.email Change’s owner email (owner is first uploader)

event.change.owner.name Change’s owner name

event.change.project Project of the Change

event.change.subject Change’s subject

event.change.url URL of the Change in the Gerrit’s web interface

event.patchSet.number Patchset’s version number

event.patchSet.ref Patchset’s Gerrit “virtual branch”

event.patchSet.revision Patchset’s Git commit ID

event.patchSet.uploader.email Patchset uploader’s email (owner is first uploader)

event.patchSet.uploader.name Patchset uploader’s name (owner is first uploader)

event.type Event type (patchset-created)

event.uploader.email Patchset uploader’s email

event.uploader.name Patchset uploader’s name

In case of ref-updated event, these properties will be:

event.refUpdate.newRev New Git commit ID (after merger)

event.refUpdate.oldRev Previous Git commit ID (before merger)

event.refUpdate.project Project that was updated

event.refUpdate.refName Branch that was updated

event.submitter.email Submitter’s email (merger responsible)

event.submitter.name Submitter’s name (merger responsible)

event.type Event type (ref-updated)

2.4. Configuration 85

Buildbot Documentation, Release 0.9.1

event.submitter.email Submitter’s email (merger responsible)

event.submitter.name Submitter’s name (merger responsible)

A configuration for this source might look like:

from buildbot.plugins import changes

c['change_source'] = changes.GerritChangeSource(
"gerrit.example.com",
"gerrit_user",
handled_events=["patchset-created", "change-merged"])

See master/docs/examples/git_gerrit.cfg or master/docs/examples/repo_gerrit.cfg
in the Buildbot distribution for a full example setup of Git+Gerrit or Repo+Gerrit of GerritChangeSource.

GerritChangeFilter

class buildbot.changes.gerritchangesource.GerritChangeFilter

GerritChangeFilter is a ready to use ChangeFilter you can pass to AnyBranchScheduler in order
to filter changes, to create pre-commit builders or post-commit schedulers. It has the same api as Change Filter,
except it has additional eventtype set of filter (can as well be specified as value, list, regular expression or callable)

An example is following:

from buildbot.plugins import schedulers, util

this scheduler will create builds when a patch is uploaded to gerrit
but only if it is uploaded to the "main" branch
schedulers.AnyBranchScheduler(name="main-precommit",

change_filter=util.GerritChangeFilter(branch="main",
eventtype=

→˓"patchset-created"),
treeStableTimer=15*60,
builderNames=["main-precommit"])

this scheduler will create builds when a patch is merged in the "main" branch
for post-commit tests
schedulers.AnyBranchScheduler(name="main-postcommit",

change_filter=util.GerritChangeFilter("main", "ref-
→˓updated"),

treeStableTimer=15*60,
builderNames=["main-postcommit"])

Change Hooks (HTTP Notifications)

Buildbot already provides a web frontend, and that frontend can easily be used to receive HTTP push notifications
of commits from services like GitHub or GoogleCode. See Change Hooks for more information.

GoogleCodeAtomPoller

The GoogleCodeAtomPoller periodically polls a Google Code Project’s commit feed for changes. Works on
SVN, Git, and Mercurial repositories. Branches are not understood (yet). It accepts the following arguments:

feedurl The commit Atom feed URL of the GoogleCode repository (MANDATORY)

pollinterval Polling frequency for the feed (in seconds). Default is 1 hour (OPTIONAL)

As an example, to poll the Ostinato project’s commit feed every 3 hours, the configuration would look like this:

86 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.1

from googlecode_atom import GoogleCodeAtomPoller

c['change_source'] = GoogleCodeAtomPoller(
feedurl="http://code.google.com/feeds/p/ostinato/hgchanges/basic",
pollinterval=10800)

Note: You will need to download googlecode_atom.py from the Buildbot source and install it somewhere
on your PYTHONPATH first.

2.4.4 Schedulers

• Configuring Schedulers

• Scheduler Resiliency

• Change Filters

• Scheduler Types

– SingleBranchScheduler

– AnyBranchScheduler

– Dependent Scheduler

– Periodic Scheduler

– Nightly Scheduler

– Try Schedulers

– Triggerable Scheduler

– NightlyTriggerable Scheduler

– ForceScheduler Scheduler

Schedulers are responsible for initiating builds on builders.

Some schedulers listen for changes from ChangeSources and generate build sets in response to these changes.
Others generate build sets without changes, based on other events in the buildmaster.

Configuring Schedulers

The schedulers configuration parameter gives a list of scheduler instances, each of which causes builds to
be started on a particular set of Builders. The two basic scheduler classes you are likely to start with are
SingleBranchScheduler and Periodic, but you can write a customized subclass to implement more
complicated build scheduling.

Scheduler arguments should always be specified by name (as keyword arguments), to allow for future expansion:

sched = SingleBranchScheduler(name="quick", builderNames=['lin', 'win'])

There are several common arguments for schedulers, although not all are available with all schedulers.

name Each Scheduler must have a unique name. This is used in status displays, and is also available in the build
property scheduler.

builderNames This is the set of builders which this scheduler should trigger, specified as a list of names
(strings).

2.4. Configuration 87

Buildbot Documentation, Release 0.9.1

properties This is a dictionary specifying properties that will be transmitted to all builds started by this
scheduler. The owner property may be of particular interest, as its contents (as a list) will be added to the
list of “interested users” (Doing Things With Users) for each triggered build. For example

sched = Scheduler(...,
properties = {

'owner': ['zorro@example.com', 'silver@example.com']
})

fileIsImportant A callable which takes one argument, a Change instance, and returns True if the change
is worth building, and False if it is not. Unimportant Changes are accumulated until the build is triggered
by an important change. The default value of None means that all Changes are important.

change_filter The change filter that will determine which changes are recognized by this scheduler; Change
Filters. Note that this is different from fileIsImportant: if the change filter filters out a Change,
then it is completely ignored by the scheduler. If a Change is allowed by the change filter, but is deemed
unimportant, then it will not cause builds to start, but will be remembered and shown in status displays.

codebases When the scheduler processes data from more than one repository at the same time, a corresponding
codebase definition should be passed for each repository.

This parameter can be specified either as a list of strings (simplest form; use if no special overrides are
needed) or as a dictionary of dictionaries (where each dict is a codebase definition as described next).

Each codebase definition is a dictionary with any of the keys: repository, branch, revision. The
codebase definitions are combined in a dictionary keyed by the name of the codebase.

codebases = {'codebase1': {'repository':'....',
'branch':'default',
'revision': None},

'codebase2': {'repository':'....'} }

Important: The codebases parameter is only used to fill in missing details about a codebases when
scheduling a build. For example, when a change to codebase A occurs, a scheduler must invent a sources-
tamp for codebase B. The parameter does not act as a filter on incoming changes – use a change filter for
that purpose.

Source steps can specify a codebase to which they will apply, and will use the sourcestamp for that codebase.

onlyImportant A boolean that, when True, only adds important changes to the buildset as specified in
the fileIsImportant callable. This means that unimportant changes are ignored the same way a
change_filter filters changes. This defaults to False and only applies when fileIsImportant
is given.

reason A string that will be used as the reason for the triggered build.

The remaining subsections represent a catalog of the available scheduler types. All these schedulers are defined
in modules under buildbot.schedulers, and the docstrings there are the best source of documentation on
the arguments taken by each one.

Scheduler Resiliency

In a multi-master configuration, schedulers with the same name can be configured on multiple masters. Only
one instance of the scheduler will be active. If that instance becomes inactive, due to its master being shut down
or failing, then another instance will become active after a short delay. This provides resiliency in scheduler
configurations, so that schedulers are not a single point of failure in a Buildbot infrastructure.

The Data API and web UI display the master on which each scheduler is running.

There is currently no mechanism to control which master’s scheduler instance becomes active. The behavior is
nondeterministic, based on the timing of polling by inactive schedulers. The failover is non-revertive.

88 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.1

Change Filters

Several schedulers perform filtering on an incoming set of changes. The filter can most generically be specified as
a ChangeFilter. Set up a ChangeFilter like this:

from buildbot.plugins import util
my_filter = util.ChangeFilter(project_re="^baseproduct/.*", branch="devel")

and then add it to a scheduler with the change_filter parameter:

sch = SomeSchedulerClass(...,
change_filter=my_filter)

There are five attributes of changes on which you can filter:

project the project string, as defined by the ChangeSource.

repository the repository in which this change occurred.

branch the branch on which this change occurred. Note that ‘trunk’ or ‘master’ is often denoted by None.

category the category, again as defined by the ChangeSource.

codebase the change’s codebase.

For each attribute, the filter can look for a single, specific value:

my_filter = util.ChangeFilter(project='myproject')

or accept any of a set of values:

my_filter = util.ChangeFilter(project=['myproject', 'jimsproject'])

or apply a regular expression, using the attribute name with a “_re” suffix:

my_filter = util.ChangeFilter(category_re='.*deve.*')
or, to use regular expression flags:
import re
my_filter = util.ChangeFilter(category_re=re.compile('.*deve.*', re.I))

buildbot.status.web.hooks.github.GitHubEventHandler has a special github_distinct
property that can be used to filter whether or not non-distinct changes should be considered. For example, if a
commit is pushed to a branch that is not being watched and then later pushed to a watched branch, by default, this
will be recorded as two separate Changes. In order to record a change only the first time the commit appears, you
can install a custom ChangeFilter like this:

ChangeFilter(filter_fn = lambda c: c.properties.getProperty('github_distinct')

For anything more complicated, define a Python function to recognize the strings you want:

def my_branch_fn(branch):
return branch in branches_to_build and branch not in branches_to_ignore

my_filter = util.ChangeFilter(branch_fn=my_branch_fn)

The special argument filter_fn can be used to specify a function that is given the entire Change object, and
returns a boolean.

The entire set of allowed arguments, then, is

project project_re project_fn
repository repository_re repository_fn
branch branch_re branch_fn
category category_re category_fn
codebase codebase_re codebase_fn
filter_fn

2.4. Configuration 89

Buildbot Documentation, Release 0.9.1

A Change passes the filter only if all arguments are satisfied. If no filter object is given to a scheduler, then all
changes will be built (subject to any other restrictions the scheduler enforces).

Scheduler Types

The remaining subsections represent a catalog of the available Scheduler types. All these Schedulers are defined
in modules under buildbot.schedulers, and the docstrings there are the best source of documentation on
the arguments taken by each one.

SingleBranchScheduler

This is the original and still most popular scheduler class. It follows exactly one branch, and starts a configurable
tree-stable-timer after each change on that branch. When the timer expires, it starts a build on some set of Builders.
This scheduler accepts a fileIsImportant function which can be used to ignore some Changes if they do not
affect any important files.

If treeStableTimer is not set, then this scheduler starts a build for every Change that matches its
change_filter and statsfies fileIsImportant. If treeStableTimer is set, then a build is triggered
for each set of Changes which arrive within the configured time, and match the filters.

Note: The behavior of this scheduler is undefined, if treeStableTimer is set, and changes from multiple
branches, repositories or codebases are accepted by the filter.

Note: The codebases argument will filter out codebases not specified there, but won’t filter based on the
branches specified there.

The arguments to this scheduler are:

name

builderNames

properties

fileIsImportant

change_filter

onlyImportant

reason

treeStableTimer The scheduler will wait for this many seconds before starting the build. If new changes
are made during this interval, the timer will be restarted, so really the build will be started after a change
and then after this many seconds of inactivity.

If treeStableTimer is None, then a separate build is started immediately for each Change.

fileIsImportant A callable which takes one argument, a Change instance, and returns True if the change
is worth building, and False if it is not. Unimportant Changes are accumulated until the build is triggered
by an important change. The default value of None means that all Changes are important.

categories (deprecated; use change_filter) A list of categories of changes that this scheduler will respond
to. If this is specified, then any non-matching changes are ignored.

branch (deprecated; use change_filter) The scheduler will pay attention to this branch, ignoring Changes that
occur on other branches. Setting branch equal to the special value of None means it should only pay
attention to the default branch.

90 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.1

Note: None is a keyword, not a string, so write None and not "None".

Example:

from buildbot.plugins import schedulers, util
quick = schedulers.SingleBranchScheduler(

name="quick",
change_filter=util.ChangeFilter(branch='master'),
treeStableTimer=60,
builderNames=["quick-linux", "quick-netbsd"])

full = schedulers.SingleBranchScheduler(
name="full",
change_filter=util.ChangeFilter(branch='master'),
treeStableTimer=5*60,
builderNames=["full-linux", "full-netbsd", "full-OSX"])

c['schedulers'] = [quick, full]

In this example, the two quick builders are triggered 60 seconds after the tree has been changed. The full builds do
not run quite so quickly (they wait 5 minutes), so hopefully if the quick builds fail due to a missing file or really
simple typo, the developer can discover and fix the problem before the full builds are started. Both schedulers only
pay attention to the default branch: any changes on other branches are ignored. Each scheduler triggers a different
set of Builders, referenced by name.

Note: The old names for this scheduler, buildbot.scheduler.Scheduler and
buildbot.schedulers.basic.Scheduler, are deprecated in favor of using buildbot.plugins:

from buildbot.plugins import schedulers

However if you must use a fully qualified name, it is buildbot.schedulers.basic.SingleBranchScheduler.

AnyBranchScheduler

This scheduler uses a tree-stable-timer like the default one, but uses a separate timer for each branch.

If treeStableTimer is not set, then this scheduler is indistinguishable from
bb:sched:SingleBranchScheduler. If treeStableTimer is set, then a build is triggered for each
set of Changes which arrive within the configured time, and match the filters.

The arguments to this scheduler are:

name

builderNames

properties

fileIsImportant

change_filter

onlyImportant

reason See Configuring Schedulers.

treeStableTimer The scheduler will wait for this many seconds before starting the build. If new changes
are made on the same branch during this interval, the timer will be restarted.

branches (deprecated; use change_filter) Changes on branches not specified on this list will be ignored.

categories (deprecated; use change_filter) A list of categories of changes that this scheduler will respond
to. If this is specified, then any non-matching changes are ignored.

2.4. Configuration 91

Buildbot Documentation, Release 0.9.1

Dependent Scheduler

It is common to wind up with one kind of build which should only be performed if the same source code was
successfully handled by some other kind of build first. An example might be a packaging step: you might only
want to produce .deb or RPM packages from a tree that was known to compile successfully and pass all unit tests.
You could put the packaging step in the same Build as the compile and testing steps, but there might be other
reasons to not do this (in particular you might have several Builders worth of compiles/tests, but only wish to do
the packaging once). Another example is if you want to skip the full builds after a failing quick build of the same
source code. Or, if one Build creates a product (like a compiled library) that is used by some other Builder, you’d
want to make sure the consuming Build is run after the producing one.

You can use dependencies to express this relationship to the Buildbot. There is a special kind of scheduler named
Dependent that will watch an upstream scheduler for builds to complete successfully (on all of its Builders).
Each time that happens, the same source code (i.e. the same SourceStamp) will be used to start a new set of
builds, on a different set of Builders. This downstream scheduler doesn’t pay attention to Changes at all. It only
pays attention to the upstream scheduler.

If the build fails on any of the Builders in the upstream set, the downstream builds will not fire. Note that, for
SourceStamps generated by a Dependent scheduler, the revision is None, meaning HEAD. If any changes
are committed between the time the upstream scheduler begins its build and the time the dependent scheduler
begins its build, then those changes will be included in the downstream build. See the Triggerable scheduler
for a more flexible dependency mechanism that can avoid this problem.

The keyword arguments to this scheduler are:

name

builderNames

properties See Configuring Schedulers.

upstream The upstream scheduler to watch. Note that this is an instance, not the name of the scheduler.

Example:

from buildbot.plugins import schedulers
tests = schedulers.SingleBranchScheduler(name="just-tests",

treeStableTimer=5*60,
builderNames=["full-linux",

"full-netbsd",
"full-OSX"])

package = schedulers.Dependent(name="build-package",
upstream=tests, # <- no quotes!
builderNames=["make-tarball", "make-deb",

"make-rpm"])
c['schedulers'] = [tests, package]

Periodic Scheduler

This simple scheduler just triggers a build every N seconds.

The arguments to this scheduler are:

name

builderNames

properties

onlyImportant

createAbsoluteSourceStamps This option only has effect when using multiple codebases. When True,
it uses the last seen revision for each codebase that does not have a change. When False, the default value,
codebases without changes will use the revision from the codebases argument.

92 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.1

onlyIfChanged If this is true, then builds will not be scheduled at the designated time unless the specified
branch has seen an important change since the previous build.

reason See Configuring Schedulers.

periodicBuildTimer The time, in seconds, after which to start a build.

Example:

from buildbot.plugins import schedulers
nightly = schedulers.Periodic(name="daily",

builderNames=["full-solaris"],
periodicBuildTimer=24*60*60)

c['schedulers'] = [nightly]

The scheduler in this example just runs the full solaris build once per day. Note that this scheduler only lets
you control the time between builds, not the absolute time-of-day of each Build, so this could easily wind up an
evening or every afternoon scheduler depending upon when it was first activated.

Nightly Scheduler

This is highly configurable periodic build scheduler, which triggers a build at particular times of day, week, month,
or year. The configuration syntax is very similar to the well-known crontab format, in which you provide values
for minute, hour, day, and month (some of which can be wildcards), and a build is triggered whenever the current
time matches the given constraints. This can run a build every night, every morning, every weekend, alternate
Thursdays, on your boss’s birthday, etc.

Pass some subset of minute, hour, dayOfMonth, month, and dayOfWeek; each may be a single number
or a list of valid values. The builds will be triggered whenever the current time matches these values. Wildcards
are represented by a ‘*’ string. All fields default to a wildcard except ‘minute’, so with no fields this defaults to a
build every hour, on the hour. The full list of parameters is:

name

builderNames

properties

fileIsImportant

change_filter

onlyImportant

reason

codebases

createAbsoluteSourceStamps This option only has effect when using multiple codebases. When True,
it uses the last seen revision for each codebase that does not have a change. When False, the default value,
codebases without changes will use the revision from the codebases argument.

onlyIfChanged If this is true, then builds will not be scheduled at the designated time unless the change filter
has accepted an important change since the previous build.

branch (deprecated; use change_filter and codebases) The branch to build when the time comes, and
the branch to filter for if change_filter is not specified. Remember that a value of None here means
the default branch, and will not match other branches!

minute The minute of the hour on which to start the build. This defaults to 0, meaning an hourly build.

hour The hour of the day on which to start the build, in 24-hour notation. This defaults to *, meaning every hour.

dayOfMonth The day of the month to start a build. This defaults to *, meaning every day.

month The month in which to start the build, with January = 1. This defaults to *, meaning every month.

2.4. Configuration 93

Buildbot Documentation, Release 0.9.1

dayOfWeek The day of the week to start a build, with Monday = 0. This defaults to *, meaning every day of
the week.

For example, the following master.cfg clause will cause a build to be started every night at 3:00am:

from buildbot.plugins import schedulers
c['schedulers'].append(

schedulers.Nightly(name='nightly',
branch='master',
builderNames=['builder1', 'builder2'],
hour=3, minute=0))

This scheduler will perform a build each Monday morning at 6:23am and again at 8:23am, but only if someone
has committed code in the interim:

c['schedulers'].append(
schedulers.Nightly(name='BeforeWork',

branch=`default`,
builderNames=['builder1'],
dayOfWeek=0, hour=[6,8], minute=23,
onlyIfChanged=True))

The following runs a build every two hours, using Python’s range function:

c.schedulers.append(
timed.Nightly(name='every2hours',

branch=None, # default branch
builderNames=['builder1'],
hour=range(0, 24, 2)))

Finally, this example will run only on December 24th:

c['schedulers'].append(
timed.Nightly(name='SleighPreflightCheck',

branch=None, # default branch
builderNames=['flying_circuits', 'radar'],
month=12,
dayOfMonth=24,
hour=12,
minute=0))

Try Schedulers

This scheduler allows developers to use the buildbot try command to trigger builds of code they have not
yet committed. See try for complete details.

Two implementations are available: Try_Jobdir and Try_Userpass. The former monitors a job directory,
specified by the jobdir parameter, while the latter listens for PB connections on a specific port, and authenti-
cates against userport.

The buildmaster must have a scheduler instance in the config file’s schedulers list to receive try requests. This
lets the administrator control who may initiate these trial builds, which branches are eligible for trial builds, and
which Builders should be used for them.

The scheduler has various means to accept build requests. All of them enforce more security than the usual
buildmaster ports do. Any source code being built can be used to compromise the worker accounts, but in general
that code must be checked out from the VC repository first, so only people with commit privileges can get control
of the workers. The usual force-build control channels can waste worker time but do not allow arbitrary commands
to be executed by people who don’t have those commit privileges. However, the source code patch that is provided
with the trial build does not have to go through the VC system first, so it is important to make sure these builds
cannot be abused by a non-committer to acquire as much control over the workers as a committer has. Ideally,

94 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.1

only developers who have commit access to the VC repository would be able to start trial builds, but unfortunately
the buildmaster does not, in general, have access to VC system’s user list.

As a result, the try scheduler requires a bit more configuration. There are currently two ways to set this up:

jobdir (ssh) This approach creates a command queue directory, called the jobdir, in the buildmaster’s work-
ing directory. The buildmaster admin sets the ownership and permissions of this directory to only grant write
access to the desired set of developers, all of whom must have accounts on the machine. The buildbot
try command creates a special file containing the source stamp information and drops it in the jobdir, just
like a standard maildir. When the buildmaster notices the new file, it unpacks the information inside and
starts the builds.

The config file entries used by ‘buildbot try’ either specify a local queuedir (for which write and mv are
used) or a remote one (using scp and ssh).

The advantage of this scheme is that it is quite secure, the disadvantage is that it requires fiddling outside
the buildmaster config (to set the permissions on the jobdir correctly). If the buildmaster machine happens
to also house the VC repository, then it can be fairly easy to keep the VC userlist in sync with the trial-build
userlist. If they are on different machines, this will be much more of a hassle. It may also involve granting
developer accounts on a machine that would not otherwise require them.

To implement this, the worker invokes ssh -l username host buildbot tryserver ARGS,
passing the patch contents over stdin. The arguments must include the inlet directory and the revision
information.

user+password (PB) In this approach, each developer gets a username/password pair, which are all listed in
the buildmaster’s configuration file. When the developer runs buildbot try, their machine connects to
the buildmaster via PB and authenticates themselves using that username and password, then sends a PB
command to start the trial build.

The advantage of this scheme is that the entire configuration is performed inside the buildmaster’s config
file. The disadvantages are that it is less secure (while the cred authentication system does not expose the
password in plaintext over the wire, it does not offer most of the other security properties that SSH does).
In addition, the buildmaster admin is responsible for maintaining the username/password list, adding and
deleting entries as developers come and go.

For example, to set up the jobdir style of trial build, using a command queue directory of MASTERDIR/jobdir
(and assuming that all your project developers were members of the developers unix group), you would first
set up that directory:

mkdir -p MASTERDIR/jobdir MASTERDIR/jobdir/new MASTERDIR/jobdir/cur MASTERDIR/
→˓jobdir/tmp
chgrp developers MASTERDIR/jobdir MASTERDIR/jobdir/*
chmod g+rwx,o-rwx MASTERDIR/jobdir MASTERDIR/jobdir/*

and then use the following scheduler in the buildmaster’s config file:

from buildbot.plugins import schedulers
s = schedulers.Try_Jobdir(name="try1",

builderNames=["full-linux", "full-netbsd",
"full-OSX"],

jobdir="jobdir")
c['schedulers'] = [s]

Note that you must create the jobdir before telling the buildmaster to use this configuration, otherwise you will get
an error. Also remember that the buildmaster must be able to read and write to the jobdir as well. Be sure to watch
the twistd.log file (Logfiles) as you start using the jobdir, to make sure the buildmaster is happy with it.

Note: Patches in the jobdir are encoded using netstrings, which place an arbitrary upper limit on patch size of
99999 bytes. If your submitted try jobs are rejected with BadJobfile, try increasing this limit with a snippet like
this in your master.cfg:

2.4. Configuration 95

Buildbot Documentation, Release 0.9.1

from twisted.protocols.basic import NetstringReceiver
NetstringReceiver.MAX_LENGTH = 1000000

To use the username/password form of authentication, create a Try_Userpass instance instead. It takes the
same builderNames argument as the Try_Jobdir form, but accepts an additional port argument (to specify
the TCP port to listen on) and a userpass list of username/password pairs to accept. Remember to use good
passwords for this: the security of the worker accounts depends upon it:

from buildbot.plugins import schedulers
s = schedulers.Try_Userpass(name="try2",

builderNames=["full-linux", "full-netbsd",
"full-OSX"],

port=8031,
userpass=[("alice","pw1"), ("bob", "pw2")])

c['schedulers'] = [s]

Like most places in the buildbot, the port argument takes a strports specification. See
twisted.application.strports for details.

Triggerable Scheduler

The Triggerable scheduler waits to be triggered by a Trigger step (see Triggering Schedulers) in another
build. That step can optionally wait for the scheduler’s builds to complete. This provides two advantages over
Dependent schedulers. First, the same scheduler can be triggered from multiple builds. Second, the ability
to wait for Triggerable‘s builds to complete provides a form of “subroutine call”, where one or more builds
can “call” a scheduler to perform some work for them, perhaps on other workers. The Triggerable scheduler
supports multiple codebases. The scheduler filters out all codebases from Trigger steps that are not configured
in the scheduler.

The parameters are just the basics:

name

builderNames

properties

reason

codebases See Configuring Schedulers.

This class is only useful in conjunction with the Trigger step. Here is a fully-worked example:

from buildbot.plugins import schedulers, util, steps

checkin = schedulers.SingleBranchScheduler(name="checkin",
branch=None,
treeStableTimer=5*60,
builderNames=["checkin"])

nightly = schedulers.Nightly(name='nightly',
branch=None,
builderNames=['nightly'],
hour=3, minute=0)

mktarball = schedulers.Triggerable(name="mktarball", builderNames=["mktarball"])
build = schedulers.Triggerable(name="build-all-platforms",

builderNames=["build-all-platforms"])
test = schedulers.Triggerable(name="distributed-test",

builderNames=["distributed-test"])
package = schedulers.Triggerable(name="package-all-platforms",

builderNames=["package-all-platforms"])
c['schedulers'] = [mktarball, checkin, nightly, build, test, package]

96 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.1

on checkin, make a tarball, build it, and test it
checkin_factory = util.BuildFactory()
checkin_factory.addStep(steps.Trigger(schedulerNames=['mktarball'],

waitForFinish=True))
checkin_factory.addStep(steps.Trigger(schedulerNames=['build-all-platforms'],

waitForFinish=True))
checkin_factory.addStep(steps.Trigger(schedulerNames=['distributed-test'],

waitForFinish=True))

and every night, make a tarball, build it, and package it
nightly_factory = util.BuildFactory()
nightly_factory.addStep(steps.Trigger(schedulerNames=['mktarball'],

waitForFinish=True))
nightly_factory.addStep(steps.Trigger(schedulerNames=['build-all-platforms'],

waitForFinish=True))
nightly_factory.addStep(steps.Trigger(schedulerNames=['package-all-platforms'],

waitForFinish=True))

NightlyTriggerable Scheduler

class buildbot.schedulers.timed.NightlyTriggerable

The NightlyTriggerable scheduler is a mix of the Nightly and Triggerable schedulers. This sched-
uler triggers builds at a particular time of day, week, or year, exactly as the Nightly scheduler. However, the
source stamp set that is used that provided by the last Trigger step that targeted this scheduler.

The parameters are just the basics:

name

builderNames

properties

codebases See Configuring Schedulers.

minute

hour

dayOfMonth

month

dayOfWeek See Nightly .

This class is only useful in conjunction with the Trigger step. Note that waitForFinish is ignored by
Trigger steps targeting this scheduler.

Here is a fully-worked example:

from buildbot.plugins import schedulers, util, steps

checkin = schedulers.SingleBranchScheduler(name="checkin",
branch=None,
treeStableTimer=5*60,
builderNames=["checkin"])

nightly = schedulers.NightlyTriggerable(name='nightly',
builderNames=['nightly'],
hour=3, minute=0)

c['schedulers'] = [checkin, nightly]

on checkin, run tests
checkin_factory = util.BuildFactory([

2.4. Configuration 97

Buildbot Documentation, Release 0.9.1

steps.Test(),
steps.Trigger(schedulerNames=['nightly'])

])

and every night, package the latest successful build
nightly_factory = util.BuildFactory([

steps.ShellCommand(command=['make', 'package'])
])

ForceScheduler Scheduler

The ForceScheduler scheduler is the way you can configure a force build form in the web UI.

In the /#/builders/:builderid web page, you will see, on the top right of the page, one button for each
ForceScheduler scheduler that was configured for this builder. If you click on that button, a dialog will let
you choose various parameters for requesting a new build.

The Buildbot framework allows you to customize exactly how the build form looks, which builders have a force
build form (it might not make sense to force build every builder), and who is allowed to force builds on which
builders.

How you do so is by configuring a ForceScheduler, and add it into the list schedulers.

The scheduler takes the following parameters:

name

Name of the scheduler (should be an Identifier).

builderNames

List of builders where the force button should appear. See Configuring Schedulers.

reason

A parameter allowing the user to specify the reason for the build. The default value is a string
parameter with a default value “force build”.

reasonString

A string that will be used to create the build reason for the forced build. This string can contain the
placeholders %(owner)s and %(reason)s, which represents the value typed into the reason field.

username

A parameter specifying the username associated with the build (aka owner). The default value is a
username parameter.

codebases

A list of strings or CodebaseParameter specifying the codebases that should be presented. The default
is a single codebase with no name (i.e. codebases=[’‘]).

properties

A list of parameters, one for each property. These can be arbitrary parameters, where the parameter’s
name is taken as the property name, or AnyPropertyParameter, which allows the web user to
specify the property name. The default value is an empty list.

buttonName

The name of the “submit” button on the resulting force-build form. This defaults to the name of
scheduler.

An example may be better than long explanation. What you need in your config file is something like:

98 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.1

from buildbot.plugins import schedulers, util

sch = schedulers.ForceScheduler(
name="force",
buttonName="pushMe!",
label="My nice Force form",
builderNames=["my-builder"],

codebases=[
util.CodebaseParameter(

"",
name="Main repository",
will generate a combo box
branch=util.ChoiceStringParameter(

name="branch",
choices=["master", "hest"],
default="master"),

will generate nothing in the form, but revision, repository,
and project are needed by buildbot scheduling system so we
need to pass a value ("")
revision=util.FixedParameter(name="revision", default=""),
repository=util.FixedParameter(name="repository", default=""),
project=util.FixedParameter(name="project", default=""),

),
],

will generate a text input
reason=util.StringParameter(name="reason",

label="reason:",
required=True, size=80),

in case you dont require authentication this will display
input for user to type his name
username=util.UserNameParameter(label="your name:",

size=80),
A completely customized property list. The name of the
property is the name of the parameter
properties=[

util.NestedParameter(name="options", label="Build Options", layout=
→˓"vertical", fields=[

util.StringParameter(name="pull_url",
label="optionally give a public Git pull url:",
default="", size=80),

util.BooleanParameter(name="force_build_clean",
label="force a make clean",
default=False)

])
])

This will result in the following UI:

2.4. Configuration 99

Buildbot Documentation, Release 0.9.1

Authorization

The force scheduler uses the web interface’s authorization framework to determine which user has the right to
force which build. Here is an example of code on how you can define which user has which right:

user_mapping = {
re.compile("project1-builder"): ["project1-maintainer", "john"] ,
re.compile("project2-builder"): ["project2-maintainer", "jack"],
re.compile(".*"): ["root"]

}
def force_auth(user, status):

global user_mapping
for r,users in user_mapping.items():

if r.match(status.name):
if user in users:

return True
return False

use authz_cfg in your WebStatus setup
authz_cfg=authz.Authz(

auth=my_auth,
forceBuild = force_auth,

)

ForceScheduler Parameters

Most of the arguments to ForceScheduler are “parameters”. Several classes of parameters are available, each
describing a different kind of input from a force-build form.

100 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.1

All parameter types have a few common arguments:

name (required)

The name of the parameter. For properties, this will correspond to the name of the property that your
parameter will set. The name is also used internally as the identifier for in the HTML form.

label (optional; default is same as name)

The label of the parameter. This is what is displayed to the user.

tablabel (optional; default is same as label)

The label of the tab if this parameter is included into a tab layout NestedParameter. This is what is
displayed to the user.

default (optional; default: “”)

The default value for the parameter, that is used if there is no user input.

required (optional; default: False)

If this is true, then an error will be shown to user if there is no input in this field

The parameter types are:

NestedParameter

NestedParameter(name="options", label="Build options" layout="vertical", fields=[..
→˓.]),

This parameter type is a special parameter which contains other parameters. This can be used to group a set
of parameters together, and define the layout of your form. You can recursively include NestedParameter into
NestedParameter, to build very complex UI.

It adds the following arguments:

layout (optional, default: “vertical”)

The layout defines how the fields are placed in the form.

The layouts implemented in the standard web application are:

• simple: fields are displayed one by one without alignment. They take the horizontal space
that they need.

• vertical: all fields are displayed vertically, aligned in columns (as per the column attribute
of the NestedParameter)

• tabs: Each field gets its own tab (http://getbootstrap.com/components/#nav-tabs). This
can be used to declare complex build forms which won’t fit into one screen. The children
fields are usually other NestedParameters with vertical layout.

columns (optional, accepted values are 1,2,3,4)

The number of columns to use for a vertical layout. If omitted, it is set to 1 unless there are more than
3 visible child fields in which case it is set to 2.

FixedParameter

FixedParameter(name="branch", default="trunk"),

This parameter type will not be shown on the web form, and always generate a property with its default value.

2.4. Configuration 101

http://getbootstrap.com/components/#nav-tabs

Buildbot Documentation, Release 0.9.1

StringParameter

StringParameter(name="pull_url",
label="optionally give a public Git pull url:",
default="", size=80)

This parameter type will show a single-line text-entry box, and allow the user to enter an arbitrary string. It adds
the following arguments:

regex (optional)

A string that will be compiled as a regex, and used to validate the input of this parameter.

size (optional; default: 10)

The width of the input field (in characters).

TextParameter

StringParameter(name="comments",
label="comments to be displayed to the user of the built binary",
default="This is a development build", cols=60, rows=5)

This parameter type is similar to StringParameter, except that it is represented in the HTML form as a textarea,
allowing multi-line input. It adds the StringParameter arguments, this type allows:

cols (optional; default: 80)

The number of columns the textarea will have.

rows (optional; default: 20)

The number of rows the textarea will have

This class could be subclassed in order to have more customization e.g.

• developer could send a list of Git branches to pull from

• developer could send a list of Gerrit changes to cherry-pick,

• developer could send a shell script to amend the build.

Beware of security issues anyway.

IntParameter

IntParameter(name="debug_level",
label="debug level (1-10)", default=2)

This parameter type accepts an integer value using a text-entry box.

BooleanParameter

BooleanParameter(name="force_build_clean",
label="force a make clean", default=False)

This type represents a boolean value. It will be presented as a checkbox.

102 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.1

UserNameParameter

UserNameParameter(label="your name:", size=80)

This parameter type accepts a username. If authentication is active, it will use the authenticated user instead of
displaying a text-entry box.

size (optional; default: 10) The width of the input field (in characters).

need_email (optional; default True) If true, require a full email address rather than arbitrary text.

ChoiceStringParameter

ChoiceStringParameter(name="branch",
choices=["main","devel"], default="main")

This parameter type lets the user choose between several choices (e.g the list of branches you are supporting, or
the test campaign to run). If multiple is false, then its result is a string - one of the choices. If multiple is
true, then the result is a list of strings from the choices.

Note that for some use cases, the choices need to be generated dynamically. This can be done via subclass-
ing and overriding the ‘getChoices’ member function. An example of this is provided by the source for the
InheritBuildParameter class.

Its arguments, in addition to the common options, are:

choices

The list of available choices.

strict (optional; default: True)

If true, verify that the user’s input is from the list. Note that this only affects the validation of the
form request; even if this argument is False, there is no HTML form component available to enter an
arbitrary value.

multiple

If true, then the user may select multiple choices.

Example:

ChoiceStringParameter(name="forced_tests",
label="smoke test campaign to run",
default=default_tests,
multiple=True,
strict=True,
choices=["test_builder1", "test_builder2",

"test_builder3"])

.. and later base the schedulers to trigger off this property:

triggers the tests depending on the property forced_test
builder1.factory.addStep(Trigger(name="Trigger tests",

schedulerNames=Property("forced_tests")))

CodebaseParameter

CodebaseParameter(codebase="myrepo")

2.4. Configuration 103

Buildbot Documentation, Release 0.9.1

This is a parameter group to specify a sourcestamp for a given codebase.

codebase

The name of the codebase.

branch (optional; default: StringParameter)

A parameter specifying the branch to build. The default value is a string parameter.

revision (optional; default: StringParameter)

A parameter specifying the revision to build. The default value is a string parameter.

repository (optional; default: StringParameter)

A parameter specifying the repository for the build. The default value is a string parameter.

project (optional; default: StringParameter)

A parameter specifying the project for the build. The default value is a string parameter.

InheritBuildParameter

Note: InheritBuildParameter is not yet ported to data API, and cannot be used with buildbot nine yet(bug #3521
(http://trac.buildbot.net/ticket/3521)).

This is a special parameter for inheriting force build properties from another build. The user is presented with a
list of compatible builds from which to choose, and all forced-build parameters from the selected build are copied
into the new build. The new parameter is:

compatible_builds

A function to find compatible builds in the build history. This function is given the master Status
instance as first argument, and the current builder name as second argument, or None when forcing
all builds.

Example:

def get_compatible_builds(status, builder):
if builder is None: # this is the case for force_build_all

return ["cannot generate build list here"]
find all successful builds in builder1 and builder2
builds = []
for builder in ["builder1","builder2"]:

builder_status = status.getBuilder(builder)
for num in xrange(1,40): # 40 last builds

b = builder_status.getBuild(-num)
if not b:

continue
if b.getResults() == FAILURE:

continue
builds.append(builder+"/"+str(b.getNumber()))

return builds

...

sched = Scheduler(...,
properties=[

InheritBuildParameter(
name="inherit",
label="promote a build for merge",
compatible_builds=get_compatible_builds,

104 Chapter 2. Buildbot Manual

http://trac.buildbot.net/ticket/3521

Buildbot Documentation, Release 0.9.1

required = True),
])

WorkerChoiceParameter

Note: WorkerChoiceParameter is not yet ported to data API, and cannot be used with buildbot nine yet(bug
#3521 (http://trac.buildbot.net/ticket/3521)).

This parameter allows a scheduler to require that a build is assigned to the chosen worker. The choice is as-
signed to the workername property for the build. The enforceChosenWorker functor must be assigned to the
canStartBuild parameter for the Builder.

Example:

from buildbot.plugins import util

schedulers:
ForceScheduler(

...
properties=[

WorkerChoiceParameter(),
]

)

builders:
BuilderConfig(

...
canStartBuild=util.enforceChosenWorker,

)

AnyPropertyParameter

This parameter type can only be used in properties, and allows the user to specify both the property name
and value in the web form.

This Parameter is here to reimplement old Buildbot behavior, and should be avoided. Stricter parameter name and
type should be preferred.

2.4.5 Workers

The workers configuration key specifies a list of known workers. In the common case, each worker is defined
by an instance of the Worker class. It represents a standard, manually started machine that will try to connect to
the buildbot master as a worker. Buildbot also supports “on-demand”, or latent, workers, which allow buildbot to
dynamically start and stop worker instances.

• Defining Workers

• Worker Options

• Local Workers

• Latent Workers

2.4. Configuration 105

http://trac.buildbot.net/ticket/3521
http://trac.buildbot.net/ticket/3521

Buildbot Documentation, Release 0.9.1

Defining Workers

A Worker instance is created with a workername and a workerpassword. These are the same two values
that need to be provided to the worker administrator when they create the worker.

The workername must be unique, of course. The password exists to prevent evildoers from interfering with the
buildbot by inserting their own (broken) workers into the system and thus displacing the real ones.

Workers with an unrecognized workername or a non-matching password will be rejected when they attempt to
connect, and a message describing the problem will be written to the log file (see Logfiles).

A configuration for two workers would look like:

from buildbot.plugins import worker
c['workers'] = [

worker.Worker('bot-solaris', 'solarispasswd'),
worker.Worker('bot-bsd', 'bsdpasswd'),

]

Worker Options

Worker objects can also be created with an optional properties argument, a dictionary specifying properties
that will be available to any builds performed on this worker. For example:

c['workers'] = [
worker.Worker('bot-solaris', 'solarispasswd',

properties={ 'os':'solaris' }),
]

The Worker constructor can also take an optional max_builds parameter to limit the number of builds that it
will execute simultaneously:

c['workers'] = [
worker.Worker("bot-linux", "linuxpassword", max_builds=2)

]

Master-Worker TCP Keepalive

By default, the buildmaster sends a simple, non-blocking message to each worker every hour. These keepalives
ensure that traffic is flowing over the underlying TCP connection, allowing the system’s network stack to detect
any problems before a build is started.

The interval can be modified by specifying the interval in seconds using the keepalive_interval parameter
of Worker:

c['workers'] = [
worker.Worker('bot-linux', 'linuxpasswd',

keepalive_interval=3600)
]

The interval can be set to None to disable this functionality altogether.

When Workers Go Missing

Sometimes, the workers go away. One very common reason for this is when the worker process is started once
(manually) and left running, but then later the machine reboots and the process is not automatically restarted.

106 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.1

If you’d like to have the administrator of the worker (or other people) be notified by email when the worker has
been missing for too long, just add the notify_on_missing= argument to the Worker definition. This value
can be a single email address, or a list of addresses:

c['workers'] = [
worker.Worker('bot-solaris', 'solarispasswd',

notify_on_missing="bob@example.com")
]

By default, this will send email when the worker has been disconnected for more than one hour. Only one email
per connection-loss event will be sent. To change the timeout, use missing_timeout= and give it a number
of seconds (the default is 3600).

You can have the buildmaster send email to multiple recipients: just provide a list of addresses instead of a single
one:

c['workers'] = [
worker.Worker('bot-solaris', 'solarispasswd',

notify_on_missing=["bob@example.com",
"alice@example.org"],

missing_timeout=300) # notify after 5 minutes
]

The email sent this way will use a MailNotifier (see MailNotifier) status target, if one is configured.
This provides a way for you to control the from address of the email, as well as the relayhost (aka smarthost) to
use as an SMTP server. If no MailNotifier is configured on this buildmaster, the worker-missing emails will
be sent using a default configuration.

Note that if you want to have a MailNotifier for worker-missing emails but not for regular build emails, just
create one with builders=[], as follows:

from buildbot.plugins import status, worker
m = status.MailNotifier(fromaddr="buildbot@localhost", builders=[],

relayhost="smtp.example.org")
c['status'].append(m)

c['workers'] = [
worker.Worker('bot-solaris', 'solarispasswd',

notify_on_missing="bob@example.com")
]

Local Workers

For smaller setups, you may want to just run the workers on the same machine as the master. To simplify the
maintainance, you may even want to run them in the same process.

This is what LocalWorker is for. Instead of configuring a worker.Worker, you have to configure a
worker.LocalWorker. As the worker is running on the same process, password is not necessary. You can
run as many local workers as long as your machine CPU and memory is allowing.

A configuration for two workers would look like:

from buildbot.plugins import worker
c['workers'] = [

worker.LocalWorker('bot1'),
worker.LocalWorker('bot2'),

]

In order to use local workers you need to have buildbot-worker package installed.

2.4. Configuration 107

Buildbot Documentation, Release 0.9.1

Latent Workers

The standard buildbot model has workers started manually. The previous section described how to configure the
master for this approach.

Another approach is to let the buildbot master start workers when builds are ready, on-demand. Thanks to services
such as Amazon Web Services’ Elastic Compute Cloud (“AWS EC2”), this is relatively easy to set up, and can be
very useful for some situations.

The workers that are started on-demand are called “latent” workers. As of this writing, buildbot ships with an
abstract base class for building latent workers, and a concrete implementation for AWS EC2 and for libvirt.

Common Options

The following options are available for all latent workers.

build_wait_timeout This option allows you to specify how long a latent worker should wait after a build
for another build before it shuts down. It defaults to 10 minutes. If this is set to 0 then the worker will be
shut down immediately. If it is less than 0 it will never automatically shutdown.

Supported Latent Workers

As of time of writing, Buildbot supports the following latent workers:

Amazon Web Services Elastic Compute Cloud (“AWS EC2”)

class buildbot.worker.ec2.EC2LatentWorker

EC2 (http://aws.amazon.com/ec2/) is a web service that allows you to start virtual machines in an Amazon data
center. Please see their website for details, including costs. Using the AWS EC2 latent workers involves getting
an EC2 account with AWS and setting up payment; customizing one or more EC2 machine images (“AMIs”) on
your desired operating system(s) and publishing them (privately if needed); and configuring the buildbot master
to know how to start your customized images for “substantiating” your latent workers.

This document will guide you through setup of a AWS EC2 latent worker:

• Get an AWS EC2 Account

• Create an AMI

• Configure the Master with an EC2LatentWorker

• Volumes

• VPC Support

• Spot instances

Get an AWS EC2 Account

To start off, to use the AWS EC2 latent worker, you need to get an AWS developer account and sign up for EC2.
Although Amazon often changes this process, these instructions should help you get started:

1. Go to http://aws.amazon.com/ and click to “Sign Up Now” for an AWS account.

2. Once you are logged into your account, you need to sign up for EC2. Instructions for how to do this have
changed over time because Amazon changes their website, so the best advice is to hunt for it. After signing

108 Chapter 2. Buildbot Manual

http://aws.amazon.com/ec2/
http://aws.amazon.com/

Buildbot Documentation, Release 0.9.1

up for EC2, it may say it wants you to upload an x.509 cert. You will need this to create images (see below)
but it is not technically necessary for the buildbot master configuration.

3. You must enter a valid credit card before you will be able to use EC2. Do that under ‘Payment Method’.

4. Make sure you’re signed up for EC2 by going to Your Account → Account Activity and verifying EC2 is
listed.

Create an AMI

Now you need to create an AMI and configure the master. You may need to run through this cycle a few times to
get it working, but these instructions should get you started.

Creating an AMI is out of the scope of this document. The EC2 Getting Started Guide
(http://docs.amazonwebservices.com/AWSEC2/latest/GettingStartedGuide/) is a good resource for this task. Here
are a few additional hints.

• When an instance of the image starts, it needs to automatically start a buildbot worker that connects to your
master (to create a buildbot worker, Creating a worker; to make a daemon, Launching the daemons).

• You may want to make an instance of the buildbot worker, configure it as a standard worker in the master
(i.e., not as a latent worker), and test and debug it that way before you turn it into an AMI and convert to a
latent worker in the master.

Configure the Master with an EC2LatentWorker

Now let’s assume you have an AMI that should work with the EC2LatentWorker. It’s now time to set up your
buildbot master configuration.

You will need some information from your AWS account: the Access Key Id and the Secret Access Key. If you’ve
built the AMI yourself, you probably already are familiar with these values. If you have not, and someone has
given you access to an AMI, these hints may help you find the necessary values:

• While logged into your AWS account, find the “Access Identifiers” link (either on the left, or via Your
Account → Access Identifiers.

• On the page, you’ll see alphanumeric values for “Your Access Key Id:” and “Your Secret Access Key:”.
Make a note of these. Later on, we’ll call the first one your identifier and the second one your
secret_identifier.

When creating an EC2LatentWorker in the buildbot master configuration, the first three arguments are re-
quired. The name and password are the first two arguments, and work the same as with normal workers. The next
argument specifies the type of the EC2 virtual machine (available options as of this writing include m1.small,
m1.large, m1.xlarge, c1.medium, and c1.xlarge; see the EC2 documentation for descriptions of these
machines).

Here is the simplest example of configuring an EC2 latent worker. It specifies all necessary remaining values
explicitly in the instantiation.

from buildbot.plugins import worker
c['workers'] = [

worker.EC2LatentWorker('bot1', 'sekrit', 'm1.large',
ami='ami-12345',
identifier='publickey',
secret_identifier='privatekey'
keypair_name='latent_buildbot_worker',
security_name='latent_buildbot_worker',
)

]

2.4. Configuration 109

http://docs.amazonwebservices.com/AWSEC2/latest/GettingStartedGuide/

Buildbot Documentation, Release 0.9.1

The ami argument specifies the AMI that the master should start. The identifier argument specifies the
AWS Access Key Id, and the secret_identifier specifies the AWS Secret Access Key. Both the AMI and
the account information can be specified in alternate ways.

Note: Whoever has your identifier and secret_identifier values can request AWS work charged
to your account, so these values need to be carefully protected. Another way to specify these access keys is to
put them in a separate file. Buildbot supports the standard AWS credentials file. You can then make the access
privileges stricter for this separate file, and potentially let more people read your main configuration file. If your
master is running in EC2, you can also use IAM roles for EC2 to delegate permissions.

keypair_name and security_name allow you to specify different names for these AWS EC2 values.

You can make an .aws directory in the home folder of the user running the buildbot master. In that directory,
create a file called credentials. The format of the file should be as follows, replacing identifier and
secret_identifier with the credentials obtained before.

[default]
aws_access_key_id = identifier
aws_secret_access_key = secret_identifier

If you are using IAM roles, no config file is required. Then you can instantiate the worker as follows.

from buildbot.plugins import worker
c['workers'] = [

worker.EC2LatentWorker('bot1', 'sekrit', 'm1.large',
ami='ami-12345',
keypair_name='latent_buildbot_worker',
security_name='latent_buildbot_worker',
)

]

Previous examples used a particular AMI. If the Buildbot master will be deployed in a process-controlled environ-
ment, it may be convenient to specify the AMI more flexibly. Rather than specifying an individual AMI, specify
one or two AMI filters.

In all cases, the AMI that sorts last by its location (the S3 bucket and manifest name) will be preferred.

One available filter is to specify the acceptable AMI owners, by AWS account number (the 12 digit number,
usually rendered in AWS with hyphens like “1234-5678-9012”, should be entered as in integer).

from buildbot.plugins import worker
bot1 = worker.EC2LatentWorker('bot1', 'sekrit', 'm1.large',

valid_ami_owners=[11111111111,
22222222222],

identifier='publickey',
secret_identifier='privatekey',
keypair_name='latent_buildbot_worker',
security_name='latent_buildbot_worker',
)

The other available filter is to provide a regular expression string that will be matched against each AMI’s location
(the S3 bucket and manifest name).

from buildbot.plugins import worker
bot1 = worker.EC2LatentWorker(

'bot1', 'sekrit', 'm1.large',
valid_ami_location_regex=r'buildbot\-.*/image.manifest.xml',
identifier='publickey',
secret_identifier='privatekey',
keypair_name='latent_buildbot_worker',
security_name='latent_buildbot_worker',
)

110 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.1

The regular expression can specify a group, which will be preferred for the sorting. Only the first group is used;
subsequent groups are ignored.

from buildbot.plugins import worker
bot1 = worker.EC2LatentWorker(

'bot1', 'sekrit', 'm1.large',
valid_ami_location_regex=r'buildbot\-.*\-(.*)/image.manifest.xml',
identifier='publickey',
secret_identifier='privatekey',
keypair_name='latent_buildbot_worker',
security_name='latent_buildbot_worker',
)

If the group can be cast to an integer, it will be. This allows 10 to sort after 1, for instance.

from buildbot.plugins import worker
bot1 = worker.EC2LatentWorker(

'bot1', 'sekrit', 'm1.large',
valid_ami_location_regex=r'buildbot\-.*\-(\d+)/image.manifest.xml',
identifier='publickey',
secret_identifier='privatekey',
keypair_name='latent_buildbot_worker',
security_name='latent_buildbot_worker',
)

In addition to using the password as a handshake between the master and the worker, you may want to use a
firewall to assert that only machines from a specific IP can connect as workers. This is possible with AWS EC2 by
using the Elastic IP feature. To configure, generate a Elastic IP in AWS, and then specify it in your configuration
using the elastic_ip argument.

from buildbot.plugins import worker
c['workers'] = [

worker.EC2LatentWorker('bot1', 'sekrit', 'm1.large',
'ami-12345',
identifier='publickey',
secret_identifier='privatekey',
elastic_ip='208.77.188.166',
keypair_name='latent_buildbot_worker',
security_name='latent_buildbot_worker',
)

]

One other way to configure a worker is by settings AWS tags. They can for example be used to have a more
restrictive security IAM (http://aws.amazon.com/iam/) policy. To get Buildbot to tag the latent worker specify the
tag keys and values in your configuration using the tags argument.

from buildbot.plugins import worker
c['workers'] = [

worker.EC2LatentWorker('bot1', 'sekrit', 'm1.large',
'ami-12345',
identifier='publickey',
secret_identifier='privatekey',
keypair_name='latent_buildbot_worker',
security_name='latent_buildbot_worker',
tags={'SomeTag': 'foo'})

]

If the worker needs access to additional AWS resources, you can also enable your workers to access them via an
EC2 instance profile. To use this capability, you must first create an instance profile separately in AWS. Then
specify its name on EC2LatentWorker via instance_profile_name.

2.4. Configuration 111

http://aws.amazon.com/iam/

Buildbot Documentation, Release 0.9.1

from buildbot.plugins import worker
c['workers'] = [

worker.EC2LatentWorker('bot1', 'sekrit', 'm1.large',
ami='ami-12345',
keypair_name='latent_buildbot_worker',
security_name='latent_buildbot_worker',
instance_profile_name='my_profile'
)

]

You may also supply your own boto3.Session object to allow for more flexible session options (ex. cross-account)
To use this capability, you must first create a boto3.Session object. Then provide it to EC2LatentWorker via
session argument.

import boto3
from buildbot.plugins import worker

session = boto3.session.Session()
c['workers'] = [

worker.EC2LatentWorker('bot1', 'sekrit', 'm1.large',
ami='ami-12345',
keypair_name='latent_buildbot_worker',
security_name='latent_buildbot_worker',
session=session
)

]

The EC2LatentWorker supports all other configuration from the standard Worker. The
missing_timeout and notify_on_missing specify how long to wait for an EC2 instance to attach
before considering the attempt to have failed, and email addresses to alert, respectively. missing_timeout
defaults to 20 minutes.

Volumes

If you want to attach existing volumes to an ec2 latent worker, use the volumes attribute. This mechanism can be
valuable if you want to maintain state on a conceptual worker across multiple start/terminate sequences. volumes
expects a list of (volume_id, mount_point) tuples to attempt attaching when your instance has been created.

If you want to attach new ephemeral volumes, use the the block_device_map attribute. This follows the AWS
API syntax, essentially acting as a passthrough. The only distinction is that the volumes default to deleting on
termination to avoid leaking volume resources when workers are terminated. See boto documentation for further
details.

from buildbot.plugins import worker
c['workers'] = [

worker.EC2LatentWorker('bot1', 'sekrit', 'm1.large',
ami='ami-12345',
keypair_name='latent_buildbot_worker',
security_name='latent_buildbot_worker',
block_device_map= [

"DeviceName": "/dev/xvdb",
"Ebs" : {

"VolumeType": "io1",
"Iops": 1000,
"VolumeSize": 100

}
]
)

]

112 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.1

VPC Support

If you are managing workers within a VPC, your worker configuration must be modified from above. You must
specify the id of the subnet where you want your worker placed. You must also specify security groups created
within your VPC as opposed to classic EC2 security groups. This can be done by passing the ids of the vpc security
groups. Note, when using a VPC, you can not specify classic EC2 security groups (as specified by security_name).

from buildbot.plugins import worker
c['workers'] = [

worker.EC2LatentWorker('bot1', 'sekrit', 'm1.large',
ami='ami-12345',
keypair_name='latent_buildbot_worker',
subnet_id='subnet-12345',
security_group_ids=['sg-12345','sg-67890']
)

]

Spot instances

If you would prefer to use spot instances for running your builds, you can accomplish that by passing in a True
value to the spot_instance parameter to the EC2LatentWorker constructor. Additionally, you may want
to specify max_spot_price and price_multiplier in order to limit your builds’ budget consumption.

from buildbot.plugins import worker
c['workers'] = [

worker.EC2LatentWorker('bot1', 'sekrit', 'm1.large',
'ami-12345', region='us-west-2',
identifier='publickey',
secret_identifier='privatekey',
elastic_ip='208.77.188.166',
keypair_name='latent_buildbot_worker',
security_name='latent_buildbot_worker',
placement='b', spot_instance=True,
max_spot_price=0.09,
price_multiplier=1.15,
product_description='Linux/UNIX')

]

This example would attempt to create a m1.large spot instance in the us-west-2b region costing no more than
$0.09/hour. The spot prices for ‘Linux/UNIX’ spot instances in that region over the last 24 hours will be averaged
and multiplied by the price_multiplier parameter, then a spot request will be sent to Amazon with the
above details. If the multiple exceeds the max_spot_price, the bid price will be the max_spot_price.

Either max_spot_price or price_multiplier, but not both, may be None. If price_multiplier is
None, then no historical price information is retrieved; the bid price is simply the specified max_spot_price.
If the max_spot_price is None, then the multiple of the historical average spot prices is used as the bid price
with no limit.

Libvirt

class buildbot.worker.libvirt.LibVirtWorker

libvirt (http://www.libvirt.org/) is a virtualization API for interacting with the virtualization capabilities of recent
versions of Linux and other OSes. It is LGPL and comes with a stable C API, and Python bindings.

This means we know have an API which when tied to buildbot allows us to have workers that run under Xen,
QEMU, KVM, LXC, OpenVZ, User Mode Linux, VirtualBox and VMWare.

2.4. Configuration 113

http://www.libvirt.org/

Buildbot Documentation, Release 0.9.1

The libvirt code in Buildbot was developed against libvirt 0.7.5 on Ubuntu Lucid. It is used with KVM to test
Python code on Karmic VM’s, but obviously isn’t limited to that. Each build is run on a new VM, images are
temporary and thrown away after each build.

This document will guide you through setup of a libvirt latent worker:

• Setting up libvirt

• Configuring your base image

• Configuring your Master

Setting up libvirt

We won’t show you how to set up libvirt as it is quite different on each platform, but there are a few things you
should keep in mind.

• If you are running on Ubuntu, your master should run Lucid. Libvirt and apparmor are buggy on Karmic.

• If you are using the system libvirt, your buildbot master user will need to be in the libvirtd group.

• If you are using KVM, your buildbot master user will need to be in the KVM group.

• You need to think carefully about your virtual network first. Will NAT be enough? What IP will my VM’s
need to connect to for connecting to the master?

Configuring your base image

You need to create a base image for your builds that has everything needed to build your software. You need to
configure the base image with a buildbot worker that is configured to connect to the master on boot.

Because this image may need updating a lot, we strongly suggest scripting its creation.

If you want to have multiple workers using the same base image it can be annoying to duplicate the image just to
change the buildbot credentials. One option is to use libvirt’s DHCP server to allocate an identity to the worker:
DHCP sets a hostname, and the worker takes its identity from that.

Doing all this is really beyond the scope of the manual, but there is a vmbuilder script and a network.xml
file to create such a DHCP server in contrib/ (Contrib Scripts) that should get you started:

sudo apt-get install ubuntu-vm-builder
sudo contrib/libvirt/vmbuilder

Should create an ubuntu/ folder with a suitable image in it.

virsh net-define contrib/libvirt/network.xml
virsh net-start buildbot-network

Should set up a KVM compatible libvirt network for your buildbot VM’s to run on.

Configuring your Master

If you want to add a simple on demand VM to your setup, you only need the following. We set the username to
minion1, the password to sekrit. The base image is called base_image and a copy of it will be made for
the duration of the VM’s life. That copy will be thrown away every time a build is complete.

from buildbot.plugins import worker, util
c['workers'] = [

worker.LibVirtWorker('minion1', 'sekrit',

114 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.1

util.Connection("qemu:///session"),
'/home/buildbot/images/minion1',
'/home/buildbot/images/base_image')

]

You can use virt-manager to define minion1 with the correct hardware. If you don’t, buildbot won’t be able to
find a VM to start.

LibVirtWorker accepts the following arguments:

name Both a buildbot username and the name of the virtual machine.

password A password for the buildbot to login to the master with.

connection Connection instance wrapping connection to libvirt.

hd_image The path to a libvirt disk image, normally in qcow2 format when using KVM.

base_image If given a base image, buildbot will clone it every time it starts a VM. This means you always
have a clean environment to do your build in.

xml If a VM isn’t predefined in virt-manager, then you can instead provide XML like that used with virsh
define. The VM will be created automatically when needed, and destroyed when not needed any longer.

OpenStack

class buildbot.worker.openstack.OpenStackLatentWorker

OpenStack (http://openstack.org/) is a series of interconnected components that facilitates managing compute,
storage, and network resources in a data center. It is available under the Apache License and has a REST interface
along with a Python client.

This document will guide you through setup of an OpenStack latent worker:

• Install dependencies

• Get an Account in an OpenStack cloud

• Create an Image

• Configure the Master with an OpenStackLatentWorker

Install dependencies

OpenStackLatentWorker requires python-novaclient to work, you can install it with pip install python-novaclient.

Get an Account in an OpenStack cloud

Setting up OpenStack is outside the domain of this document. There are four account details necessary for the
Buildbot master to interact with your OpenStack cloud: username, password, a tenant name, and the auth URL to
use.

Create an Image

OpenStack supports a large number of image formats. OpenStack maintains a short list of pre-
built images; if the desired image is not listed, The OpenStack Compute Administration Manual
(http://docs.openstack.org/trunk/openstack-compute/admin/content/index.html) is a good resource for creating
new images. You need to configure the image with a buildbot worker to connect to the master on boot.

2.4. Configuration 115

http://openstack.org/
http://docs.openstack.org/trunk/openstack-compute/admin/content/index.html

Buildbot Documentation, Release 0.9.1

Configure the Master with an OpenStackLatentWorker

With the configured image in hand, it is time to configure the buildbot master to create OpenStack instances of it.
You will need the aforementioned account details. These are the same details set in either environment variables
or passed as options to an OpenStack client.

OpenStackLatentWorker accepts the following arguments:

name The worker name.

password A password for the worker to login to the master with.

flavor The flavor ID to use for the instance.

image A string containing the image UUID to use for the instance. A callable may instead be passed. It will be
passed the list of available images and must return the image to use.

os_username

os_password

os_tenant_name

os_auth_url The OpenStack authentication needed to create and delete instances. These are the same as the
environment variables with uppercase names of the arguments.

block_devices A list of dictionaries. Each dictionary specifies a block device to set up during instance
creation. The values support using properties from the build and will be rendered when the instance is
started.

Supported keys

uuid (required): The image, snapshot, or volume UUID.

volume_size (optional): Size of the block device in GiB. If not specified, the minimum size in GiB to
contain the source will be calculated and used.

device_name (optional): defaults to vda. The name of the device in the instance; e.g. vda or xda.

source_type (optional): defaults to image. The origin of the block device. Valid values are image,
snapshot, or volume.

destination_type (optional): defaults to volume. Destination of block device: volume or local.

delete_on_termination (optional): defaults to True. Controls if the block device will be deleted
when the instance terminates.

boot_index (optional): defaults to 0. Integer used for boot order.

meta A dictionary of string key-value pairs to pass to the instance. These will be available under the metadata
key from the metadata service.

nova_args (optional) A dict that will be appended to the arguments when creating a VM. Buildbot uses the
OpenStack Nova version 1.1 API by default (see client_version).

client_version (optional) Nova client version to use. Defaults to 1.1 (deprecated). Use 2 or 2.minor for
version 2 API.

Here is the simplest example of configuring an OpenStack latent worker.

from buildbot.plugins import worker
c['workers'] = [

worker.OpenStackLatentWorker('bot2', 'sekrit',
flavor=1, image='8ac9d4a4-5e03-48b0-acde-77a0345a9ab1',
os_username='user', os_password='password',
os_tenant_name='tenant',
os_auth_url='http://127.0.0.1:35357/v2.0')

]

116 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.1

The image argument also supports being given a callable. The callable will be passed the list of available images
and must return the image to use. The invocation happens in a separate thread to prevent blocking the build master
when interacting with OpenStack.

from buildbot.plugins import worker

def find_image(images):
Sort oldest to newest.
cmp_fn = lambda x,y: cmp(x.created, y.created)
candidate_images = sorted(images, cmp=cmp_fn)
Return the oldest candiate image.
return candidate_images[0]

c['workers'] = [
worker.OpenStackLatentWorker('bot2', 'sekrit',

flavor=1, image=find_image,
os_username='user', os_password='password',
os_tenant_name='tenant',
os_auth_url='http://127.0.0.1:35357/v2.0')

]

The block_devices argument is minimally manipulated to provide some defaults and passed directly to no-
vaclient. The simplest example is an image that is converted to a volume and the instance boots from that volume.
When the instance is destroyed, the volume will be terminated as well.

from buildbot.plugins import worker
c['workers'] = [

worker.OpenStackLatentWorker('bot2', 'sekrit',
flavor=1, image='8ac9d4a4-5e03-48b0-acde-77a0345a9ab1',
os_username='user', os_password='password',
os_tenant_name='tenant',
os_auth_url='http://127.0.0.1:35357/v2.0',
block_devices=[

{'uuid': '3f0b8868-67e7-4a5b-b685-2824709bd486',
'volume_size': 10}])

]

The nova_args can be used to specify additional arguments for the novaclient. For example network mappings,
which is required if your OpenStack tenancy has more than one network, and default cannot be determined. Please
refer to your OpenStack manual whether it wants net-id or net-name.

Other useful parameters are availability_zone, security_groups and config_drive. Refer to
Python bindings to the OpenStack Nova API (http://docs.openstack.org/developer/python-novaclient/) for more
information. It is found on section Servers, method create.

from buildbot.plugins import worker
c['workers'] = [

worker.OpenStackLatentWorker('bot2', 'sekrit',
flavor=1, image='8ac9d4a4-5e03-48b0-acde-77a0345a9ab1',
os_username='user', os_password='password',
os_tenant_name='tenant',
os_auth_url='http://127.0.0.1:35357/v2.0',
nova_args={

'nics': [
{'net-id':'uid-of-network'}

]})
]

OpenStackLatentWorker supports all other configuration from the standard Worker. The
missing_timeout and notify_on_missing specify how long to wait for an OpenStack instance to attach
before considering the attempt to have failed and email addresses to alert, respectively. missing_timeout
defaults to 20 minutes.

2.4. Configuration 117

http://docs.openstack.org/developer/python-novaclient/

Buildbot Documentation, Release 0.9.1

Docker latent worker

class buildbot.worker.docker.DockerLatentWorker

Docker (https://docker.com) is an open-source project that automates the deployment of applications inside soft-
ware containers. Using the Docker latent worker, an attempt is made at instantiating a fresh image upon each
build, assuring consistency of the environment between builds. Each image will be discarded once the worker
finished processing the build queue (i.e. becomes idle). See build_wait_timeout to change this behavior.

This document will guide you through the setup of such workers.

• Docker Installation

• Image Creation

• Reuse same image for different workers

• Master Setup

Docker Installation

An easy way to try Docker is through installation of dedicated Virtual machines. Two of them stands out:

• CoreOS (https://coreos.com/)

• boot2docker (http://boot2docker.io/)

Beside, it is always possible to install Docker next to the buildmaster. Beware that in this case, overall performance
will depend on how many builds the computer where you have your buildmaster can handle as everything will
happen on the same one.

Note: It is not necessary to install Docker in the same environment as your master as we will make use to the
Docker API through docker-py (https://pypi.python.org/pypi/docker-py). More in master setup.

CoreOS

CoreOS is targeted at building infrastructure and distributed systems. In order to get the latent worker
working with CoreOS, it is necessary to expose the docker socket (https://coreos.com/docs/launching-
containers/building/customizing-docker/) outside of the Virtual Machine. If you installed it via Vagrant
(https://coreos.com/docs/running-coreos/platforms/vagrant/), it is also necessary to uncomment the following line
in your config.rb file:

$expose_docker_tcp=2375

The following command should allow you to confirm that your Docker socket is now available via the network:

docker -H tcp://127.0.0.1:2375 ps

boot2docker

boot2docker is one of the fastest ways to boot to Docker. As it is meant to be used from outside of the Virtual
Machine, the socket is already exposed. Please follow the installation instructions on how to find the address of
your socket.

118 Chapter 2. Buildbot Manual

https://docker.com
https://coreos.com/
http://boot2docker.io/
https://pypi.python.org/pypi/docker-py
https://coreos.com/docs/launching-containers/building/customizing-docker/
https://coreos.com/docs/running-coreos/platforms/vagrant/

Buildbot Documentation, Release 0.9.1

Image Creation

Our build master will need the name of an image to perform its builds. Each time a new build will be requested,
the same base image will be used again and again, actually discarding the result of the previous build. If you need
some persistant storage between builds, you can use Volumes.

Each Docker image has a single purpose. Our worker image will be running a buildbot worker.

Docker uses Dockerfiles to describe the steps necessary to build an image. The following example will build
a minimal worker. Don’t forget to add your dependencies in there to get a succesfull build !

1 FROM debian:stable
2 RUN apt-get update && apt-get install -y \
3 python-dev \
4 python-pip
5 RUN pip install buildbot-worker
6 RUN groupadd -r buildbot && useradd -r -g buildbot buildbot
7 RUN mkdir /worker && chown buildbot:buildbot /worker
8 # Install your build-dependencies here ...
9 USER buildbot

10 WORKDIR /worker
11 RUN buildbot-worker create-worker . <master-hostname> <workername> <workerpassword>
12 ENTRYPOINT ["/usr/local/bin/buildbot-worker"]
13 CMD ["start", "--nodaemon"]

On line 11, the hostname for your master instance, as well as the worker name and password is setup. Don’t forget
to replace those values with some valid ones for your project.

It is a good practice to set the ENTRYPOINT to the worker executable, and the CMD to
["start","--nodaemon"]. This way, no parameter will be required when starting the image.

When your Dockerfile is ready, you can build your first image using the following command (replace myworker-
name with a relevant name for your case):

docker build -t myworkername - < Dockerfile

Reuse same image for different workers

Previous simple example hardcodes the worker name into the dockerfile, which will not work if you want to share
your docker image between workers.

You can find in buildbot source code in master/contrib/docker two example configurations:

worker the base worker configuration, including a custom buildbot.tac, which takes environment variables
into account for setting the correct worker name, and connect to the correct master.

pythonnode_worker a worker with Python and node installed, which demonstrate how to reuse the base
worker to create variations of build environments.

The master setups several environment variables before starting the workers:

BUILDMASTER The address of the master the worker shall connect to

BUILDMASTER_PORT The port of the master’s worker ‘pb’ protocol.

WORKERNAME The name the worker should use to connect to master

WORKERPASS The password the worker should use to connect to master

Master Setup

We will rely on docker-py to connect our master with docker. Now is the time to install it in your master environ-
ment.

2.4. Configuration 119

Buildbot Documentation, Release 0.9.1

Before adding the worker to your master configuration, it is possible to validate the previous steps by starting the
newly created image interactively. To do this, enter the following lines in a Python prompt where docker-py is
installed:

>>> import docker
>>> docker_socket = 'tcp://localhost:2375'
>>> client = docker.client.Client(base_url=docker_socket)
>>> worker_image = 'my_project_worker'
>>> container = client.create_container(worker_image)
>>> client.start(container['Id'])
>>> # Optionally examine the logs of the master
>>> client.stop(container['Id'])
>>> client.wait(container['Id'])
0

It is now time to add the new worker to the master configuration under workers.

The following example will add a Docker latent worker for docker running at the following address:
tcp://localhost:2375, the worker name will be docker, its password: password, and the base im-
age name will be my_project_worker:

from buildbot.plugins import worker
c['workers'] = [

worker.DockerLatentWorker('docker', 'password',
docker_host='tcp://localhost:2375',
image='my_project_worker')

]

In addition to the arguments available for any Latent Workers, DockerLatentWorkerwill accept the following
extra ones:

docker_host (mandatory) This is the address the master will use to connect with a running Docker instance.

image (optional if dockerfile is given) This is the name of the image that will be started by the build master.
It should start a worker. This option can be a renderable, like Interpolate, so that it generates from the build
request properties.

command (optional) This will override the command setup during image creation.

volumes (optional) See Setting up Volumes

dockerfile (optional if image is given) This is the content of the Dockerfile that will be used to build the
specified image if the image is not found by Docker. It should be a multiline string.

Note: In case image and dockerfile are given, no attempt is made to compare the image with the
content of the Dockerfile parameter if the image is found.

version (optional, default to the highest version known by docker-py) This will indicates wich API version
must be used to communicate with Docker.

tls (optional) This allow to use TLS when connecting with the Docker socket. This should
be a docker.tls.TLSConfig object. See docker-py’s own documentation (https://docker-
py.readthedocs.io/en/latest/tls/) for more details on how to initialise this object.

followStartupLogs (optional, defaults to false) This transfers docker container’s log inside master logs
during worker startup (before connection). This can be useful to debug worker startup. e.g network issues,
etc.

masterFQDN (optional, defaults to socket.getfqdn()) Address of the master the worker should connect to. Use
if you master machine does not have proper fqdn. This value is passed to the docker image via environment
variable BUILDMASTER

120 Chapter 2. Buildbot Manual

https://docker-py.readthedocs.io/en/latest/tls/

Buildbot Documentation, Release 0.9.1

hostconfig (optional) Extra host configuration parameters passed as a dictionary used to create HostConfig
object. See docker-py’s HostConfig documentation (https://docker-py.readthedocs.io/en/latest/hostconfig/)
for all the supported options.

Setting up Volumes

The volume parameter allows to share directory between containers, or between a container and the host system.
Refer to Docker documentation for more information about Volumes.

The format of that variable has to be an array of string. Each string specify a volume in the following format:
volumename:bindname. The volume name has to be appended with :ro if the volume should be mounted
read-only.

Note: This is the same format as when specifying volumes on the command line for docker’s own -v option.

Hyper latent worker

Hyper (https://hyper.sh) is a CaaS solution for hosting docker container in the cloud, billed to the second. It forms
a very cost efficient solution to run your CI in the cloud.

Buildbot supports using Hyper (https://hyper.sh) to host your latent workers.

class buildbot.worker.hyper.HyperLatentWorker

Using the Hyper latent worker, an attempt is made at instantiating a fresh image upon each build, assuring consis-
tency of the environment between builds. Each image will be discarded once the worker finished processing the
build queue (i.e. becomes idle). See build_wait_timeout to change this behavior.

In addition to the arguments available for any Latent Workers, HyperLatentWorker will accept the following
extra ones:

hyper_host (mandatory) This is the address the hyper infra endpoint will use to start docker containers.

image (mandatory) This is the name of the image that will be started by the build master. It should start a worker.
This option can be a renderable, like Interpolate, so that it generates from the build request properties.
Images are by default pulled from the public DockerHub (https://hub.docker.com/) docker registry. You can
consult the hyper documentation to know how to configure a custom registry. HyperLatentWorker does not
support starting a worker built from a Dockerfile.

masterFQDN (optional, defaults to socket.getfqdn()) Address of the master the worker should connect to. Use
if you master machine does not have proper fqdn. This value is passed to the docker image via environment
variable BUILDMASTER

If the value contains a colon (:), then BUILDMASTER and BUILDMASTER_PORT environment vari-
ables will be passed, following scheme: masterFQDN="$BUILDMASTER:$BUILDMASTER_PORT"

This feature is useful for testing behind a proxy using ngrok command like: ngrok tcp 9989 ngrok
config can the be retrieved with following snippet:

import requests, urlparse
r = requests.get("http://localhost:4040/api/tunnels/command_line").json()
masterFQDN = urlparse.urlparse(r['public_url']).netloc

hyper_accesskey (mandatory) Access key to use as part of the creds to access hyper.

hyper_secretkey (mandatory) Secret key to use as part of the creds to access hyper.

hyper_size (optional, defaults to s3) Size of the container to use as per HyperPricing
(https://hyper.sh/pricing.html)

2.4. Configuration 121

https://docker-py.readthedocs.io/en/latest/hostconfig/
https://hyper.sh
https://hyper.sh
https://hub.docker.com/
https://hyper.sh/pricing.html

Buildbot Documentation, Release 0.9.1

Dangers with Latent Workers

Any latent worker that interacts with a for-fee service, such as the EC2LatentWorker, brings significant risks.
As already identified, the configuration will need access to account information that, if obtained by a criminal, can
be used to charge services to your account. Also, bugs in the buildbot software may lead to unnecessary charges.
In particular, if the master neglects to shut down an instance for some reason, a virtual machine may be running
unnecessarily, charging against your account. Manual and/or automatic (e.g. nagios with a plugin using a library
like boto) double-checking may be appropriate.

A comparatively trivial note is that currently if two instances try to attach to the same latent worker, it is likely
that the system will become confused. This should not occur, unless, for instance, you configure a normal worker
to connect with the authentication of a latent buildbot. If this situation does occurs, stop all attached instances and
restart the master.

2.4.6 Builder Configuration

• Collapsing Build Requests

• Prioritizing Builds

The builders configuration key is a list of objects giving configuration for the Builders. For more information
on the function of Builders in Buildbot, see the Concepts chapter. The class definition for the builder configuration
is in buildbot.config. However there is a much simpler way to use it, so in the configuration file, its use
looks like:

from buildbot.plugins import util
c['builders'] = [

util.BuilderConfig(name='quick', workernames=['bot1', 'bot2'], factory=f_
→˓quick),

util.BuilderConfig(name='thorough', workername='bot1', factory=f_thorough),
]

BuilderConfig takes the following keyword arguments:

name This specifies the Builder’s name, which is used in status reports.

workername

workernames These arguments specify the worker or workers that will be used by this Builder. All workers
names must appear in the workers configuration parameter. Each worker can accommodate multiple
builders. The workernames parameter can be a list of names, while workername can specify only one
worker.

factory This is a buildbot.process.factory.BuildFactory instance which controls how the
build is performed by defining the steps in the build. Full details appear in their own section, Build Factories.

Other optional keys may be set on each BuilderConfig:

builddir Specifies the name of a subdirectory of the master’s basedir in which everything related to this builder
will be stored. This holds build status information. If not set, this parameter defaults to the builder name,
with some characters escaped. Each builder must have a unique build directory.

workerbuilddir Specifies the name of a subdirectory (under the worker’s configured base directory) in which
everything related to this builder will be placed on the worker. This is where checkouts, compiles, and tests
are run. If not set, defaults to builddir. If a worker is connected to multiple builders that share the same
workerbuilddir, make sure the worker is set to run one build at a time or ensure this is fine to run
multiple builds from the same directory simultaneously.

tags If provided, this is a list of strings that identifies tags for the builder. Status clients can limit themselves to a
subset of the available tags. A common use for this is to add new builders to your setup (for a new module,
or for a new worker) that do not work correctly yet and allow you to integrate them with the active builders.

122 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.1

You can tag these new builders with a test tag, make your main status clients ignore them, and have only
private status clients pick them up. As soon as they work, you can move them over to the active tag.

nextWorker If provided, this is a function that controls which worker will be assigned future jobs.
The function is passed three arguments, the Builder object which is assigning a new job, a
list of WorkerForBuilder objects and the BuildRequest. The function should return one
of the WorkerForBuilder objects, or None if none of the available workers should be used.
As an example, for each worker in the list, worker.worker will be a Worker object, and
worker.worker.workername is the worker’s name. The function can optionally return a Deferred,
which should fire with the same results.

nextBuild If provided, this is a function that controls which build request will be handled next. The function
is passed two arguments, the Builder object which is assigning a new job, and a list of BuildRequest
objects of pending builds. The function should return one of the BuildRequest objects, or None if none
of the pending builds should be started. This function can optionally return a Deferred which should fire
with the same results.

canStartBuild If provided, this is a function that can veto whether a particular worker should be used
for a given build request. The function is passed three arguments: the Builder, a Worker, and a
BuildRequest. The function should return True if the combination is acceptable, or False other-
wise. This function can optionally return a Deferred which should fire with the same results.

locks This argument specifies a list of locks that apply to this builder; see Interlocks.

env A Builder may be given a dictionary of environment variables in this parameter. The variables are used in
ShellCommand steps in builds created by this builder. The environment variables will override anything
in the worker’s environment. Variables passed directly to a ShellCommand will override variables of the
same name passed to the Builder.

For example, if you have a pool of identical workers it is often easier to manage variables like PATH from
Buildbot rather than manually editing it inside of the workers’ environment.

f = factory.BuildFactory
f.addStep(ShellCommand(

command=['bash', './configure']))
f.addStep(Compile())

c['builders'] = [
BuilderConfig(name='test', factory=f,

workernames=['worker1', 'worker2', 'worker3', 'worker4'],
env={'PATH': '/opt/local/bin:/opt/app/bin:/usr/local/bin:/usr/bin'}),

]

Unlike most builder configuration arguments, this argument can contain renderables.

collapseRequests Specifies how build requests for this builder should be collapsed. See Collapsing Build
Requests, below.

properties A builder may be given a dictionary of Build Properties specific for this builder in this parameter.
Those values can be used later on like other properties. Interpolate.

description A builder may be given an arbitrary description, which will show up in the web status on the
builder’s page.

Collapsing Build Requests

When more than one build request is available for a builder, Buildbot can “collapse” the requests into a single
build. This is desirable when build requests arrive more quickly than the available workers can satisfy them, but
has the drawback that separate results for each build are not available.

Requests are only candidated for a merge if both requests have exactly the same codebases.

2.4. Configuration 123

Buildbot Documentation, Release 0.9.1

This behavior can be controlled globally, using the collapseRequests parameter, and on a per-Builder
basis, using the collapseRequests argument to the Builder configuration. If collapseRequests is
given, it completely overrides the global configuration.

Possible values for both collapseRequests configurations are:

True Requests will be collapsed if their sourcestamp are compatible (see below for definition of compatible).

False Requests will never be collapsed.

callable(builder,req1,req2) Requests will be collapsed if the callable returns true. See Collapse
Request Functions for detailed example.

Sourcestamps are compatible if all of the below conditions are met:

• Their codebase, branch, project, and repository attributes match exactly

• Neither source stamp has a patch (e.g., from a try scheduler)

• Either both source stamps are associated with changes, or neither are associated with changes but they have
matching revisions.

Prioritizing Builds

The BuilderConfig parameter nextBuild can be use to prioritize build requests within a builder. Note that
this is orthogonal to Prioritizing Builders, which controls the order in which builders are called on to start their
builds. The details of writing such a function are in Build Priority Functions.

Such a function can be provided to the BuilderConfig as follows:

def pickNextBuild(builder, requests):
...

c['builders'] = [
BuilderConfig(name='test', factory=f,

nextBuild=pickNextBuild,
workernames=['worker1', 'worker2', 'worker3', 'worker4']),

]

2.4.7 Build Factories

Each Builder is equipped with a build factory, which defines the steps used to perform that particular type
of build. This factory is created in the configuration file, and attached to a Builder through the factory element
of its dictionary.

The steps used by these builds are defined in the next section, Build Steps.

Note: Build factories are used with builders, and are not added directly to the buildmaster configuration dictio-
nary.

• Defining a Build Factory

• Dynamic Build Factories

• Predefined Build Factories

Defining a Build Factory

A BuildFactory defines the steps that every build will follow. Think of it as a glorified script. For example, a
build factory which consists of an SVN checkout followed by a make build would be configured as follows:

124 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.1

from buildbot.plugins import util, steps

f = util.BuildFactory()
f.addStep(steps.SVN(repourl="http://..", mode="incremental"))
f.addStep(steps.Compile(command=["make", "build"]))

This factory would then be attached to one builder (or several, if desired):

c['builders'].append(
BuilderConfig(name='quick', workernames=['bot1', 'bot2'], factory=f))

It is also possible to pass a list of steps into the BuildFactory when it is created. Using addStep is usually
simpler, but there are cases where it is more convenient to create the list of steps ahead of time, perhaps using
some Python tricks to generate the steps.

from buildbot.plugins import steps, util

all_steps = [
steps.CVS(cvsroot=CVSROOT, cvsmodule="project", mode="update"),
steps.Compile(command=["make", "build"]),

]
f = util.BuildFactory(all_steps)

Finally, you can also add a sequence of steps all at once:

f.addSteps(all_steps)

Attributes

The following attributes can be set on a build factory after it is created, e.g.,

f = util.BuildFactory()
f.useProgress = False

useProgress (defaults to True): if True, the buildmaster keeps track of how long each step takes, so it can
provide estimates of how long future builds will take. If builds are not expected to take a consistent amount
of time (such as incremental builds in which a random set of files are recompiled or tested each time), this
should be set to False to inhibit progress-tracking.

workdir (defaults to ‘build’): workdir given to every build step created by this factory as default. The workdir
can be overridden in a build step definition.

If this attribute is set to a string, that string will be used for constructing the workdir (worker base + builder
builddir + workdir). The attribute can also be a Python callable, for more complex cases, as described in
Factory Workdir Functions.

Dynamic Build Factories

In some cases you may not know what commands to run until after you checkout the source tree. For those cases
you can dynamically add steps during a build from other steps.

The Build object provides 2 functions to do this:

addStepsAfterCurrentStep(self,step_factories) This adds the steps after the step that is cur-
rently executing.

addStepsAfterLastStep(self,step_factories) This adds the steps onto the end of the build.

Both functions only accept as an argument a list of steps to add to the build.

2.4. Configuration 125

Buildbot Documentation, Release 0.9.1

For example lets say you have a script checked in into your source tree called build.sh. When this script is called
with the argument --list-stages it outputs a newline separated list of stage names. This can be used to
generate at runtime a step for each stage in the build. Each stage is then run in this example using ./build.sh
--run-stage <stage name>.

from buildbot.plugins import util, steps
from buildbot.process import buildstep, logobserver
from twisted.internet import defer

class GenerateStagesCommand(buildstep.ShellMixin, steps.BuildStep):

def __init__(self, **kwargs):
kwargs = self.setupShellMixin(kwargs)
steps.BuildStep.__init__(self, **kwargs)
self.observer = logobserver.BufferLogObserver()
self.addLogObserver('stdio', self.observer)

def extract_stages(self, stdout):
stages = []
for line in stdout.split('\n'):

stage = str(line.strip())
if stage:

stages.append(stage)
return stages

@defer.inlineCallbacks
def run(self):

run './build.sh --list-stages' to generate the list of stages
cmd = yield self.makeRemoteShellCommand()
yield self.runCommand(cmd)

if the command passes extract the list of stages
result = cmd.results()
if result == util.SUCCESS:

create a ShellCommand for each stage and add them to the build
self.build.addStepsAfterCurrentStep([

steps.ShellCommand(name=stage, command=["./build.sh", "--run-stage
→˓", stage])

for stage in self.extract_stages(self.observer.getStdout())
])

defer.returnValue(result)

f = util.BuildFactory()
f.addStep(steps.Git(repourl=repourl))
f.addStep(GenerateStagesCommand(

name="Generate build stages",
command=["./build.sh", "--list-stages"],
haltOnFailure=True))

Predefined Build Factories

Buildbot includes a few predefined build factories that perform common build sequences. In practice, these
are rarely used, as every site has slightly different requirements, but the source for these factories may provide
examples for implementation of those requirements.

GNUAutoconf

class buildbot.process.factory.GNUAutoconf

126 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.1

GNU Autoconf (http://www.gnu.org/software/autoconf/) is a software portability tool, intended to make it possible
to write programs in C (and other languages) which will run on a variety of UNIX-like systems. Most GNU
software is built using autoconf. It is frequently used in combination with GNU automake. These tools both
encourage a build process which usually looks like this:

% CONFIG_ENV=foo ./configure --with-flags
% make all
% make check
make install

(except of course the Buildbot always skips the make install part).

The Buildbot’s buildbot.process.factory.GNUAutoconf factory is designed to build projects which
use GNU autoconf and/or automake. The configuration environment variables, the configure flags, and command
lines used for the compile and test are all configurable, in general the default values will be suitable.

Example:

f = util.GNUAutoconf(source=source.SVN(repourl=URL, mode="copy"),
flags=["--disable-nls"])

Required Arguments:

source This argument must be a step specification tuple that provides a BuildStep to generate the source tree.

Optional Arguments:

configure The command used to configure the tree. Defaults to ./configure. Accepts either a string or a
list of shell argv elements.

configureEnv The environment used for the initial configuration step. This accepts a dictionary which
will be merged into the worker’s normal environment. This is commonly used to provide things like
CFLAGS="-O2 -g" (to turn off debug symbols during the compile). Defaults to an empty dictionary.

configureFlags A list of flags to be appended to the argument list of the configure command. This
is commonly used to enable or disable specific features of the autoconf-controlled package, like
["--without-x"] to disable windowing support. Defaults to an empty list.

reconf use autoreconf to generate the ./configure file, set to True to use a buildbot default autoreconf command,
or define the command for the ShellCommand.

compile this is a shell command or list of argv values which is used to actually compile the tree. It defaults to
make all. If set to None, the compile step is skipped.

test this is a shell command or list of argv values which is used to run the tree’s self-tests. It defaults to make
check. If set to None, the test step is skipped.

distcheck this is a shell command or list of argv values which is used to run the packaging test. It defaults to
make distcheck. If set to None, the test step is skipped.

BasicBuildFactory

class buildbot.process.factory.BasicBuildFactory

This is a subclass of GNUAutoconf which assumes the source is in CVS, and uses mode='full' and
method='clobber' to always build from a clean working copy.

BasicSVN

class buildbot.process.factory.BasicSVN

This class is similar to QuickBuildFactory, but uses SVN instead of CVS.

2.4. Configuration 127

http://www.gnu.org/software/autoconf/

Buildbot Documentation, Release 0.9.1

QuickBuildFactory

class buildbot.process.factory.QuickBuildFactory

The QuickBuildFactory class is a subclass of GNUAutoconf which assumes the source is in CVS, and
uses mode='incremental' to get incremental updates.

The difference between a full build and a quick build is that quick builds are generally done incrementally, starting
with the tree where the previous build was performed. That simply means that the source-checkout step should be
given a mode='incremental' flag, to do the source update in-place.

In addition to that, this class sets the useProgress flag to False. Incremental builds will (or at least the ought
to) compile as few files as necessary, so they will take an unpredictable amount of time to run. Therefore it would
be misleading to claim to predict how long the build will take.

This class is probably not of use to new projects.

CPAN

class buildbot.process.factory.CPAN

Most Perl modules available from the CPAN (http://www.cpan.org/) archive use the MakeMaker module to
provide configuration, build, and test services. The standard build routine for these modules looks like:

% perl Makefile.PL
% make
% make test
make install

(except again Buildbot skips the install step)

Buildbot provides a CPAN factory to compile and test these projects.

Arguments:

source (required): A step specification tuple, like that used by GNUAutoconf.

perl A string which specifies the perl executable to use. Defaults to just perl.

Distutils

class buildbot.process.factory.Distutils

Most Python modules use the distutils package to provide configuration and build services. The standard
build process looks like:

% python ./setup.py build
% python ./setup.py install

Unfortunately, although Python provides a standard unit-test framework named unittest, to the best of my
knowledge distutils does not provide a standardized target to run such unit tests. (Please let me know if I’m
wrong, and I will update this factory.)

The Distutils factory provides support for running the build part of this process. It accepts the same source=
parameter as the other build factories.

Arguments:

source (required): A step specification tuple, like that used by GNUAutoconf.

python A string which specifies the python executable to use. Defaults to just python.

128 Chapter 2. Buildbot Manual

http://www.cpan.org/

Buildbot Documentation, Release 0.9.1

test Provides a shell command which runs unit tests. This accepts either a string or a list. The default value is
None, which disables the test step (since there is no common default command to run unit tests in distutils
modules).

Trial

class buildbot.process.factory.Trial

Twisted provides a unit test tool named trial which provides a few improvements over Python’s built-in
unittest module. Many Python projects which use Twisted for their networking or application services also
use trial for their unit tests. These modules are usually built and tested with something like the following:

% python ./setup.py build
% PYTHONPATH=build/lib.linux-i686-2.3 trial -v PROJECTNAME.test
% python ./setup.py install

Unfortunately, the build/lib directory into which the built/copied .py files are placed is actually architecture-
dependent, and I do not yet know of a simple way to calculate its value. For many projects it is sufficient to import
their libraries in place from the tree’s base directory (PYTHONPATH=.).

In addition, the PROJECTNAME value where the test files are located is project-dependent: it is usually just the
project’s top-level library directory, as common practice suggests the unit test files are put in the test sub-module.
This value cannot be guessed, the Trial class must be told where to find the test files.

The Trial class provides support for building and testing projects which use distutils and trial. If the test module
name is specified, trial will be invoked. The library path used for testing can also be set.

One advantage of trial is that the Buildbot happens to know how to parse trial output, letting it identify which
tests passed and which ones failed. The Buildbot can then provide fine-grained reports about how many tests have
failed, when individual tests fail when they had been passing previously, etc.

Another feature of trial is that you can give it a series of source .py files, and it will search them for special
test-case-name tags that indicate which test cases provide coverage for that file. Trial can then run just the
appropriate tests. This is useful for quick builds, where you want to only run the test cases that cover the changed
functionality.

Arguments:

testpath Provides a directory to add to PYTHONPATH when running the unit tests, if tests are being run.
Defaults to . to include the project files in-place. The generated build library is frequently architecture-
dependent, but may simply be build/lib for pure-Python modules.

python which Python executable to use. This list will form the start of the argv array that will launch
trial. If you use this, you should set trial to an explicit path (like /usr/bin/trial or
./bin/trial). The parameter defaults to None, which leaves it out entirely (running trial args
instead of python ./bin/trial args). Likely values are ['python'], ['python2.2'], or
['python','-Wall'].

trial provides the name of the trial command. It is occasionally useful to use an alternate executable, such
as trial2.2 which might run the tests under an older version of Python. Defaults to trial.

trialMode a list of arguments to pass to trial, specifically to set the reporting mode. This defaults to
['--reporter=bwverbose'], which only works for Twisted-2.1.0 and later.

trialArgs a list of arguments to pass to trial, available to turn on any extra flags you like. Defaults to [].

tests Provides a module name or names which contain the unit tests for this project. Accepts a string, typically
PROJECTNAME.test, or a list of strings. Defaults to None, indicating that no tests should be run. You
must either set this or testChanges.

testChanges if True, ignore the tests parameter and instead ask the Build for all the files that make up
the Changes going into this build. Pass these filenames to trial and ask it to look for test-case-name tags,
running just the tests necessary to cover the changes.

2.4. Configuration 129

Buildbot Documentation, Release 0.9.1

recurse If True, tells Trial (with the --recurse argument) to look in all subdirectories for additional test
cases.

reactor which reactor to use, like ‘gtk’ or ‘java’. If not provided, the Twisted’s usual platform-dependent
default is used.

randomly If True, tells Trial (with the --random=0 argument) to run the test cases in random order, which
sometimes catches subtle inter-test dependency bugs. Defaults to False.

The step can also take any of the ShellCommand arguments, e.g., haltOnFailure.

Unless one of tests or testChanges are set, the step will generate an exception.

2.4.8 Properties

Build properties are a generalized way to provide configuration information to build steps; see Build Properties
for the conceptual overview of properties.

• Common Build Properties

• Source Stamp Attributes

• Using Properties in Steps

Some build properties come from external sources and are set before the build begins; others are set during the
build, and available for later steps. The sources for properties are:

global configuration These properties apply to all builds.

schedulers A scheduler can specify properties that become available to all builds it starts.

changes A change can have properties attached to it, supplying extra information gathered by the change source.
This is most commonly used with the sendchange command.

forced builds The “Force Build” form allows users to specify properties

workers A worker can pass properties on to the builds it performs.

builds A build automatically sets a number of properties on itself.

builders A builder can set properties on all the builds it runs.

steps The steps of a build can set properties that are available to subsequent steps. In particular, source steps set
the got_revision property.

If the same property is supplied in multiple places, the final appearance takes precedence. For example, a property
set in a builder configuration will override one supplied by a scheduler.

Properties are stored internally in JSON format, so they are limited to basic types of data: numbers, strings, lists,
and dictionaries.

Common Build Properties

The following build properties are set when the build is started, and are available to all steps.

got_revision This property is set when a Source step checks out the source tree, and provides the revision
that was actually obtained from the VC system. In general this should be the same as revision, except for
non-absolute sourcestamps, where got_revision indicates what revision was current when the checkout
was performed. This can be used to rebuild the same source code later.

Note: For some VC systems (Darcs in particular), the revision is a large string containing newlines, and is
not suitable for interpolation into a filename.

130 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.1

For multi-codebase builds (where codebase is not the default ‘’), this property is a dictionary, keyed by
codebase.

buildername This is a string that indicates which Builder the build was a part of. The combination of
buildername and buildnumber uniquely identify a build.

buildnumber Each build gets a number, scoped to the Builder (so the first build performed on any given
Builder will have a build number of 0). This integer property contains the build’s number.

workername This is a string which identifies which worker the build is running on.

scheduler If the build was started from a scheduler, then this property will contain the name of that scheduler.

builddir The absolute path of the base working directory on the worker, of the current builder.

For single codebase builds, where the codebase is ‘’, the following Source Stamp Attributes are also available as
properties: branch, revision, repository, and project .

Source Stamp Attributes

branch revision repository project codebase

For details of these attributes see Concepts.

changes

This attribute is a list of dictionaries representing the changes that make up this sourcestamp.

Using Properties in Steps

For the most part, properties are used to alter the behavior of build steps during a build. This is done by using ren-
derables (objects implementing the IRenderable interface) as step parameters. When the step is started, each
such object is rendered using the current values of the build properties, and the resultant rendering is substituted
as the actual value of the step parameter.

Buildbot offers several renderable object types covering common cases. It’s also possible to create custom ren-
derables.

Note: Properties are defined while a build is in progress; their values are not available when the configuration file
is parsed. This can sometimes confuse newcomers to Buildbot! In particular, the following is a common error:

if Property('release_train') == 'alpha':
f.addStep(...)

This does not work because the value of the property is not available when the if statement is executed. However,
Python will not detect this as an error - you will just never see the step added to the factory.

You can use renderables in most step parameters. Please file bugs for any parameters which do not accept render-
ables.

Property

The simplest renderable is Property, which renders to the value of the property named by its argument:

from buildbot.plugins import steps, util

f.addStep(steps.ShellCommand(command=['echo', 'buildername:',
util.Property('buildername')]))

You can specify a default value by passing a default keyword argument:

2.4. Configuration 131

Buildbot Documentation, Release 0.9.1

f.addStep(steps.ShellCommand(command=['echo', 'warnings:',
util.Property('warnings', default='none')]))

The default value is used when the property doesn’t exist, or when the value is something Python regards as
False. The defaultWhenFalse argument can be set to False to force buildbot to use the default argument
only if the parameter is not set:

f.addStep(steps.ShellCommand(command=['echo', 'warnings:',
util.Property('warnings', default='none',

defaultWhenFalse=False)]))

The default value can be a renderable itself, e.g.,

command=util.Property('command', default=util.Property('default-command'))

Interpolate

Property can only be used to replace an entire argument: in the example above, it replaces an argument to
echo. Often, properties need to be interpolated into strings, instead. The tool for that job is Interpolate.

The more common pattern is to use Python dictionary-style string interpolation by using the
%(prop:<propname>)s syntax. In this form, the property name goes in the parentheses, as above. A
common mistake is to omit the trailing “s”, leading to a rather obscure error from Python (“ValueError:
unsupported format character”).

from buildbot.plugins import steps, util
f.addStep(steps.ShellCommand(command=['make',

util.Interpolate('REVISION=%(prop:got_
→˓revision)s'),

'dist']))

This example will result in a make command with an argument like REVISION=12098. The syntax of
dictionary-style interpolation is a selector, followed by a colon, followed by a selector specific key, optionally
followed by a colon and a string indicating how to interpret the value produced by the key.

The following selectors are supported.

prop The key is the name of a property.

src The key is a codebase and source stamp attribute, separated by a colon.

kw The key refers to a keyword argument passed to Interpolate. Those keyword arguments may be ordinary
values or renderables.

The following ways of interpreting the value are available.

-replacement If the key exists, substitute its value; otherwise, substitute replacement. replacement
may be empty (%(prop:propname:-)s). This is the default.

~replacement Like -replacement, but only substitutes the value of the key if it is something Python
regards as True. Python considers None, 0, empty lists, and the empty string to be false, so such values
will be replaced by replacement.

+replacement If the key exists, substitute replacement; otherwise, substitute an empty string.

?|sub_if_exists|sub_if_missing

#?|sub_if_true|sub_if_false Ternary substitution, depending on either the key being present (with ?,
similar to +) or being True (with #?, like ~). Notice that there is a pipe immediately following the question
mark and between the two substitution alternatives. The character that follows the question mark is used as
the delimiter between the two alternatives. In the above examples, it is a pipe, but any character other than
(can be used.

132 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.1

Note: Although these are similar to shell substitutions, no other substitutions are currently supported.

Example:

from buildbot.plugins import steps, util
f.addStep(steps.ShellCommand(command=['make',

util.Interpolate('REVISION=%(prop:got_
→˓revision:-%(src::revision:-unknown)s)s'),

'dist']))

In addition, Interpolate supports using positional string interpolation. Here, %s is used as a placeholder, and
the substitutions (which may be renderables), are given as subsequent arguments:

TODO

Note: Like Python, you can use either positional interpolation or dictionary-style interpolation, not both. Thus
you cannot use a string like Interpolate("foo-%(src::revision)s-%s","branch").

Renderer

While Interpolate can handle many simple cases, and even some common conditionals, more complex cases are
best handled with Python code. The renderer decorator creates a renderable object whose rendering is obtained
by calling the decorated function when the step it’s passed to begins. The function receives an IProperties
object, which it can use to examine the values of any and all properties. For example:

from buildbot.plugins import steps, util

@util.renderer
def makeCommand(props):

command = ['make']
cpus = props.getProperty('CPUs')
if cpus:

command.extend(['-j', str(cpus+1)])
else:

command.extend(['-j', '2'])
command.extend(['all'])
return command

f.addStep(steps.ShellCommand(command=makeCommand))

You can think of renderer as saying “call this function when the step starts”.

Note: Config errors with Renderables may not always be caught via checkconfig

Transform

Transform is an alternative to renderer. While renderer is useful for creating new renderables,
Transform is easier to use when you want to transform or combine the renderings of preexisting ones.

Transform takes a function and any number of positional and keyword arguments. The function must either be
a callable object or a renderable producing one. When rendered, a Transform first replaces all of its arguments
that are renderables with their renderings, then calls the function, passing it the positional and keyword arguments,
and returns the result as its own rendering.

For example, suppose my_path is a path on the worker, and you want to get it relative to the build directory. You
can do it like this:

2.4. Configuration 133

Buildbot Documentation, Release 0.9.1

import os.path
from buildbot.plugins import util

my_path_rel = util.Transform(os.path.relpath, my_path, start=util.Property(
→˓'builddir'))

This works whether my_path is an ordinary string or a renderable. my_path_rel will be a renderable in either
case, however.

FlattenList

If nested list should be flatten for some renderables, FlattenList could be used. For example:

f.addStep(ShellCommand(command=['make'], descriptionDone=FlattenList(['make ',
→˓['done']])))

descriptionDone would be set to ['make','done'] when the ShellCommand executes. This is
useful when a list-returning property is used in renderables.

Note: ShellCommand automatically flattens nested lists in its command argument, so there is no need to use
FlattenList for it.

WithProperties

Warning: This class is deprecated. It is an older version of Interpolate. It exists for compatibility with older
configs.

The simplest use of this class is with positional string interpolation. Here, %s is used as a placeholder, and property
names are given as subsequent arguments:

from buildbot.plugins import steps, util
f.addStep(steps.ShellCommand(

command=["tar", "czf",
util.WithProperties("build-%s-%s.tar.gz", "branch", "revision"),
"source"]))

If this BuildStep were used in a tree obtained from Git, it would create a tarball with a name like
build-master-a7d3a333db708e786edb34b6af646edd8d4d3ad9.tar.gz.

The more common pattern is to use Python dictionary-style string interpolation by using the %(propname)s
syntax. In this form, the property name goes in the parentheses, as above. A common mistake is to omit the
trailing “s”, leading to a rather obscure error from Python (“ValueError: unsupported format character”).

from buildbot.plugins import steps, util
f.addStep(steps.ShellCommand(command=['make',

util.WithProperties('REVISION=%(got_
→˓revision)s'),

'dist']))

This example will result in a make command with an argument like REVISION=12098. The dictionary-style
interpolation supports a number of more advanced syntaxes in the parentheses.

propname:-replacement If propname exists, substitute its value; otherwise, substitute replacement.
replacement may be empty (%(propname:-)s)

134 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.1

propname:~replacement Like propname:-replacement, but only substitutes the value of property
propname if it is something Python regards as True. Python considers None, 0, empty lists, and the
empty string to be false, so such values will be replaced by replacement.

propname:+replacement If propname exists, substitute replacement; otherwise, substitute an empty
string.

Although these are similar to shell substitutions, no other substitutions are currently supported, and
replacement in the above cannot contain more substitutions.

Note: like Python, you can use either positional interpolation or dictionary-style interpolation, not both. Thus you
cannot use a string like WithProperties("foo-%(revision)s-%s","branch").

Custom Renderables

If the options described above are not sufficient, more complex substitutions can be achieved by writing custom
renderables.

The IRenderable interface is simple - objects must provide a getRenderingFor method. The method should
take one argument - an IProperties provider - and should return the rendered value or a deferred firing with
one. Pass instances of the class anywhere other renderables are accepted. For example:

@implementer(IRenderable)
class DetermineFoo(object):

def getRenderingFor(self, props):
if props.hasProperty('bar'):

return props['bar']
elif props.hasProperty('baz'):

return props['baz']
return 'qux'

ShellCommand(command=['echo', DetermineFoo()])

or, more practically,

@implementer(IRenderable)
class Now(object):

def getRenderingFor(self, props):
return time.clock()

ShellCommand(command=['make', Interpolate('TIME=%(kw:now)s', now=Now())])

This is equivalent to:

@renderer
def now(props):

return time.clock()
ShellCommand(command=['make', Interpolate('TIME=%(kw:now)s', now=now)])

Note that a custom renderable must be instantiated (and its constructor can take whatever arguments you’d like),
whereas a function decorated with renderer can be used directly.

URL for build

Its common to need to use the URL for the build in a step. For this you can use a special custom renderer as
following:

from buildbot.plugins import *

ShellCommand(command=['make', Interpolate('BUILDURL=%(kw:url)s', url=util.
→˓URLForBuild)])

2.4. Configuration 135

Buildbot Documentation, Release 0.9.1

2.4.9 Build Steps

BuildSteps are usually specified in the buildmaster’s configuration file, in a list that goes into the
BuildFactory. The BuildStep instances in this list are used as templates to construct new independent
copies for each build (so that state can be kept on the BuildStep in one build without affecting a later build).
Each BuildFactory can be created with a list of steps, or the factory can be created empty and then steps
added to it using the addStep method:

from buildbot.plugins import util, steps

f = util.BuildFactory()
f.addSteps([

steps.SVN(repourl="http://svn.example.org/Trunk/"),
steps.ShellCommand(command=["make", "all"]),
steps.ShellCommand(command=["make", "test"])

])

The basic behavior for a BuildStep is to:

• run for a while, then stop

• possibly invoke some RemoteCommands on the attached worker

• possibly produce a set of log files

• finish with a status described by one of four values defined in buildbot.status.builder:
SUCCESS, WARNINGS, FAILURE, SKIPPED

• provide a list of short strings to describe the step

The rest of this section describes all the standard BuildStep objects available for use in a Build, and the
parameters which can be used to control each. A full list of build steps is available in the step.

• Common Parameters

• Source Checkout

– Common Parameters

– Mercurial

– Git

– SVN

– CVS

– Bzr

– P4

– Repo

– Gerrit

– GitHub

– Darcs

– Monotone

• ShellCommand

– Using ShellCommands

– Shell Sequence

– Configure

136 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.1

– CMake

– Compile

– Visual C++

– Cppcheck

– Robocopy

– Test

– TreeSize

– PerlModuleTest

– MTR (mysql-test-run)

– SubunitShellCommand

• Worker Filesystem Steps

– FileExists

– CopyDirectory

– RemoveDirectory

– MakeDirectory

• Python BuildSteps

– BuildEPYDoc

– PyFlakes

– Sphinx

– PyLint

– Trial

– RemovePYCs

• Transferring Files

– Other Parameters

– Transfering Directories

– Transferring Multiple Files At Once

• Transfering Strings

• Running Commands on the Master

– LogRenderable

• Setting Properties

– SetProperty

– SetPropertyFromCommand

– SetPropertiesFromEnv

• Triggering Schedulers

– Dynamic Trigger

• RPM-Related Steps

– RpmBuild

– RpmLint

2.4. Configuration 137

Buildbot Documentation, Release 0.9.1

– Mock Steps

– MockBuildSRPM Step

– MockRebuild Step

• Debian Build Steps

– DebPbuilder

– DebCowbuilder

– DebLintian

• Miscellaneous BuildSteps

– HLint

– MaxQ

– HTTP Requests

Common Parameters

All BuildSteps accept some common parameters. Some of these control how their individual status affects the
overall build. Others are used to specify which Locks (see Interlocks) should be acquired before allowing the step
to run.

Arguments common to all BuildStep subclasses:

name the name used to describe the step on the status display. It is also used to give a name to any LogFiles
created by this step.

haltOnFailure if True, a FAILURE of this build step will cause the build to halt immediately. Steps with
alwaysRun=True are still run. Generally speaking, haltOnFailure implies flunkOnFailure
(the default for most BuildSteps). In some cases, particularly series of tests, it makes sense to
haltOnFailure if something fails early on but not flunkOnFailure. This can be achieved with
haltOnFailure=True, flunkOnFailure=False.

flunkOnWarnings when True, a WARNINGS or FAILURE of this build step will mark the overall build as
FAILURE. The remaining steps will still be executed.

flunkOnFailure when True, a FAILURE of this build step will mark the overall build as a FAILURE. The
remaining steps will still be executed.

warnOnWarnings when True, a WARNINGS or FAILURE of this build step will mark the overall build as
having WARNINGS. The remaining steps will still be executed.

warnOnFailure when True, a FAILURE of this build step will mark the overall build as having WARNINGS.
The remaining steps will still be executed.

alwaysRun if True, this build step will always be run, even if a previous buildstep with
haltOnFailure=True has failed.

description This will be used to describe the command (on the Waterfall display) while the command is still
running. It should be a single imperfect-tense verb, like compiling or testing. The preferred form is a single,
short string, but for historical reasons a list of strings is also acceptable.

descriptionDone This will be used to describe the command once it has finished. A simple noun like compile
or tests should be used. Like description, this may either be a string or a list of short strings.

If neither description nor descriptionDone are set, the actual command arguments will be used
to construct the description. This may be a bit too wide to fit comfortably on the Waterfall display.

All subclasses of BuildStep will contain the description attributes. Consequently, you could add a
ShellCommand step like so:

138 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.1

from buildbot.plugins import steps

f.addStep(steps.ShellCommand(command=["make", "test"],
description="testing",
descriptionDone="tests"))

descriptionSuffix This is an optional suffix appended to the end of the description (ie, after
description and descriptionDone). This can be used to distinguish between build steps that would
display the same descriptions in the waterfall. This parameter may be a string, a list of short strings or None.

For example, a builder might use the Compile step to build two different codebases. The
descriptionSuffix could be set to projectFoo and projectBar, respectively for each step, which will
result in the full descriptions compiling projectFoo and compiling projectBar to be shown in the waterfall.

doStepIf A step can be configured to only run under certain conditions. To do this, set the step’s doStepIf
to a boolean value, or to a function that returns a boolean value or Deferred. If the value or function result
is false, then the step will return SKIPPED without doing anything. Otherwise, the step will be executed
normally. If you set doStepIf to a function, that function should accept one parameter, which will be the
Step object itself.

hideStepIf A step can be optionally hidden from the waterfall and build details web pages. To do this, set
the step’s hideStepIf to a boolean value, or to a function that takes two parameters – the results and the
BuildStep – and returns a boolean value. Steps are always shown while they execute, however after the
step as finished, this parameter is evaluated (if a function) and if the value is True, the step is hidden. For
example, in order to hide the step if the step has been skipped:

factory.addStep(Foo(..., hideStepIf=lambda results, s: results==SKIPPED))

locks a list of Locks (instances of buildbot.locks.WorkerLock or
buildbot.locks.MasterLock) that should be acquired before starting this BuildStep. Al-
ternatively this could be a renderable that returns this list during build execution. This lets you defer picking
the locks to acquire until the build step is about to start running. The Locks will be released when the step
is complete. Note that this is a list of actual Lock instances, not names. Also note that all Locks must have
unique names. See Interlocks.

logEncoding The character encoding to use to decode logs produced during the execution of this step. This
overrides the default logEncoding; see Log Handling.

Source Checkout

Caution: Support for the old worker-side source checkout steps was removed in Buildbot-0.9.0.

The old source steps used to be imported like this:

from buildbot.steps.source.oldsource import Git

... Git ...

or:
from buildbot.steps.source import Git

while new source steps are in separate Python modules for each version-control system and, using the plugin
infrastructure are available as:

from buildbot.plugins import steps

... steps.Git ...

2.4. Configuration 139

Buildbot Documentation, Release 0.9.1

Common Parameters

All source checkout steps accept some common parameters to control how they get the sources and where they
should be placed. The remaining per-VC-system parameters are mostly to specify where exactly the sources are
coming from.

mode method

These two parameters specify the means by which the source is checked out. mode specifies the type
of checkout and method tells about the way to implement it.

from buildbot.plugins import steps

factory = BuildFactory()
factory.addStep(steps.Mercurial(repourl='path/to/repo', mode='full',

method='fresh'))

The mode parameter a string describing the kind of VC operation that is desired, defaulting to
incremental. The options are

incremental Update the source to the desired revision, but do not remove any other files gener-
ated by previous builds. This allows compilers to take advantage of object files from previous
builds. This mode is exactly same as the old update mode.

full Update the source, but delete remnants of previous builds. Build steps that follow will need to
regenerate all object files.

Methods are specific to the version-control system in question, as they may take advantage of special
behaviors in that version-control system that can make checkouts more efficient or reliable.

workdir like all Steps, this indicates the directory where the build will take place. Source Steps are special in
that they perform some operations outside of the workdir (like creating the workdir itself).

alwaysUseLatest if True, bypass the usual behavior of checking out the revision in the source stamp, and
always update to the latest revision in the repository instead.

retry If set, this specifies a tuple of (delay,repeats) which means that when a full VC checkout fails, it
should be retried up to repeats times, waiting delay seconds between attempts. If you don’t provide
this, it defaults to None, which means VC operations should not be retried. This is provided to make life
easier for workers which are stuck behind poor network connections.

repository The name of this parameter might vary depending on the Source step you are running. The concept
explained here is common to all steps and applies to repourl as well as for baseURL (when applicable).

A common idiom is to pass Property('repository','url://default/repo/path') as
repository. This grabs the repository from the source stamp of the build. This can be a security issue,
if you allow force builds from the web, or have the WebStatus change hooks enabled; as the worker will
download code from an arbitrary repository.

codebase This specifies which codebase the source step should use to select the right source stamp.
The default codebase value is ''. The codebase must correspond to a codebase assigned by the
codebaseGenerator. If there is no codebaseGenerator defined in the master then codebase doesn’t
need to be set, the default value will then match all changes.

timeout Specifies the timeout for worker-side operations, in seconds. If your repositories are particularly large,
then you may need to increase this value from its default of 1200 (20 minutes).

logEnviron If this option is true (the default), then the step’s logfile will describe the environment variables
on the worker. In situations where the environment is not relevant and is long, it may be easier to set
logEnviron=False.

env a dictionary of environment strings which will be added to the child command’s environment. The usual
property interpolations can be used in environment variable names and values - see Properties.

140 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.1

Mercurial

class buildbot.steps.source.mercurial.Mercurial

The Mercurial build step performs a Mercurial (https://www.mercurial-scm.org/) (aka hg) checkout or update.

Branches are available in two modes: dirname, where the name of the branch is a suffix of the name of the repos-
itory, or inrepo, which uses Hg’s named-branches support. Make sure this setting matches your changehook, if
you have that installed.

from buildbot.plugins import steps

factory.addStep(steps.Mercurial(repourl='path/to/repo', mode='full',
method='fresh', branchType='inrepo'))

The Mercurial step takes the following arguments:

repourl where the Mercurial source repository is available.

defaultBranch this specifies the name of the branch to use when a Build does not provide one of its own.
This will be appended to repourl to create the string that will be passed to the hg clone command.

branchType either ‘dirname’ (default) or ‘inrepo’ depending on whether the branch name should be appended
to the repourl or the branch is a Mercurial named branch and can be found within the repourl.

clobberOnBranchChange boolean, defaults to True. If set and using inrepos branches, clobber the tree at
each branch change. Otherwise, just update to the branch.

mode method

Mercurial’s incremental mode does not require a method. The full mode has three methods defined:

clobber It removes the build directory entirely then makes full clone from repo. This can be slow
as it need to clone whole repository

fresh This remove all other files except those tracked by VCS. First it does hg purge --all
then pull/update

clean All the files which are tracked by Mercurial and listed ignore files are not deleted. Remain-
ing all other files will be deleted before pull/update. This is equivalent to hg purge then
pull/update.

Git

class buildbot.steps.source.git.Git

The Git build step clones or updates a Git (http://git.or.cz/) repository and checks out the specified branch or
revision.

Note: The Buildbot supports Git version 1.2.0 and later: earlier versions (such as the one shipped in Ubuntu
‘Dapper’) do not support the git init command that the Buildbot uses.

from buildbot.plugins import steps

factory.addStep(steps.Git(repourl='git://path/to/repo', mode='full',
method='clobber', submodules=True))

The Git step takes the following arguments:

repourl (required): the URL of the upstream Git repository.

2.4. Configuration 141

https://www.mercurial-scm.org/
http://git.or.cz/

Buildbot Documentation, Release 0.9.1

branch (optional): this specifies the name of the branch to use when a Build does not provide one of its own. If
this this parameter is not specified, and the Build does not provide a branch, the default branch of the remote
repository will be used.

submodules (optional): when initializing/updating a Git repository, this tells Buildbot whether to handle Git
submodules. Default: False.

shallow (optional): instructs git to attempt shallow clones (--depth 1). The depth defaults to 1 and can be
changed by passing an integer instead of True. This option can be used only in full builds with clobber
method.

reference (optional): use the specified string as a path to a reference repository on the local machine. Git will
try to grab objects from this path first instead of the main repository, if they exist.

origin (optional): By default, any clone will use the name “origin” as the remote repository (eg, “ori-
gin/master”). This renderable option allows that to be configured to an alternate name.

progress (optional): passes the (--progress) flag to (git fetch). This solves issues of long fetches
being killed due to lack of output, but requires Git 1.7.2 or later.

retryFetch (optional): defaults to False. If true, if the git fetch fails then buildbot retries to fetch again
instead of failing the entire source checkout.

clobberOnFailure (optional): defaults to False. If a fetch or full clone fails we can checkout source
removing everything. This way new repository will be cloned. If retry fails it fails the source checkout step.

mode

(optional): defaults to 'incremental'. Specifies whether to clean the build tree or not.

incremental The source is update, but any built files are left untouched.

full The build tree is clean of any built files. The exact method for doing this is con-
trolled by the method argument.

method

(optional): defaults to fresh when mode is full. Git’s incremental mode does not require a
method. The full mode has four methods defined:

clobber It removes the build directory entirely then makes full clone from repo. This can be slow
as it need to clone whole repository. To make faster clones enable shallow option. If shallow
options is enabled and build request have unknown revision value, then this step fails.

fresh This remove all other files except those tracked by Git. First it does git clean -d -f
-f -x then fetch/checkout to a specified revision(if any). This option is equal to update mode
with ignore_ignores=True in old steps.

clean All the files which are tracked by Git and listed ignore files are not deleted. Remaining all
other files will be deleted before fetch/checkout. This is equivalent to git clean -d -f
-f then fetch. This is equivalent to ignore_ignores=False in old steps.

copy This first checkout source into source directory then copy the source directory to build
directory then performs the build operation in the copied directory. This way we make fresh
builds with very less bandwidth to download source. The behavior of source checkout follows
exactly same as incremental. It performs all the incremental checkout behavior in source
directory.

getDescription

(optional) After checkout, invoke a git describe on the revision and save the result in a property; the
property’s name is either commit-description or commit-description-foo, depending
on whether the codebase argument was also provided. The argument should either be a bool or
dict, and will change how git describe is called:

• getDescription=False: disables this feature explicitly

• getDescription=True or empty dict(): Run git describe with no args

142 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.1

• getDescription={...}: a dict with keys named the same as the Git option. Each key’s
value can be False or None to explicitly skip that argument.

For the following keys, a value of True appends the same-named Git argument:

– all : –all

– always: –always

– contains: –contains

– debug: –debug

– long: –long‘

– exact-match: –exact-match

– tags: –tags

– dirty: –dirty

For the following keys, an integer or string value (depending on what Git expects) will set the
argument’s parameter appropriately. Examples show the key-value pair:

– match=foo: –match foo

– abbrev=7: –abbrev=7

– candidates=7: –candidates=7

– dirty=foo: –dirty=foo

config

(optional) A dict of git configuration settings to pass to the remote git commands.

SVN

class buildbot.steps.source.svn.SVN

The SVN build step performs a Subversion (http://subversion.tigris.org) checkout or update. There are two basic
ways of setting up the checkout step, depending upon whether you are using multiple branches or not.

The SVN step should be created with the repourl argument:

repourl (required): this specifies the URL argument that will be given to the svn checkout command. It
dictates both where the repository is located and which sub-tree should be extracted. One way to specify the
branch is to use Interpolate. For example, if you wanted to check out the trunk repository, you could
use repourl=Interpolate("http://svn.example.com/repos/%(src::branch)s").
Alternatively, if you are using a remote Subversion repository which is accessible through HTTP at a URL
of http://svn.example.com/repos, and you wanted to check out the trunk/calc sub-tree,
you would directly use repourl="http://svn.example.com/repos/trunk/calc" as an
argument to your SVN step.

If you are building from multiple branches, then you should create the SVN step with the repourl and provide
branch information with Interpolate:

from buildbot.plugins import steps, util

factory.addStep(steps.SVN(mode='incremental',
repourl=util.Interpolate('svn://svn.example.org/svn/%(src::

→˓branch)s/myproject')))

Alternatively, the repourl argument can be used to create the SVN step without Interpolate:

2.4. Configuration 143

http://subversion.tigris.org

Buildbot Documentation, Release 0.9.1

from buildbot.plugins import steps

factory.addStep(steps.SVN(mode='full',
repourl='svn://svn.example.org/svn/myproject/trunk'))

username (optional): if specified, this will be passed to the svn binary with a --username option.

password (optional): if specified, this will be passed to the svn binary with a --password option.

extra_args (optional): if specified, an array of strings that will be passed as extra arguments to the svn binary.

keep_on_purge (optional): specific files or directories to keep between purges, like some build outputs that
can be reused between builds.

depth (optional): Specify depth argument to achieve sparse checkout. Only available if worker has Subversion
1.5 or higher.

If set to empty updates will not pull in any files or subdirectories not already present. If set to files,
updates will pull in any files not already present, but not directories. If set to immediates, updates will
pull in any files or subdirectories not already present, the new subdirectories will have depth: empty. If set
to infinity, updates will pull in any files or subdirectories not already present; the new subdirectories
will have depth-infinity. Infinity is equivalent to SVN default update behavior, without specifying any depth
argument.

preferLastChangedRev (optional): By default, the got_revision property is set to the repository’s
global revision (“Revision” in the svn info output). Set this parameter to True to have it set to the “Last
Changed Rev” instead.

mode method

SVN’s incremental mode does not require a method. The full mode has five methods defined:

clobber It removes the working directory for each build then makes full checkout.

fresh This always always purges local changes before updating. This deletes unversioned files and
reverts everything that would appear in a svn status --no-ignore. This is equivalent
to the old update mode with always_purge.

clean This is same as fresh except that it deletes all unversioned files generated by svn status.

copy This first checkout source into source directory then copy the source directory to build
directory then performs the build operation in the copied directory. This way we make fresh
builds with very less bandwidth to download source. The behavior of source checkout follows
exactly same as incremental. It performs all the incremental checkout behavior in source
directory.

export Similar to method='copy', except using svn export to create build directory so that
there are no .svn directories in the build directory.

If you are using branches, you must also make sure your ChangeSource will report the correct branch names.

CVS

class buildbot.steps.source.cvs.CVS

The CVS build step performs a CVS (http://www.nongnu.org/cvs/) checkout or update.

from buildbot.plugins import steps

factory.addStep(steps.CVS(mode='incremental',
cvsroot=':pserver:me@cvs.example.net:/cvsroot/myproj',
cvsmodule='buildbot'))

This step takes the following arguments:

144 Chapter 2. Buildbot Manual

http://www.nongnu.org/cvs/

Buildbot Documentation, Release 0.9.1

cvsroot (required): specify the CVSROOT value, which points to a CVS repository, prob-
ably on a remote machine. For example, if Buildbot was hosted in CVS then the
CVSROOT value you would use to get a copy of the Buildbot source code might be
:pserver:anonymous@cvs.example.net:/cvsroot/buildbot.

cvsmodule (required): specify the cvs module, which is generally a subdirectory of the CVSROOT. The cvs-
module for the Buildbot source code is buildbot.

branch a string which will be used in a -r argument. This is most useful for specifying a branch to work on.
Defaults to HEAD.

global_options a list of flags to be put before the argument checkout in the CVS command.

extra_options a list of flags to be put after the checkout in the CVS command.

mode method

No method is needed for incremental mode. For full mode, method can take the values shown below.
If no value is given, it defaults to fresh.

clobber This specifies to remove the workdir and make a full checkout.

fresh This method first runs cvsdisard in the build directory, then updates it. This requires
cvsdiscard which is a part of the cvsutil package.

clean This method is the same as method='fresh', but it runs cvsdiscard --ignore
instead of cvsdiscard.

copy This maintains a source directory for source, which it updates copies to the build directory.
This allows Buildbot to start with a fresh directory, without downloading the entire repository
on every build.

login Password to use while performing login to the remote CVS server. Default is None meaning that no login
needs to be peformed.

Bzr

class buildbot.steps.source.bzr.Bzr

bzr (http://bazaar.canonical.com/en/) is a descendant of Arch/Baz, and is frequently referred to as simply Bazaar.
The repository-vs-workspace model is similar to Darcs, but it uses a strictly linear sequence of revisions (one
history per branch) like Arch. Branches are put in subdirectories. This makes it look very much like Mercurial.

from buildbot.plugins import steps

factory.addStep(steps.Bzr(mode='incremental',
repourl='lp:~knielsen/maria/tmp-buildbot-test'))

The step takes the following arguments:

repourl (required unless baseURL is provided): the URL at which the Bzr source repository is available.

baseURL (required unless repourl is provided): the base repository URL, to which a branch name will be
appended. It should probably end in a slash.

defaultBranch (allowed if and only if baseURL is provided): this specifies the name of the branch to use
when a Build does not provide one of its own. This will be appended to baseURL to create the string that
will be passed to the bzr checkout command.

mode method

No method is needed for incremental mode. For full mode, method can take the values shown below.
If no value is given, it defaults to fresh.

clobber This specifies to remove the workdir and make a full checkout.

2.4. Configuration 145

http://bazaar.canonical.com/en/

Buildbot Documentation, Release 0.9.1

fresh This method first runs bzr clean-tree to remove all the unversioned files then update
the repo. This remove all unversioned files including those in .bzrignore.

clean This is same as fresh except that it doesn’t remove the files mentioned in .bzrginore i.e,
by running bzr clean-tree --ignore.

copy A local bzr repository is maintained and the repo is copied to build directory for each build.
Before each build the local bzr repo is updated then copied to build for next steps.

P4

class buildbot.steps.source.p4.P4

The P4 build step creates a Perforce (http://www.perforce.com/) client specification and performs an update.

from buildbot.plugins import steps, util

factory.addStep(steps.P4(p4port=p4port,
p4client=util.WithProperties('%(P4USER)s-%(workername)s-

→˓%(buildername)s'),
p4user=p4user,
p4base='//depot',
p4viewspec=p4viewspec,
mode='incremental'))

You can specify the client spec in two different ways. You can use the p4base, p4branch, and (optionally)
p4extra_views to build up the viewspec, or you can utilize the p4viewspec to specify the whole viewspec
as a set of tuples.

Using p4viewspec will allow you to add lines such as:

//depot/branch/mybranch/... //<p4client>/...
-//depot/branch/mybranch/notthisdir/... //<p4client>/notthisdir/...

If you specify p4viewspec and any of p4base, p4branch, and/or p4extra_views you will receive a
configuration error exception.

p4base A view into the Perforce depot without branch name or trailing /.... Typically //depot/proj.

p4branch (optional): A single string, which is appended to the p4base as follows
<p4base>/<p4branch>/... to form the first line in the viewspec

p4extra_views (optional): a list of (depotpath,clientpath) tuples containing extra views to be
mapped into the client specification. Both will have /... appended automatically. The client name
and source directory will be prepended to the client path.

p4viewspec This will override any p4branch, p4base, and/or p4extra_views specified. The viewspec will be
an array of tuples as follows:

[('//depot/main/','')]

It yields a viewspec with just:

//depot/main/... //<p4client>/...

p4viewspec_suffix (optional): The p4viewspec lets you customize the client spec for a builder but, as
the previous example shows, it automatically adds ... at the end of each line. If you need to also specify
file-level remappings, you can set the p4viewspec_suffix to None so that nothing is added to your
viewspec:

[('//depot/main/...', '...'),
('-//depot/main/config.xml', 'config.xml'),
('//depot/main/config.vancouver.xml', 'config.xml')]

146 Chapter 2. Buildbot Manual

http://www.perforce.com/

Buildbot Documentation, Release 0.9.1

It yields a viewspec with:

//depot/main/... //<p4client>/...
-//depot/main/config.xml //<p4client/main/config.xml
//depot/main/config.vancouver.xml //<p4client>/main/config.xml

Note how, with p4viewspec_suffix set to None, you need to manually add ... where you need it.

p4client_spec_options (optional): By default, clients are created with the allwrite rmdir options.
This string lets you change that.

p4port (optional): the host:port string describing how to get to the P4 Depot (repository), used as the option
-p argument for all p4 commands.

p4user (optional): the Perforce user, used as the option -u argument to all p4 commands.

p4passwd (optional): the Perforce password, used as the option -p argument to all p4 commands.

p4client (optional): The name of the client to use. In mode='full' and mode='incremental', it’s
particularly important that a unique name is used for each checkout directory to avoid incorrect syn-
chronization. For this reason, Python percent substitution will be performed on this value to replace
%(prop:workername)s with the worker name and %(prop:buildername)s with the builder
name. The default is buildbot_%(prop:workername)s_%(prop:buildername)s.

p4line_end (optional): The type of line ending handling P4 should use. This is added directly to the client
spec’s LineEnd property. The default is local.

p4extra_args (optional): Extra arguments to be added to the P4 command-line for the sync command. So
for instance if you want to sync only to populate a Perforce proxy (without actually syncing files to disk),
you can do:

P4(p4extra_args=['-Zproxyload'], ...)

use_tickets Set to True to use ticket-based authentication, instead of passwords (but you still need to specify
p4passwd).

Repo

class buildbot.steps.source.repo.Repo

The Repo build step performs a Repo (http://lwn.net/Articles/304488/) init and sync.

The Repo step takes the following arguments:

manifestURL (required): the URL at which the Repo’s manifests source repository is available.

manifestBranch (optional, defaults to master): the manifest repository branch on which repo will take its
manifest. Corresponds to the -b argument to the repo init command.

manifestFile (optional, defaults to default.xml): the manifest filename. Corresponds to the -m argu-
ment to the repo init command.

tarball (optional, defaults to None): the repo tarball used for fast bootstrap. If not present the tarball will be
created automatically after first sync. It is a copy of the .repo directory which contains all the Git objects.
This feature helps to minimize network usage on very big projects with lots of workers.

jobs (optional, defaults to None): Number of projects to fetch simultaneously while syncing. Passed to repo
sync subcommand with “-j”.

syncAllBranches (optional, defaults to False): renderable boolean to control whether repo syncs all
branches. I.e. repo sync -c

depth (optional, defaults to 0): Depth argument passed to repo init. Specifies the amount of git history to store.
A depth of 1 is useful for shallow clones. This can save considerable disk space on very large projects.

2.4. Configuration 147

http://lwn.net/Articles/304488/

Buildbot Documentation, Release 0.9.1

updateTarballAge (optional, defaults to “one week”): renderable to control the policy of updating of the
tarball given properties. Returns: max age of tarball in seconds, or None, if we want to skip tarball update.
The default value should be good trade off on size of the tarball, and update frequency compared to cost of
tarball creation

repoDownloads (optional, defaults to None): list of repo download commands to perform at the end of
the Repo step each string in the list will be prefixed repo download, and run as is. This means you can
include parameter in the string. For example:

• ["-c project 1234/4"] will cherry-pick patchset 4 of patch 1234 in project project

• ["-f project 1234/4"] will enforce fast-forward on patchset 4 of patch 1234 in project
project

class buildbot.steps.source.repo.RepoDownloadsFromProperties

util.repo.DownloadsFromProperties can be used as a renderable of the repoDownload parameter
it will look in passed properties for string with following possible format:

• repo download project change_number/patchset_number

• project change_number/patchset_number

• project/change_number/patchset_number

All of these properties will be translated into a repo download. This feature allows integrators to build with
several pending interdependent changes, which at the moment cannot be described properly in Gerrit, and can
only be described by humans.

class buildbot.steps.source.repo.RepoDownloadsFromChangeSource

util.repo.DownloadsFromChangeSource can be used as a renderable of the repoDownload param-
eter

This rendereable integrates with GerritChangeSource, and will automatically use the repo download
command of repo to download the additional changes introduced by a pending changeset.

Note: You can use the two above Rendereable in conjuction by using the class
buildbot.process.properties.FlattenList

For example:

from buildbot.plugins import steps, util

factory.addStep(steps.Repo(manifestURL='git://gerrit.example.org/manifest.git',
repoDownloads=util.FlattenList([

util.RepoDownloadsFromChangeSource(),
util.RepoDownloadsFromProperties("repo_downloads")

])))

Gerrit

class buildbot.steps.source.gerrit.Gerrit

Gerrit step is exactly like the Git step, except that it integrates with GerritChangeSource, and will
automatically checkout the additional changes.

Gerrit integration can be also triggered using forced build with property named gerrit_change with values
in format change_number/patchset_number. This property will be translated into a branch name. This
feature allows integrators to build with several pending interdependent changes, which at the moment cannot be
described properly in Gerrit, and can only be described by humans.

148 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.1

GitHub

class buildbot.steps.source.github.GitHub

GitHub step is exactly like the Git step, except that it will ignore the revision sent by GitHub change hook,
and rather take the branch if the branch ends with /merge.

This allows to test github pull requests merged directly into the mainline.

GitHub indeed provides refs/origin/pull/NNN/merge on top of refs/origin/pull/NNN/head
which is a magic ref that always create a merge commit to the latest version of the mainline (i.e. the target branch
for the pull request).

The revision in the GitHub event points to /head is important for the GitHub reporter as this is the revision that
will be tagged with a CI status when the build is finished.

If you want to use Trigger to create sub tests and want to have the GitHub reporter still update the original
revision, make sure you set updateSourceStamp=False in the Trigger configuration.

Darcs

class buildbot.steps.source.darcs.Darcs

The Darcs build step performs a Darcs (http://darcs.net/) checkout or update.

from buildbot.plugins import steps

factory.addStep(steps.Darcs(repourl='http://path/to/repo',
mode='full', method='clobber', retry=(10, 1)))

Darcs step takes the following arguments:

repourl (required): The URL at which the Darcs source repository is available.

mode

(optional): defaults to 'incremental'. Specifies whether to clean the build tree or not.

incremental The source is update, but any built files are left untouched.

full The build tree is clean of any built files. The exact method for doing this is controlled by the
method argument.

method (optional): defaults to copy when mode is full. Darcs’ incremental mode does not require a method.
The full mode has two methods defined:

clobber It removes the working directory for each build then makes full checkout.

copy This first checkout source into source directory then copy the source directory to build directory
then performs the build operation in the copied directory. This way we make fresh builds with very less
bandwidth to download source. The behavior of source checkout follows exactly same as incremental.
It performs all the incremental checkout behavior in source directory.

Monotone

class buildbot.steps.source.mtn.Monotone

The Monotone build step performs a Monotone (http://www.monotone.ca/) checkout or update.

from buildbot.plugins import steps

factory.addStep(steps.Monotone(repourl='http://path/to/repo',
mode='full', method='clobber',
branch='some.branch.name', retry=(10, 1)))

2.4. Configuration 149

http://darcs.net/
http://www.monotone.ca/

Buildbot Documentation, Release 0.9.1

Monotone step takes the following arguments:

repourl the URL at which the Monotone source repository is available.

branch this specifies the name of the branch to use when a Build does not provide one of its own.

progress this is a boolean that has a pull from the repository use --ticker=dot instead of the default
--ticker=none.

mode

(optional): defaults to 'incremental'. Specifies whether to clean the build tree or not. In any
case, the worker first pulls from the given remote repository to synchronize (or possibly initialize) its
local database. The mode and method only affect how the build tree is checked-out or updated from
the local database.

incremental The source is update, but any built files are left untouched.

full The build tree is clean of any built files. The exact method for doing this is con-
trolled by the method argument. Even in this mode, the revisions already pulled
remain in the database and a fresh pull is rarely needed.

method

(optional): defaults to copy when mode is full. Monotone’s incremental mode does not require a
method. The full mode has four methods defined:

clobber It removes the build directory entirely then makes fresh checkout from the database.

clean This remove all other files except those tracked and ignored by Monotone. It will remove
all the files that appear in mtn ls unknown. Then it will pull from remote and update the
working directory.

fresh This remove all other files except those tracked by Monotone. It will remove all the files
that appear in mtn ls ignored and mtn ls unknows. Then pull and update similar to
clean

copy This first checkout source into source directory then copy the source directory to build
directory then performs the build operation in the copied directory. This way we make fresh
builds with very less bandwidth to download source. The behavior of source checkout follows
exactly same as incremental. It performs all the incremental checkout behavior in source
directory.

ShellCommand

Most interesting steps involve executing a process of some sort on the worker. The ShellCommand class handles
this activity.

Several subclasses of ShellCommand are provided as starting points for common build steps.

Using ShellCommands

class buildbot.steps.shell.ShellCommand

This is a useful base class for just about everything you might want to do during a build (except for the initial
source checkout). It runs a single command in a child shell on the worker. All stdout/stderr is recorded into a
LogFile. The step usually finishes with a status of FAILURE if the command’s exit code is non-zero, otherwise
it has a status of SUCCESS.

The preferred way to specify the command is with a list of argv strings, since this allows for spaces in filenames
and avoids doing any fragile shell-escaping. You can also specify the command with a single string, in which case
the string is given to /bin/sh -c COMMAND for parsing.

150 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.1

On Windows, commands are run via cmd.exe /c which works well. However, if you’re running a batch
file, the error level does not get propagated correctly unless you add ‘call’ before your batch file’s name:
cmd=['call','myfile.bat',...].

The ShellCommand arguments are:

command a list of strings (preferred) or single string (discouraged) which specifies the command to be run. A
list of strings is preferred because it can be used directly as an argv array. Using a single string (with
embedded spaces) requires the worker to pass the string to /bin/sh for interpretation, which raises all
sorts of difficult questions about how to escape or interpret shell metacharacters.

If command contains nested lists (for example, from a properties substitution), then that list will be flattened
before it is executed.

workdir All ShellCommands are run by default in the workdir, which defaults to the build subdirectory of
the worker builder’s base directory. The absolute path of the workdir will thus be the worker’s basedir (set
as an option to buildbot-worker create-worker, Creating a worker) plus the builder’s basedir
(set in the builder’s builddir key in master.cfg) plus the workdir itself (a class-level attribute of the
BuildFactory, defaults to build).

For example:

from buildbot.plugins import steps

f.addStep(steps.ShellCommand(command=["make", "test"],
workdir="build/tests"))

env a dictionary of environment strings which will be added to the child command’s environment. For example,
to run tests with a different i18n language setting, you might use:

from buildbot.plugins import steps

f.addStep(steps.ShellCommand(command=["make", "test"],
env={'LANG': 'fr_FR'}))

These variable settings will override any existing ones in the worker’s environment or the environment spec-
ified in the Builder. The exception is PYTHONPATH, which is merged with (actually prepended to) any
existing PYTHONPATH setting. The following example will prepend /home/buildbot/lib/python
to any existing PYTHONPATH:

from buildbot.plugins import steps

f.addStep(steps.ShellCommand(
command=["make", "test"],
env={'PYTHONPATH': "/home/buildbot/lib/python"}))

To avoid the need of concatenating path together in the master config file, if the value is a list, it will be
joined together using the right platform dependant separator.

Those variables support expansion so that if you just want to prepend /home/buildbot/bin to the
PATH environment variable, you can do it by putting the value ${PATH} at the end of the value like in the
example below. Variables that don’t exist on the worker will be replaced by "".

from buildbot.plugins import steps

f.addStep(steps.ShellCommand(
command=["make", "test"],
env={'PATH': ["/home/buildbot/bin",

"${PATH}"]}))

Note that environment values must be strings (or lists that are turned into strings). In particular, numeric
properties such as buildnumber must be substituted using Interpolate.

2.4. Configuration 151

Buildbot Documentation, Release 0.9.1

want_stdout if False, stdout from the child process is discarded rather than being sent to the buildmaster
for inclusion in the step’s LogFile.

want_stderr like want_stdout but for stderr. Note that commands run through a PTY do not have
separate stdout/stderr streams: both are merged into stdout.

usePTY Should this command be run in a pty? False by default. This option is not available on Windows.

In general, you do not want to use a pseudo-terminal. This is is only useful for running commands that
require a terminal - for example, testing a command-line application that will only accept passwords read
from a terminal. Using a pseudo-terminal brings lots of compatibility problems, and prevents Buildbot from
distinguishing the standard error (red) and standard output (black) streams.

In previous versions, the advantage of using a pseudo-terminal was that grandchild processes were
more likely to be cleaned up if the build was interrupted or times out. This occurred because using a
pseudo-terminal incidentally puts the command into its own process group.

As of Buildbot-0.8.4, all commands are placed in process groups, and thus grandchild processes will be
cleaned up properly.

logfiles Sometimes commands will log interesting data to a local file, rather than emitting everything to
stdout or stderr. For example, Twisted’s trial command (which runs unit tests) only presents summary
information to stdout, and puts the rest into a file named _trial_temp/test.log. It is often useful to
watch these files as the command runs, rather than using /bin/cat to dump their contents afterwards.

The logfiles= argument allows you to collect data from these secondary logfiles in near-real-time, as
the step is running. It accepts a dictionary which maps from a local Log name (which is how the log data
is presented in the build results) to either a remote filename (interpreted relative to the build’s working
directory), or a dictionary of options. Each named file will be polled on a regular basis (every couple of
seconds) as the build runs, and any new text will be sent over to the buildmaster.

If you provide a dictionary of options instead of a string, you must specify the filename key. You can
optionally provide a follow key which is a boolean controlling whether a logfile is followed or concate-
nated in its entirety. Following is appropriate for logfiles to which the build step will append, where the
pre-existing contents are not interesting. The default value for follow is False, which gives the same
behavior as just providing a string filename.

from buildbot.plugins import steps

f.addStep(steps.ShellCommand(
command=["make", "test"],
logfiles={"triallog": "_trial_temp/test.log"}))

The above example will add a log named ‘triallog’ on the master, based on _trial_temp/test.log
on the worker.

from buildbot.plugins import steps

f.addStep(steps.ShellCommand(command=["make", "test"],
logfiles={

"triallog": {
"filename": "_trial_temp/test.log",
"follow": True

}
}))

lazylogfiles If set to True, logfiles will be tracked lazily, meaning that they will only be added when and
if something is written to them. This can be used to suppress the display of empty or missing log files. The
default is False.

timeout if the command fails to produce any output for this many seconds, it is assumed to be locked up and
will be killed. This defaults to 1200 seconds. Pass None to disable.

maxTime if the command takes longer than this many seconds, it will be killed. This is disabled by default.

152 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.1

logEnviron If this option is True (the default), then the step’s logfile will describe the environment variables
on the worker. In situations where the environment is not relevant and is long, it may be easier to set
logEnviron=False.

interruptSignal If the command should be interrupted (either by buildmaster or timeout etc.), what signal
should be sent to the process, specified by name. By default this is “KILL” (9). Specify “TERM” (15) to
give the process a chance to cleanup. This functionality requires a 0.8.6 worker or newer.

sigtermTime

If set, when interrupting, try to kill the command with SIGTERM and wait for sigtermTime sec-
onds before firing interuptSignal. If None, interruptSignal will be fired immediately on
interrupt.

initialStdin If the command expects input on stdin, that can be supplied a a string with this parameter. This
value should not be excessively large, as it is handled as a single string throughout Buildbot – for example,
do not pass the contents of a tarball with this parameter.

decodeRC This is a dictionary that decodes exit codes into results value. For example,
{0:SUCCESS,1:FAILURE,2:WARNINGS}, will treat the exit code 2 as WARNINGS. The de-
fault is to treat just 0 as successful. ({0:SUCCESS}) any exit code not present in the dictionary will be
treated as FAILURE

Shell Sequence

Some steps have a specific purpose, but require multiple shell commands to implement them. For example, a build
is often configure; make; make install. We have two ways to handle that:

• Create one shell command with all these. To put the logs of each commands in separate logfiles, we need
to re-write the script as configure 1> configure_log; ... and to add these configure_log
files as logfiles argument of the buildstep. This has the drawback of complicating the shell script, and
making it harder to maintain as the logfile name is put in different places.

• Create three ShellCommand instances, but this loads the build UI unnecessarily.

ShellSequence is a class to execute not one but a sequence of shell commands during a build. It takes as
argument a renderable, or list of commands which are ShellArg objects. Each such object represents a shell
invocation.

The single ShellSequence argument aside from the common parameters is:

commands

A list of ShellArg objects or a renderable the returns a list of ShellArg objects.

from buildbot.plugins import steps, util

f.addStep(steps.ShellSequence(
commands=[

util.ShellArg(command=['configure']),
util.ShellArg(command=['make'], logfile='make'),
util.ShellArg(command=['make', 'check_warning'], logfile='warning',

→˓warnOnFailure=True),
util.ShellArg(command=['make', 'install'], logfile='make install')

]))

All these commands share the same configuration of environment, workdir and pty usage that can be setup
the same way as in ShellCommand.

class buildbot.steps.shellsequence.ShellArg(self, command=None, logfile=None, hal-
tOnFailure=False, flunkOnWarnings=False,
flunkOnFailure=False, warnOnWarn-
ings=False, warnOnFailure=False)

Parameters

2.4. Configuration 153

Buildbot Documentation, Release 0.9.1

• command – (see the ShellCommand command argument),

• logfile – optional log file name, used as the stdio log of the command

The haltOnFailure, flunkOnWarnings, flunkOnFailure, warnOnWarnings,
warnOnFailure parameters drive the execution of the sequence, the same way steps are sched-
uled in the build. They have the same default values as for buildsteps - see Common Parameters.

Any of the arguments to this class can be renderable.

Note that if logfile name does not start with the prefix stdio, that prefix will be set like stdio
<logfile>.

The two ShellSequence methods below tune the behavior of how the list of shell commands are executed, and
can be overridden in subclasses.

class buildbot.steps.shellsequence.ShellSequence

shouldRunTheCommand(oneCmd)

Parameters oneCmd – a string or a list of strings, as rendered from a ShellArg instance’s
command argument.

Determine whether the command oneCmd should be executed. If shouldRunTheCommand returns
False, the result of the command will be recorded as SKIPPED. The default methods skips all empty
strings and empty lists.

getFinalState()
Return the status text of the step in the end. The default value is to set the text describing the execution
of the last shell command.

runShellSequence(commands):

Parameters commands – list of shell args

This method actually runs the shell sequence. The default run method calls runShellSequence,
but subclasses can override run to perform other operations, if desired.

Configure

class buildbot.steps.shell.Configure

This is intended to handle the ./configure step from autoconf-style projects, or the perl Makefile.PL
step from perl MakeMaker.pm-style modules. The default command is ./configure but you can change this
by providing a command= parameter. The arguments are identical to ShellCommand.

from buildbot.plugins import steps

f.addStep(steps.Configure())

CMake

class buildbot.steps.cmake.CMake

This is intended to handle the cmake step for projects that use CMake-based build systems (http://cmake.org).

Note: Links below point to the latest CMake documentation. Make sure that you check the documentation for
the CMake you use.

In addition to the parameters ShellCommand supports, this step accepts the following parameters:

154 Chapter 2. Buildbot Manual

http://cmake.org

Buildbot Documentation, Release 0.9.1

path Either a path to a source directory to (re-)generate a build system for it in the current working directory. Or
an existing build directory to re-generate its build system.

generator A build system generator. See cmake-generators(7) (https://cmake.org/cmake/help/latest/manual/cmake-
generators.7.html) for available options.

definitions A dictionary that contains parameters that will be converted to -D{name}={value} when
passed to CMake. Refer to cmake(1) (https://cmake.org/cmake/help/latest/manual/cmake.1.html) for more
information.

options A list or a tuple that contains options that will be passed to CMake as is. Refer to cmake(1)
(https://cmake.org/cmake/help/latest/manual/cmake.1.html) for more information.

cmake Path to the CMake binary. Default is cmake

from buildbot.plugins import steps

...

factory.addStep(
steps.CMake(

generator='Ninja',
definitions={

'CMAKE_BUILD_TYPE': Property('BUILD_TYPE')
},
options=[

'-Wno-dev'
]

)
)

...

Compile

This is meant to handle compiling or building a project written in C. The default command is make all. When
the compilation is finished, the log file is scanned for GCC warning messages, a summary log is created with
any problems that were seen, and the step is marked as WARNINGS if any were discovered. Through the
WarningCountingShellCommand superclass, the number of warnings is stored in a Build Property named
warnings-count, which is accumulated over all Compile steps (so if two warnings are found in one step, and
three are found in another step, the overall build will have a warnings-count property of 5). Each step can be
optionally given a maximum number of warnings via the maxWarnCount parameter. If this limit is exceeded, the
step will be marked as a failure.

The default regular expression used to detect a warning is '.*warning[:].*' , which is fairly liberal and
may cause false-positives. To use a different regexp, provide a warningPattern= argument, or use a subclass
which sets the warningPattern attribute:

from buildbot.plugins import steps

f.addStep(steps.Compile(command=["make", "test"],
warningPattern="^Warning: "))

The warningPattern= can also be a pre-compiled Python regexp object: this makes it possible to add flags
like re.I (to use case-insensitive matching).

Note that the compiled warningPattern will have its match method called, which is subtly different from a
search. Your regular expression must match the from the beginning of the line. This means that to look for the
word “warning” in the middle of a line, you will need to prepend '.*' to your regular expression.

The suppressionFile= argument can be specified as the (relative) path of a file inside the workdir defining
warnings to be suppressed from the warning counting and log file. The file will be uploaded to the master from

2.4. Configuration 155

https://cmake.org/cmake/help/latest/manual/cmake-generators.7.html
https://cmake.org/cmake/help/latest/manual/cmake.1.html
https://cmake.org/cmake/help/latest/manual/cmake.1.html

Buildbot Documentation, Release 0.9.1

the worker before compiling, and any warning matched by a line in the suppression file will be ignored. This is
useful to accept certain warnings (e.g. in some special module of the source tree or in cases where the compiler is
being particularly stupid), yet still be able to easily detect and fix the introduction of new warnings.

The file must contain one line per pattern of warnings to ignore. Empty lines and lines beginning with # are
ignored. Other lines must consist of a regexp matching the file name, followed by a colon (:), followed by a
regexp matching the text of the warning. Optionally this may be followed by another colon and a line number
range. For example:

Sample warning suppression file

mi_packrec.c : .*result of 32-bit shift implicitly converted to 64 bits.* : 560-600
DictTabInfo.cpp : .*invalid access to non-static.*
kernel_types.h : .*only defines private constructors and has no friends.* : 51

If no line number range is specified, the pattern matches the whole file; if only one number is given it matches
only on that line.

The default warningPattern regexp only matches the warning text, so line numbers and file names are ignored.
To enable line number and file name matching, provide a different regexp and provide a function (callable) as the
argument of warningExtractor=. The function is called with three arguments: the BuildStep object, the
line in the log file with the warning, and the SRE_Match object of the regexp search for warningPattern. It
should return a tuple (filename,linenumber,warning_test). For example:

f.addStep(Compile(command=["make"],
warningPattern="^(.*?):([0-9]+): [Ww]arning: (.*)$",
warningExtractor=Compile.warnExtractFromRegexpGroups,
suppressionFile="support-files/compiler_warnings.supp"))

(Compile.warnExtractFromRegexpGroups is a pre-defined function that returns the filename, linenum-
ber, and text from groups (1,2,3) of the regexp match).

In projects with source files in multiple directories, it is possible to get full path names for file names
matched in the suppression file, as long as the build command outputs the names of directories as they are
entered into and left again. For this, specify regexps for the arguments directoryEnterPattern= and
directoryLeavePattern=. The directoryEnterPattern= regexp should return the name of the di-
rectory entered into in the first matched group. The defaults, which are suitable for GNU Make, are these:

directoryEnterPattern="make.*: Entering directory [\"`'](.*)['`\"]"
directoryLeavePattern="make.*: Leaving directory"

(TODO: this step needs to be extended to look for GCC error messages as well, and collect them into a separate
logfile, along with the source code filenames involved).

Visual C++

These steps are meant to handle compilation using Microsoft compilers. VC++ 6-14 (aka Visual Studio 2003-2015
and VCExpress9) are supported via calling devenv. Msbuild as well as Windows Driver Kit 8 are supported via
the MsBuild4, MsBuild12, and MsBuild14 steps. These steps will take care of setting up a clean compilation
environment, parsing the generated output in real time, and delivering as detailed as possible information about
the compilation executed.

All of the classes are in buildbot.steps.vstudio. The available classes are:

• VC6

• VC7

• VC8

• VC9

• VC10

156 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.1

• VC11

• VC12

• VC14

• VS2003

• VS2005

• VS2008

• VS2010

• VS2012

• VS2013

• VS2015

• VCExpress9

• MsBuild4

• MsBuild12

• MsBuild14

The available constructor arguments are

mode The mode default to rebuild, which means that first all the remaining object files will be cleaned by the
compiler. The alternate values are build, where only the updated files will be recompiled, and clean,
where the current build files are removed and no compilation occurs.

projectfile This is a mandatory argument which specifies the project file to be used during the compilation.

config This argument defaults to release an gives to the compiler the configuration to use.

installdir This is the place where the compiler is installed. The default value is compiler specific and is the
default place where the compiler is installed.

useenv This boolean parameter, defaulting to False instruct the compiler to use its own settings or the one
defined through the environment variables PATH, INCLUDE, and LIB. If any of the INCLUDE or LIB
parameter is defined, this parameter automatically switches to True.

PATH This is a list of path to be added to the PATH environment variable. The default value is the one defined in
the compiler options.

INCLUDE This is a list of path where the compiler will first look for include files. Then comes the default paths
defined in the compiler options.

LIB This is a list of path where the compiler will first look for libraries. Then comes the default path defined in
the compiler options.

arch That one is only available with the class VS2005 (VC8). It gives the target architecture of the built artifact.
It defaults to x86 and does not apply to MsBuild4 or MsBuild12. Please see platform below.

project This gives the specific project to build from within a workspace. It defaults to building all projects.
This is useful for building cmake generate projects.

platform This is a mandatory argument for MsBuild4 and MsBuild12 specifying the target platform such
as ‘Win32’, ‘x64’ or ‘Vista Debug’. The last one is an example of driver targets that appear once Windows
Driver Kit 8 is installed.

Here is an example on how to drive compilation with Visual Studio 2013:

from buildbot.plugins import steps

f.addStep(
steps.VS2013(projectfile="project.sln", config="release",

arch="x64", mode="build",

2.4. Configuration 157

Buildbot Documentation, Release 0.9.1

INCLUDE=[r'C:\3rd-party\libmagic\include'],
LIB=[r'C:\3rd-party\libmagic\lib-x64']))

Here is a similar example using “MsBuild12”:

from buildbot.plugins import steps

Build one project in Release mode for Win32
f.addStep(

steps.MsBuild12(projectfile="trunk.sln", config="Release", platform="Win32",
workdir="trunk",
project="tools\\protoc"))

Build the entire solution in Debug mode for x64
f.addStep(

steps.MsBuild12(projectfile="trunk.sln", config='Debug', platform='x64',
workdir="trunk"))

Cppcheck

This step runs cppcheck, analyse its output, and set the outcome in Properties.

from buildbot.plugins import steps

f.addStep(steps.Cppcheck(enable=['all'], inconclusive=True]))

This class adds the following arguments:

binary (Optional, default to cppcheck) Use this if you need to give the full path to the cppcheck binary or if
your binary is called differently.

source (Optional, default to ['.']) This is the list of paths for the sources to be checked by this step.

enable (Optional) Use this to give a list of the message classes that should be in cppcheck report. See the
cppcheck man page for more information.

inconclusive (Optional) Set this to True if you want cppcheck to also report inconclusive results. See the
cppcheck man page for more information.

extra_args (Optional) This is the list of extra arguments to be given to the cppcheck command.

All other arguments are identical to ShellCommand.

Robocopy

class buildbot.steps.mswin.Robocopy

This step runs robocopy on Windows.

Robocopy (https://technet.microsoft.com/en-us/library/cc733145.aspx) is available in versions of Windows start-
ing with Windows Vista and Windows Server 2008. For previous versions of Windows, it’s available as part of the
Windows Server 2003 Resource Kit Tools (https://www.microsoft.com/en-us/download/details.aspx?id=17657).

from buildbot.plugins import steps, util

f.addStep(
steps.Robocopy(

name='deploy_binaries',
description='Deploying binaries...',
descriptionDone='Deployed binaries.',
source=util.Interpolate('Build\\Bin\\%(prop:configuration)s'),
destination=util.Interpolate('%(prop:deploy_dir)\\Bin\\%(prop:

→˓configuration)s'),

158 Chapter 2. Buildbot Manual

https://technet.microsoft.com/en-us/library/cc733145.aspx
https://www.microsoft.com/en-us/download/details.aspx?id=17657

Buildbot Documentation, Release 0.9.1

mirror=True
)

)

Available constructor arguments are:

source The path to the source directory (mandatory).

destination The path to the destination directory (mandatory).

files An array of file names or patterns to copy.

recursive Copy files and directories recursively (/E parameter).

mirror Mirror the source directory in the destination directory, including removing files that don’t exist anymore
(/MIR parameter).

move Delete the source directory after the copy is complete (/MOVE parameter).

exclude_files An array of file names or patterns to exclude from the copy (/XF parameter).

exclude_dirs An array of directory names or patterns to exclude from the copy (/XD parameter).

custom_opts An array of custom parameters to pass directly to the robocopy command.

verbose Whether to output verbose information (/V /TS /TP parameters).

Note that parameters /TEE /NP will always be appended to the command to signify, respectively, to output
logging to the console, use Unicode logging, and not print any percentage progress information for each file.

Test

from buildbot.plugins import steps

f.addStep(steps.Test())

This is meant to handle unit tests. The default command is make test, and the warnOnFailure flag is set.
The other arguments are identical to ShellCommand.

TreeSize

from buildbot.plugins import steps

f.addStep(steps.TreeSize())

This is a simple command that uses the du tool to measure the size of the code tree. It puts the size (as a
count of 1024-byte blocks, aka ‘KiB’ or ‘kibibytes’) on the step’s status text, and sets a build property named
tree-size-KiB with the same value. All arguments are identical to ShellCommand.

PerlModuleTest

from buildbot.plugins import steps

f.addStep(steps.PerlModuleTest())

This is a simple command that knows how to run tests of perl modules. It parses the output to determine the
number of tests passed and failed and total number executed, saving the results for later query. The command is
prove --lib lib -r t, although this can be overridden with the command argument. All other arguments
are identical to those for ShellCommand.

2.4. Configuration 159

Buildbot Documentation, Release 0.9.1

MTR (mysql-test-run)

The MTR class is a subclass of Test. It is used to run test suites using the mysql-test-run program, as used in
MySQL, Drizzle, MariaDB, and MySQL storage engine plugins.

The shell command to run the test suite is specified in the same way as for the Test class. The MTR class will
parse the output of running the test suite, and use the count of tests executed so far to provide more accurate
completion time estimates. Any test failures that occur during the test are summarized on the Waterfall Display.

Server error logs are added as additional log files, useful to debug test failures.

Optionally, data about the test run and any test failures can be inserted into a database for further analysis and report
generation. To use this facility, create an instance of twisted.enterprise.adbapi.ConnectionPool
with connections to the database. The necessary tables can be created automatically by setting
autoCreateTables to True, or manually using the SQL found in the mtrlogobserver.py source file.

One problem with specifying a database is that each reload of the configuration will get a new instance of
ConnectionPool (even if the connection parameters are the same). To avoid that Buildbot thinks the builder
configuration has changed because of this, use the steps.mtrlogobserver.EqConnectionPool sub-
class of ConnectionPool, which implements an equiality operation that avoids this problem.

Example use:

from buildbot.plugins import steps, util

myPool = util.EqConnectionPool("MySQLdb", "host", "buildbot", "password", "db")
myFactory.addStep(steps.MTR(workdir="mysql-test", dbpool=myPool,

command=["perl", "mysql-test-run.pl", "--force"]))

The MTR step’s arguments are:

textLimit Maximum number of test failures to show on the waterfall page (to not flood the page in case of a
large number of test failures. Defaults to 5.

testNameLimit Maximum length of test names to show unabbreviated in the waterfall page, to avoid exces-
sive column width. Defaults to 16.

parallel Value of option –parallel option used for mysql-test-run.pl (number of processes used to run
the test suite in parallel). Defaults to 4. This is used to determine the number of server error log files to
download from the worker. Specifying a too high value does not hurt (as nonexisting error logs will be
ignored), however if using option –parallel value greater than the default it needs to be specified, or some
server error logs will be missing.

dbpool An instance of twisted.enterprise.adbapi.ConnectionPool, or None. Defaults to
None. If specified, results are inserted into the database using the ConnectionPool.

autoCreateTables Boolean, defaults to False. If True (and dbpool is specified), the necessary database
tables will be created automatically if they do not exist already. Alternatively, the tables can be created
manually from the SQL statements found in the mtrlogobserver.py source file.

test_type Short string that will be inserted into the database in the row for the test run. Defaults to the empty
string, but can be specified to identify different types of test runs.

test_info Descriptive string that will be inserted into the database in the row for the test run. Defaults to the
empty string, but can be specified as a user-readable description of this particular test run.

mtr_subdir The subdirectory in which to look for server error log files. Defaults to mysql-test, which is
usually correct. Interpolate is supported.

SubunitShellCommand

class buildbot.steps.subunit.SubunitShellCommand

160 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.1

This buildstep is similar to ShellCommand, except that it runs the log content through a subunit filter to extract
test and failure counts.

from buildbot.plugins import steps

f.addStep(steps.SubunitShellCommand(command="make test"))

This runs make test and filters it through subunit. The ‘tests’ and ‘test failed’ progress metrics will now
accumulate test data from the test run.

If failureOnNoTests is True, this step will fail if no test is run. By default failureOnNoTests is False.

Worker Filesystem Steps

Here are some buildsteps for manipulating the worker’s filesystem.

FileExists

This step will assert that a given file exists, failing if it does not. The filename can be specified with a property.

from buildbot.plugins import steps

f.addStep(steps.FileExists(file='test_data'))

This step requires worker version 0.8.4 or later.

CopyDirectory

This command copies a directory on the worker.

from buildbot.plugins import steps

f.addStep(steps.CopyDirectory(src="build/data", dest="tmp/data"))

This step requires worker version 0.8.5 or later.

The CopyDirectory step takes the following arguments:

timeout if the copy command fails to produce any output for this many seconds, it is assumed to be locked up
and will be killed. This defaults to 120 seconds. Pass None to disable.

maxTime if the command takes longer than this many seconds, it will be killed. This is disabled by default.

RemoveDirectory

This command recursively deletes a directory on the worker.

from buildbot.plugins import steps

f.addStep(steps.RemoveDirectory(dir="build/build"))

This step requires worker version 0.8.4 or later.

MakeDirectory

This command creates a directory on the worker.

2.4. Configuration 161

Buildbot Documentation, Release 0.9.1

from buildbot.plugins import steps

f.addStep(steps.MakeDirectory(dir="build/build"))

This step requires worker version 0.8.5 or later.

Python BuildSteps

Here are some BuildSteps that are specifically useful for projects implemented in Python.

BuildEPYDoc

class buildbot.steps.python.BuildEPYDoc

epydoc (http://epydoc.sourceforge.net/) is a tool for generating API documentation for Python modules from their
docstrings. It reads all the .py files from your source tree, processes the docstrings therein, and creates a large
tree of .html files (or a single .pdf file).

The BuildEPYDoc step will run epydoc to produce this API documentation, and will count the errors and
warnings from its output.

You must supply the command line to be used. The default is make epydocs, which assumes that your
project has a Makefile with an epydocs target. You might wish to use something like epydoc -o apiref
source/PKGNAME instead. You might also want to add option –pdf to generate a PDF file instead of a large
tree of HTML files.

The API docs are generated in-place in the build tree (under the workdir, in the subdirectory con-
trolled by the option -o argument). To make them useful, you will probably have to copy them
to somewhere they can be read. For example if you have server with configured nginx web
server, you can place generated docs to it’s public folder with command like rsync -ad apiref/
dev.example.com:~/usr/share/nginx/www/current-apiref/. You might instead want to bun-
dle them into a tarball and publish it in the same place where the generated install tarball is placed.

from buildbot.plugins import steps

f.addStep(steps.BuildEPYDoc(command=["epydoc", "-o", "apiref", "source/mypkg"]))

PyFlakes

class buildbot.steps.python.PyFlakes

PyFlakes (https://launchpad.net/pyflakes) is a tool to perform basic static analysis of Python code to look for
simple errors, like missing imports and references of undefined names. It is like a fast and simple form of the C
lint program. Other tools (like pychecker (http://pychecker.sourceforge.net/)) provide more detailed results but
take longer to run.

The PyFlakes step will run pyflakes and count the various kinds of errors and warnings it detects.

You must supply the command line to be used. The default is make pyflakes, which assumes you have a top-
level Makefile with a pyflakes target. You might want to use something like pyflakes . or pyflakes
src.

from buildbot.plugins import steps

f.addStep(steps.PyFlakes(command=["pyflakes", "src"]))

162 Chapter 2. Buildbot Manual

http://epydoc.sourceforge.net/
https://launchpad.net/pyflakes
http://pychecker.sourceforge.net/

Buildbot Documentation, Release 0.9.1

Sphinx

class buildbot.steps.python.Sphinx

Sphinx (http://sphinx.pocoo.org/) is the Python Documentation Generator. It uses RestructuredText
(http://docutils.sourceforge.net/rst.html) as input format.

The Sphinx step will run sphinx-build or any other program specified in its sphinx argument and count
the various warnings and error it detects.

from buildbot.plugins import steps

f.addStep(steps.Sphinx(sphinx_builddir="_build"))

This step takes the following arguments:

sphinx_builddir (required) Name of the directory where the documentation will be generated.

sphinx_sourcedir (optional, defaulting to .), Name the directory where the conf.py file will be found

sphinx_builder (optional) Indicates the builder to use.

sphinx (optional, defaulting to sphinx-build) Indicates the executable to run.

tags (optional) List of tags to pass to sphinx-build

defines (optional) Dictionary of defines to overwrite values of the conf.py file.

mode (optional) String, one of full or incremental (the default). If set to full, indicates to Sphinx to
rebuild everything without re-using the previous build results.

PyLint

Similarly, the PyLint step will run pylint and analyze the results.

You must supply the command line to be used. There is no default.

from buildbot.plugins import steps

f.addStep(steps.PyLint(command=["pylint", "src"]))

Trial

class buildbot.steps.python_twisted.Trial

This step runs a unit test suite using trial, a unittest-like testing framework that is a component of Twisted
Python. Trial is used to implement Twisted’s own unit tests, and is the unittest-framework of choice for many
projects that use Twisted internally.

Projects that use trial typically have all their test cases in a ‘test’ subdirectory of their top-level library directory.
For example, for a package petmail, the tests might be in petmail/test/test_*.py. More complicated
packages (like Twisted itself) may have multiple test directories, like twisted/test/test_*.py for the core
functionality and twisted/mail/test/test_*.py for the email-specific tests.

To run trial tests manually, you run the trial executable and tell it where the test cases are located. The most
common way of doing this is with a module name. For petmail, this might look like trial petmail.test,
which would locate all the test_*.py files under petmail/test/, running every test case it could find in
them. Unlike the unittest.py that comes with Python, it is not necessary to run the test_foo.py as a
script; you always let trial do the importing and running. The step’s tests` parameter controls which tests trial
will run: it can be a string or a list of strings.

To find the test cases, the Python search path must allow something like import petmail.test to
work. For packages that don’t use a separate top-level lib directory, PYTHONPATH=. will work,

2.4. Configuration 163

http://sphinx.pocoo.org/
http://docutils.sourceforge.net/rst.html

Buildbot Documentation, Release 0.9.1

and will use the test cases (and the code they are testing) in-place. PYTHONPATH=build/lib or
PYTHONPATH=build/lib.somearch are also useful when you do a python setup.py build step
first. The testpath attribute of this class controls what PYTHONPATH is set to before running trial.

Trial has the ability, through the --testmodule flag, to run only the set of test cases named by special
test-case-name tags in source files. We can get the list of changed source files from our parent Build and
provide them to trial, thus running the minimal set of test cases needed to cover the Changes. This is useful for
quick builds, especially in trees with a lot of test cases. The testChanges parameter controls this feature: if
set, it will override tests.

The trial executable itself is typically just trial, and is typically found in the shell search path. It can be
overridden with the trial parameter. This is useful for Twisted’s own unittests, which want to use the copy of
bin/trial that comes with the sources.

To influence the version of Python being used for the tests, or to add flags to the command, set the python
parameter. This can be a string (like python2.2) or a list (like ['python2.3','-Wall']).

Trial creates and switches into a directory named _trial_temp/ before running the tests, and sends the twisted
log (which includes all exceptions) to a file named test.log. This file will be pulled up to the master where it
can be seen as part of the status output.

from buildbot.plugins import steps

f.addStep(steps.Trial(tests='petmail.test'))

Trial has the ability to run tests on several workers in parallel (beginning with Twisted 12.3.0). Set jobs to the
number of workers you want to run. Note that running trial in this way will create multiple log files (named
test.N.log, err.N.log and out.N.log starting with N=0) rather than a single test.log.

This step takes the following arguments:

jobs (optional) Number of worker-resident trial workers to use when running the tests. Defaults to 1 worker.
Only works with Twisted>=12.3.0.

RemovePYCs

class buildbot.steps.python_twisted.RemovePYCs

This is a simple built-in step that will remove .pyc files from the workdir. This is useful in builds that update their
source (and thus do not automatically delete .pyc files) but where some part of the build process is dynamically
searching for Python modules. Notably, trial has a bad habit of finding old test modules.

from buildbot.plugins import steps

f.addStep(steps.RemovePYCs())

Transferring Files

class buildbot.steps.transfer.FileUpload

class buildbot.steps.transfer.FileDownload

Most of the work involved in a build will take place on the worker. But occasionally it is useful to do some work
on the buildmaster side. The most basic way to involve the buildmaster is simply to move a file from the worker
to the master, or vice versa. There are a pair of steps named FileUpload and FileDownload to provide this
functionality. FileUpload moves a file up to the master, while FileDownload moves a file down from the
master.

As an example, let’s assume that there is a step which produces an HTML file within the source tree that contains
some sort of generated project documentation. And let’s assume that we run nginx web server on buildmaster host
for serving static files. We want to move this file to the buildmaster, into a /usr/share/nginx/www/ direc-
tory, so it can be visible to developers. This file will wind up in the worker-side working directory under the name

164 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.1

docs/reference.html. We want to put it into the master-side /usr/share/nginx/www/ref.html,
and add a link to the HTML status to the uploaded file.

from buildbot.plugins import steps

f.addStep(steps.ShellCommand(command=["make", "docs"]))
f.addStep(steps.FileUpload(workersrc="docs/reference.html",

masterdest="/usr/share/nginx/www/ref.html",
url="http://somesite/~buildbot/ref.html"))

The masterdest= argument will be passed to os.path.expanduser, so things like ~ will be expanded
properly. Non-absolute paths will be interpreted relative to the buildmaster’s base directory. Likewise, the
workersrc= argument will be expanded and interpreted relative to the builder’s working directory.

Note: The copied file will have the same permissions on the master as on the worker, look at the mode= parameter
to set it differently.

To move a file from the master to the worker, use the FileDownload command. For example, let’s assume
that some step requires a configuration file that, for whatever reason, could not be recorded in the source code
repository or generated on the worker side:

from buildbot.plugins import steps

f.addStep(steps.FileDownload(mastersrc="~/todays_build_config.txt",
workerdest="build_config.txt"))

f.addStep(steps.ShellCommand(command=["make", "config"]))

Like FileUpload, the mastersrc= argument is interpreted relative to the buildmaster’s base directory,
and the workerdest= argument is relative to the builder’s working directory. If the worker is run-
ning in ~worker, and the builder’s builddir is something like tests-i386, then the workdir is go-
ing to be ~worker/tests-i386/build, and a workerdest= of foo/bar.html will get put in
~worker/tests-i386/build/foo/bar.html. Both of these commands will create any missing inter-
vening directories.

Other Parameters

The maxsize= argument lets you set a maximum size for the file to be transferred. This may help to avoid
surprises: transferring a 100MB coredump when you were expecting to move a 10kB status file might take an
awfully long time. The blocksize= argument controls how the file is sent over the network: larger blocksizes
are slightly more efficient but also consume more memory on each end, and there is a hard-coded limit of about
640kB.

The mode= argument allows you to control the access permissions of the target file, traditionally expressed as an
octal integer. The most common value is probably 0755, which sets the x executable bit on the file (useful for
shell scripts and the like). The default value for mode= is None, which means the permission bits will default to
whatever the umask of the writing process is. The default umask tends to be fairly restrictive, but at least on the
worker you can make it less restrictive with a –umask command-line option at creation time (Worker Options).

The keepstamp= argument is a boolean that, when True, forces the modified and accessed time of the destina-
tion file to match the times of the source file. When False (the default), the modified and accessed times of the
destination file are set to the current time on the buildmaster.

The url= argument allows you to specify an url that will be displayed in the HTML status. The title of the url will
be the name of the item transferred (directory for DirectoryUpload or file for FileUpload). This allows
the user to add a link to the uploaded item if that one is uploaded to an accessible place.

2.4. Configuration 165

Buildbot Documentation, Release 0.9.1

Transfering Directories

class buildbot.steps.transfer.DirectoryUpload

To transfer complete directories from the worker to the master, there is a BuildStep named
DirectoryUpload. It works like FileUpload, just for directories. However it does not support the
maxsize, blocksize and mode arguments. As an example, let’s assume an generated project documenta-
tion, which consists of many files (like the output of doxygen or epydoc). And let’s assume that we run nginx
web server on buildmaster host for serving static files. We want to move the entire documentation to the build-
master, into a /usr/share/nginx/www/docs directory, and add a link to the uploaded documentation on
the HTML status page. On the worker-side the directory can be found under docs:

from buildbot.plugins import steps

f.addStep(steps.ShellCommand(command=["make", "docs"]))
f.addStep(steps.DirectoryUpload(workersrc="docs",

masterdest="/usr/share/nginx/www/docs",
url="~buildbot/docs"))

The DirectoryUpload step will create all necessary directories and transfers empty directories, too.

The maxsize and blocksize parameters are the same as for FileUpload, although note that the size of the
transferred data is implementation-dependent, and probably much larger than you expect due to the encoding used
(currently tar).

The optional compress argument can be given as 'gz' or 'bz2' to compress the datastream.

Note: The permissions on the copied files will be the same on the master as originally on the worker, see option
buildbot-worker create-worker --umask to change the default one.

Transferring Multiple Files At Once

class buildbot.steps.transfer.MultipleFileUpload

In addition to the FileUpload and DirectoryUpload steps there is the MultipleFileUpload step
for uploading a bunch of files (and directories) in a single BuildStep. The step supports all arguments that
are supported by FileUpload and DirectoryUpload, but instead of a the single workersrc parameter it
takes a (plural) workersrcs parameter. This parameter should either be a list, or something that can be rendered
as a list.:

from buildbot.plugins import steps

f.addStep(steps.ShellCommand(command=["make", "test"]))
f.addStep(steps.ShellCommand(command=["make", "docs"]))
f.addStep(steps.MultipleFileUpload(workersrcs=["docs", "test-results.html"],

masterdest="/usr/share/nginx/www/",
url="~buildbot"))

The url= parameter, can be used to specify a link to be displayed in the HTML status of the step.

The way URLs are added to the step can be customized by extending the MultipleFileUpload class. The
allUploadsDone method is called after all files have been uploaded and sets the URL. The uploadDone method is
called once for each uploaded file and can be used to create file-specific links.

import os

from buildbot.plugins import steps

class CustomFileUpload(steps.MultipleFileUpload):
linkTypes = ('.html', '.txt')

166 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.1

def linkFile(self, basename):
name, ext = os.path.splitext(basename)
return ext in self.linkTypes

def uploadDone(self, result, source, masterdest):
if self.url:

basename = os.path.basename(source)
if self.linkFile(basename):

self.addURL(self.url + '/' + basename, basename)

def allUploadsDone(self, result, sources, masterdest):
if self.url:

notLinked = filter(lambda src: not self.linkFile(src), sources)
numFiles = len(notLinked)
if numFiles:

self.addURL(self.url, '... %d more' % numFiles)

Transfering Strings

class buildbot.steps.transfer.StringDownload

class buildbot.steps.transfer.JSONStringDownload

class buildbot.steps.transfer.JSONPropertiesDownload

Sometimes it is useful to transfer a calculated value from the master to the worker. Instead of having to create a
temporary file and then use FileDownload, you can use one of the string download steps.

from buildbot.plugins import steps, util

f.addStep(steps.StringDownload(util.Interpolate("%(src::branch)s-%(prop:got_
→˓revision)s\n"),

workerdest="buildid.txt"))

StringDownload works just like FileDownload except it takes a single argument, s, representing the string
to download instead of a mastersrc argument.

from buildbot.plugins import steps

buildinfo = {
'branch': Property('branch'),
'got_revision': Property('got_revision')

}
f.addStep(steps.JSONStringDownload(buildinfo, workerdest="buildinfo.json"))

JSONStringDownload is similar, except it takes an o argument, which must be JSON serializable, and trans-
fers that as a JSON-encoded string to the worker.

from buildbot.plugins import steps

f.addStep(steps.JSONPropertiesDownload(workerdest="build-properties.json"))

JSONPropertiesDownload transfers a json-encoded string that represents a dictionary where properties
maps to a dictionary of build property name to property value; and sourcestamp represents the build’s
sourcestamp.

Running Commands on the Master

class buildbot.steps.master.MasterShellCommand

2.4. Configuration 167

Buildbot Documentation, Release 0.9.1

Occasionally, it is useful to execute some task on the master, for example to create a directory, deploy a
build result, or trigger some other centralized processing. This is possible, in a limited fashion, with the
MasterShellCommand step.

This step operates similarly to a regular ShellCommand, but executes on the master, instead of the worker. To
be clear, the enclosing Build object must still have a worker object, just as for any other step – only, in this step,
the worker does not do anything.

In this example, the step renames a tarball based on the day of the week.

from buildbot.plugins import steps

f.addStep(steps.FileUpload(workersrc="widgetsoft.tar.gz",
masterdest="/var/buildoutputs/widgetsoft-new.tar.gz"))

f.addStep(steps.MasterShellCommand(
command="mv widgetsoft-new.tar.gz widgetsoft-`date +%a`.tar.gz",
workdir="/var/buildoutputs"))

Note: By default, this step passes a copy of the buildmaster’s environment variables to the subprocess. To pass
an explicit environment instead, add an env={..} argument.

Environment variables constructed using the env argument support expansion so that if you just want to prepend
/home/buildbot/bin to the PATH environment variable, you can do it by putting the value ${PATH} at the
end of the value like in the example below. Variables that don’t exist on the master will be replaced by "".

from buildbot.plugins import steps

f.addStep(steps.MasterShellCommand(
command=["make", "www"],
env={'PATH': ["/home/buildbot/bin",

"${PATH}"]}))

Note that environment values must be strings (or lists that are turned into strings). In particular, numeric properties
such as buildnumber must be substituted using Interpolate.

workdir (optional) The directory from which the command will be ran.

interruptSignal (optional) Signal to use to end the process, if the step is interrupted.

LogRenderable

class buildbot.steps.master.LogRenderable

This build step takes content which can be renderable and logs it in a pretty-printed format. It can be useful for
debugging properties during a build.

Setting Properties

These steps set properties on the master based on information from the worker.

SetProperty

class buildbot.steps.master.SetProperty

SetProperty takes two arguments of property and valuewhere the value is to be assigned to the property
key. It is usually called with the value argument being specifed as a Interpolate object which allows the value
to be built from other property values:

168 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.1

from buildbot.plugins import steps, util

f.addStep(
steps.SetProperty(

property="SomeProperty",
value=util.Interpolate("sch=%(prop:scheduler)s, worker=%(prop:workername)s

→˓")
)

)

SetPropertyFromCommand

class buildbot.steps.shell.SetPropertyFromCommand

This buildstep is similar to ShellCommand, except that it captures the output of the command into a property.
It is usually used like this:

from buildbot.plugins import steps

f.addStep(steps.SetPropertyFromCommand(command="uname -a", property="uname"))

This runs uname -a and captures its stdout, stripped of leading and trailing whitespace, in the property uname.
To avoid stripping, add strip=False.

The property argument can be specified as a Interpolate object, allowing the property name to be built from
other property values.

Passing includeStdout=False (default True) stops capture from stdout.

Passing includeStderr=True (default False) allows capture from stderr.

The more advanced usage allows you to specify a function to extract properties from the command output. Here
you can use regular expressions, string interpolation, or whatever you would like. In this form, extract_fn
should be passed, and not Property. The extract_fn function is called with three arguments: the exit status
of the command, its standard output as a string, and its standard error as a string. It should return a dictionary
containing all new properties.

Note that passing in extract_fn will set includeStderr to True.

def glob2list(rc, stdout, stderr):
jpgs = [l.strip() for l in stdout.split('\n')]
return {'jpgs': jpgs}

f.addStep(SetPropertyFromCommand(command="ls -1 *.jpg", extract_fn=glob2list))

Note that any ordering relationship of the contents of stdout and stderr is lost. For example, given:

f.addStep(SetPropertyFromCommand(
command="echo output1; echo error >&2; echo output2",
extract_fn=my_extract))

Then my_extract will see stdout="output1\noutput2\n" and stderr="error\n".

Avoid using the extract_fn form of this step with commands that produce a great deal of output, as the output
is buffered in memory until complete.

class buildbot.steps.worker.SetPropertiesFromEnv

SetPropertiesFromEnv

Buildbot workers (later than version 0.8.3) provide their environment variables to the master on connect. These
can be copied into Buildbot properties with the SetPropertiesFromEnv step. Pass a variable or list of

2.4. Configuration 169

Buildbot Documentation, Release 0.9.1

variables in the variables parameter, then simply use the values as properties in a later step.

Note that on Windows, environment variables are case-insensitive, but Buildbot property names are case sensitive.
The property will have exactly the variable name you specify, even if the underlying environment variable is
capitalized differently. If, for example, you use variables=['Tmp'], the result will be a property named
Tmp, even though the environment variable is displayed as TMP in the Windows GUI.

from buildbot.plugins import steps, util

f.addStep(steps.SetPropertiesFromEnv(variables=["SOME_JAVA_LIB_HOME", "JAVAC"]))
f.addStep(steps.Compile(commands=[util.Interpolate("%(prop:JAVAC)s"),

"-cp",
util.Interpolate("%(prop:SOME_JAVA_LIB_HOME)s

→˓")]))

Note that this step requires that the worker be at least version 0.8.3. For previous versions, no environment
variables are available (the worker environment will appear to be empty).

Triggering Schedulers

class buildbot.steps.trigger.Trigger

The counterpart to the Triggerable scheduler is the Trigger build step:

from buildbot.plugins import steps

f.addStep(steps.Trigger(schedulerNames=['build-prep'],
waitForFinish=True,
updateSourceStamp=True,
set_properties={ 'quick' : False }))

The SourceStamps to use for the triggered build are controlled by the arguments updateSourceStamp,
alwaysUseLatest, and sourceStamps.

Hyperlinks are added to the build detail web pages for each triggered build.

schedulerNames lists the Triggerable schedulers that should be triggered when this step is executed.

Note: It is possible, but not advisable, to create a cycle where a build continually triggers itself, because
the schedulers are specified by name.

unimportantSchedulerNames When waitForFinish is True, all schedulers in this list will not
cause the trigger step to fail. unimportantSchedulerNames must be a subset of schedulerNames If
waitForFinish is False, unimportantSchedulerNames will simply be ignored.

waitForFinish If True, the step will not finish until all of the builds from the triggered schedulers have
finished.

If False (the default) or not given, then the buildstep succeeds immediately after triggering the schedulers.

updateSourceStamp If True (the default), then step updates the source stamps given to the Triggerable
schedulers to include got_revision (the revision actually used in this build) as revision (the revision
to use in the triggered builds). This is useful to ensure that all of the builds use exactly the same source
stamps, even if other Changes have occurred while the build was running.

If False (and neither of the other arguments are specified), then the exact same SourceStamps are used.

alwaysUseLatest If True, then no SourceStamps are given, corresponding to using the latest revisions of
the repositories specified in the Source steps. This is useful if the triggered builds use to a different source
repository.

sourceStamps Accepts a list of dictionaries containing the keys branch, revision, repository,
project, and optionally patch_level, patch_body, patch_subdir, patch_author and

170 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.1

patch_comment and creates the corresponding SourceStamps. If only one sourceStamp has to be speci-
fied then the argument sourceStamp can be used for a dictionary containing the keys mentioned above.
The arguments updateSourceStamp, alwaysUseLatest, and sourceStamp can be specified us-
ing properties.

set_properties allows control of the properties that are passed to the triggered scheduler. The parameter
takes a dictionary mapping property names to values. You may use Interpolate here to dynamically construct
new property values. For the simple case of copying a property, this might look like:

set_properties={"my_prop1" : Property("my_prop1")}

Note: The copy_properties parameter, given a list of properties to copy into the new build request,
has been deprecated in favor of explicit use of set_properties.

Dynamic Trigger

Sometimes it is desirable to select which scheduler to trigger, and which properties to set dynamically, at the time
of the build. For this purpose, Trigger step supports a method that you can customize in order to override statically
defined schedulernames, set_properties and optionally unimportant.

buildbot.steps.source.getSchedulersAndProperties()

Returns list of dictionaries containing the keys ‘sched_name’, ‘props_to_set’ and ‘unimportant’
optionally via deferred

This method returns a list of dictionaries describing what scheduler to trigger, with which properties and
if the scheduler is unimportant. Old style list of tuples is still supported, in which case unimportant is
considered False. The properties should already be rendered (ie, concrete value, not objects wrapped by
Interpolate or Property). Since this function happens at build-time, the property values are available
from the step and can be used to decide what schedulers or properties to use.

With this method, you can also trigger the same scheduler multiple times with different set of properties.
The sourcestamp configuration is however the same for each triggered build request.

RPM-Related Steps

These steps work with RPMs and spec files.

RpmBuild

The RpmBuild step builds RPMs based on a spec file:

from buildbot.plugins import steps

f.addStep(steps.RpmBuild(specfile="proj.spec", dist='.el5'))

The step takes the following parameters

specfile The .spec file to build from

topdir Definition for _topdir, defaulting to the workdir.

builddir Definition for _builddir, defaulting to the workdir.

rpmdir Definition for _rpmdir, defaulting to the workdir.

sourcedir Definition for _sourcedir, defaulting to the workdir.

srcrpmdir Definition for _srcrpmdir, defaulting to the workdir.

2.4. Configuration 171

Buildbot Documentation, Release 0.9.1

dist Distribution to build, used as the definition for _dist.

autoRelease If true, use the auto-release mechanics.

vcsRevision If true, use the version-control revision mechanics. This uses the got_revision property to
determine the revision and define _revision. Note that this will not work with multi-codebase builds.

RpmLint

The RpmLint step checks for common problems in RPM packages or spec files:

from buildbot.plugins import steps

f.addStep(steps.RpmLint())

The step takes the following parameters

fileloc The file or directory to check. In case of a directory, it is recursively searched for RPMs and spec files
to check.

config Path to a rpmlint config file. This is passed as the user configuration file if present.

Mock Steps

Mock (http://fedoraproject.org/wiki/Projects/Mock) creates chroots and builds packages in them. It populates
the changeroot with a basic system and the packages listed as build requirement. The type of chroot to build is
specified with the root parameter. To use mock your Buildbot user must be added to the mock group.

MockBuildSRPM Step

The MockBuildSRPM step builds a SourceRPM based on a spec file and optionally a source directory:

from buildbot.plugins import steps

f.addStep(steps.MockBuildSRPM(root='default', spec='mypkg.spec'))

The step takes the following parameters

root Use chroot configuration defined in /etc/mock/<root>.cfg.

resultdir The directory where the logfiles and the SourceRPM are written to.

spec Build the SourceRPM from this spec file.

sources Path to the directory containing the sources, defaulting to ..

MockRebuild Step

The MockRebuild step rebuilds a SourceRPM package:

from buildbot.plugins import steps

f.addStep(steps.MockRebuild(root='default', spec='mypkg-1.0-1.src.rpm'))

The step takes the following parameters

root Uses chroot configuration defined in /etc/mock/<root>.cfg.

resultdir The directory where the logfiles and the SourceRPM are written to.

srpm The path to the SourceRPM to rebuild.

172 Chapter 2. Buildbot Manual

http://fedoraproject.org/wiki/Projects/Mock

Buildbot Documentation, Release 0.9.1

Debian Build Steps

DebPbuilder

The DebPbuilder step builds Debian packages within a chroot built by pbuilder. It populates the chroot
with a basic system and the packages listed as build requirement. The type of the chroot to build is specified with
the distribution, distribution and mirror parameter. To use pbuilder your Buildbot user must have
the right to run pbuilder as root using sudo.

from buildbot.plugins import steps

f.addStep(steps.DebPbuilder())

The step takes the following parameters

architecture Architecture to build chroot for.

distribution Name, or nickname, of the distribution. Defaults to ‘stable’.

basetgz Path of the basetgz to use for building.

mirror URL of the mirror used to download the packages from.

extrapackages List if packages to install in addition to the base system.

keyring Path to a gpg keyring to verify the downloaded packages. This is necessary if you build for a foreign
distribution.

components Repos to activate for chroot building.

DebCowbuilder

The DebCowbuilder step is a subclass of DebPbuilder, which use cowbuilder instead of pbuilder.

DebLintian

The DebLintian step checks a build .deb for bugs and policy violations. The packages or changes file to test is
specified in fileloc

from buildbot.plugins import steps, util

f.addStep(steps.DebLintian(fileloc=util.Interpolate("%(prop:deb-changes)s")))

Miscellaneous BuildSteps

A number of steps do not fall into any particular category.

HLint

The HLint step runs Twisted Lore, a lint-like checker over a set of .xhtml files. Any deviations from recom-
mended style is flagged and put in the output log.

The step looks at the list of changes in the build to determine which files to check - it does not check all files. It
specifically excludes any .xhtml files in the top-level sandbox/ directory.

The step takes a single, optional, parameter: python. This specifies the Python executable to use to run Lore.

2.4. Configuration 173

Buildbot Documentation, Release 0.9.1

from buildbot.plugins import steps

f.addStep(steps.HLint())

MaxQ

MaxQ (http://maxq.tigris.org/) is a web testing tool that allows you to record HTTP sessions and play them back.
The MaxQ step runs this framework.

from buildbot.plugins import steps

f.addStep(steps.MaxQ(testdir='tests/'))

The single argument, testdir, specifies where the tests should be run. This directory will be passed to the
run_maxq.py command, and the results analyzed.

HTTP Requests

Using the HTTPStep step, it is possible to perform HTTP requests in order to trigger another REST service about
the progress of the build.

Note: This step requires the txrequests (https://pypi.python.org/pypi/txrequests) and requests (http://python-
requests.org) Python libraries.

The parameters are the following:

url (mandatory) The URL where to send the request

method The HTTP method to use (out of POST, GET, PUT, DELETE, HEAD or OPTIONS), default to POST.

params Dictionary of URL parameters to append to the URL.

data The body to attach the request. If a dictionary is provided, form-encoding will take place.

headers Dictionary of headers to send.

other params Any other keywords supported by the requests api can be passed to this step

Note: The entire Buildbot master process shares a single Requests Session object. This has the advan-
tage of supporting connection re-use and other HTTP/1.1 features. However, it also means that any cookies
or other state changed by one step will be visible to other steps, causing unexpected results. This behavior
may change in future versions.

When the method is known in advance, class with the name of the method can also be used. In this case, it is not
necessary to specify the method.

Example:

from buildbot.plugins import steps, util

f.addStep(steps.POST('http://myRESTService.example.com/builds',
data = {

'builder': util.Property('buildername'),
'buildnumber': util.Property('buildnumber'),
'workername': util.Property('workername'),
'revision': util.Property('got_revision')

}))

174 Chapter 2. Buildbot Manual

http://maxq.tigris.org/
https://pypi.python.org/pypi/txrequests
http://python-requests.org

Buildbot Documentation, Release 0.9.1

2.4.10 Interlocks

• Access Modes

• Count

• Scope

• Examples

Until now, we assumed that a master can run builds at any worker whenever needed or desired. Some times,
you want to enforce additional constraints on builds. For reasons like limited network bandwidth, old worker
machines, or a self-willed data base server, you may want to limit the number of builds (or build steps) that can
access a resource.

Access Modes

The mechanism used by Buildbot is known as the read/write lock 1. It allows either many readers or a single
writer but not a combination of readers and writers. The general lock has been modified and extended for use
in Buildbot. Firstly, the general lock allows an infinite number of readers. In Buildbot, we often want to put an
upper limit on the number of readers, for example allowing two out of five possible builds at the same time. To do
this, the lock counts the number of active readers. Secondly, the terms read mode and write mode are confusing
in Buildbot context. They have been replaced by counting mode (since the lock counts them) and exclusive mode.
As a result of these changes, locks in Buildbot allow a number of builds (up to some fixed number) in counting
mode, or they allow one build in exclusive mode.

Note: Access modes are specified when a lock is used. That is, it is possible to have a single lock that is used
by several workers in counting mode, and several workers in exclusive mode. In fact, this is the strength of the
modes: accessing a lock in exclusive mode will prevent all counting-mode accesses.

Count

Often, not all workers are equal. To allow for this situation, Buildbot allows to have a separate upper limit on the
count for each worker. In this way, you can have at most 3 concurrent builds at a fast worker, 2 at a slightly older
worker, and 1 at all other workers.

Scope

The final thing you can specify when you introduce a new lock is its scope. Some constraints are global – they
must be enforced over all workers. Other constraints are local to each worker. A master lock is used for the global
constraints. You can ensure for example that at most one build (of all builds running at all workers) accesses the
data base server. With a worker lock you can add a limit local to each worker. With such a lock, you can for
example enforce an upper limit to the number of active builds at a worker, like above.

Examples

Time for a few examples. Below a master lock is defined to protect a data base, and a worker lock is created to
limit the number of builds at each worker.

from buildbot.plugins import util

db_lock = util.MasterLock("database")

1 See http://en.wikipedia.org/wiki/Read/write_lock_pattern for more information.

2.4. Configuration 175

http://en.wikipedia.org/wiki/Read/write_lock_pattern

Buildbot Documentation, Release 0.9.1

build_lock = util.WorkerLock("worker_builds",
maxCount=1,
maxCountForWorker={'fast': 3, 'new': 2})

db_lock is defined to be a master lock. The database string is used for uniquely identifying the lock. At
the next line, a worker lock called build_lock is created. It is identified by the worker_builds string.
Since the requirements of the lock are a bit more complicated, two optional arguments are also specified. The
maxCount parameter sets the default limit for builds in counting mode to 1. For the worker called 'fast'
however, we want to have at most three builds, and for the worker called 'new' the upper limit is two builds
running at the same time.

The next step is accessing the locks in builds. Buildbot allows a lock to be used during an entire build (from
beginning to end), or only during a single build step. In the latter case, the lock is claimed for use just before the
step starts, and released again when the step ends. To prevent deadlocks, 2 it is not possible to claim or release
locks at other times.

To use locks, you add them with a locks argument to a build or a step. Each use of a lock is either in counting
mode (that is, possibly shared with other builds) or in exclusive mode, and this is indicated with the syntax
lock.access(mode), where mode is one of "counting" or "exclusive".

A build or build step proceeds only when it has acquired all locks. If a build or step needs a lot of locks, it may be
starved 3 by other builds that need fewer locks.

To illustrate use of locks, a few examples.

from buildbot.plugins import util, steps

db_lock = util.MasterLock("database")
build_lock = util.WorkerLock("worker_builds",

maxCount=1,
maxCountForWorker={'fast': 3, 'new': 2})

f = util.BuildFactory()
f.addStep(steps.SVN(repourl="http://example.org/svn/Trunk"))
f.addStep(steps.ShellCommand(command="make all"))
f.addStep(steps.ShellCommand(command="make test",

locks=[db_lock.access('exclusive')]))

b1 = {'name': 'full1', 'workername': 'fast', 'builddir': 'f1', 'factory': f,
'locks': [build_lock.access('counting')] }

b2 = {'name': 'full2', 'workername': 'new', 'builddir': 'f2', 'factory': f,
'locks': [build_lock.access('counting')] }

b3 = {'name': 'full3', 'workername': 'old', 'builddir': 'f3', 'factory': f,
'locks': [build_lock.access('counting')] }

b4 = {'name': 'full4', 'workername': 'other', 'builddir': 'f4', 'factory': f,
'locks': [build_lock.access('counting')] }

c['builders'] = [b1, b2, b3, b4]

Here we have four workers b1, b2, b3, and b4. Each worker performs the same checkout, make, and test build
step sequence. We want to enforce that at most one test step is executed between all workers due to restrictions
with the data base server. This is done by adding the locks= parameter with the third step. It takes a list of
locks with their access mode. Alternatively, this can take a renderable that returns an list of locks with their access
mode.

2 Deadlock is the situation where two or more workers each hold a lock in exclusive mode, and in addition want to claim the lock held by
the other worker exclusively as well. Since locks allow at most one exclusive user, both workers will wait forever.

3 Starving is the situation that only a few locks are available, and they are immediately grabbed by another build. As a result, it may take a
long time before all locks needed by the starved build are free at the same time.

176 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.1

In this case only the db_lock is needed. The exclusive access mode is used to ensure there is at most one worker
that executes the test step.

In addition to exclusive accessing the data base, we also want workers to stay responsive even under the
load of a large number of builds being triggered. For this purpose, the worker lock called build_lock
is defined. Since the restraint holds for entire builds, the lock is specified in the builder with 'locks':
[build_lock.access('counting')].

Note that you will occasionally see lock.access(mode) written as LockAccess(lock,mode). The two
are equivalent, but the former is preferred.

2.4.11 Reporters

• MailNotifier

– MailNotifier arguments

– MessageFormatter arguments

– MessageFormatterMissingWorkers arguments

• IRC Bot

• GerritStatusPush

• HttpStatusPush

– Json object spec

• GitHubStatusPush

• StashStatusPush

• BitbucketStatusPush

• GitLabStatusPush

• HipchatStatusPush

– Json object spec

The Buildmaster has a variety of ways to present build status to various users. Each such delivery method is
a Reporter Target object in the configuration’s services list. To add reporter targets, you just append more
objects to this list:

c['services'] = []

m = reporters.MailNotifier(fromaddr="buildbot@localhost",
extraRecipients=["builds@lists.example.com"],
sendToInterestedUsers=False)

c['services'].append(m)

c['services'].append(reporters.IRC(host="irc.example.com", nick="bb",
channels=[{"channel": "#example1"},

{"channel": "#example2",
"password": "somesecretpassword"}]))

Most reporter objects take a tags= argument, which can contain a list of tag names: in this case, it will only
show status for Builders that contains the named tags.

Note: Implementation Note

2.4. Configuration 177

Buildbot Documentation, Release 0.9.1

Each of these objects should be a service.BuildbotService which will be attached to the BuildMaster
object when the configuration is processed.

The remainder of this section describes each built-in reporters. A full list of reporters is available in the
reporter.

MailNotifier

class buildbot.reporters.mail.MailNotifier

The Buildbot can send email when builds finish. The most common use of this is to tell developers when their
change has caused the build to fail. It is also quite common to send a message to a mailing list (usually named
builds or similar) about every build.

The MailNotifier reporter is used to accomplish this. You configure it by specifying who mail should be sent
to, under what circumstances mail should be sent, and how to deliver the mail. It can be configured to only send
out mail for certain builders, and only send messages when the build fails, or when the builder transitions from
success to failure. It can also be configured to include various build logs in each message.

If a proper lookup function is configured, the message will be sent to the “interested users” list (Doing Things
With Users), which includes all developers who made changes in the build. By default, however, Buildbot does
not know how to construct an email addressed based on the information from the version control system. See the
lookup argument, below, for more information.

You can add additional, statically-configured, recipients with the extraRecipients argument. You can also
add interested users by setting the owners build property to a list of users in the scheduler constructor (Config-
uring Schedulers).

Each MailNotifier sends mail to a single set of recipients. To send different kinds of mail to different
recipients, use multiple MailNotifiers. TODO: or subclass MailNotifier and override getRecipients()

The following simple example will send an email upon the completion of each build, to just those developers
whose Changes were included in the build. The email contains a description of the Build, its results, and URLs
where more information can be obtained.

from buildbot.plugins import reporters
mn = reporters.MailNotifier(fromaddr="buildbot@example.org",

lookup="example.org")
c['services'].append(mn)

To get a simple one-message-per-build (say, for a mailing list), use the following form instead. This form does not
send mail to individual developers (and thus does not need the lookup= argument, explained below), instead it
only ever sends mail to the extra recipients named in the arguments:

mn = reporters.MailNotifier(fromaddr="buildbot@example.org",
sendToInterestedUsers=False,
extraRecipients=['listaddr@example.org'])

If your SMTP host requires authentication before it allows you to send emails, this can also be done by specifying
smtpUser and smtpPassword:

mn = reporters.MailNotifier(fromaddr="myuser@example.com",
sendToInterestedUsers=False,
extraRecipients=["listaddr@example.org"],
relayhost="smtp.example.com", smtpPort=587,
smtpUser="myuser@example.com",
smtpPassword="mypassword")

Note: If for some reasons you are not able to send a notification with TLS enabled and specified user name and
password, you might want to use contrib/check-smtp.py to see if it works at all.

178 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.1

If you want to require Transport Layer Security (TLS), then you can also set useTls:

mn = reporters.MailNotifier(fromaddr="myuser@example.com",
sendToInterestedUsers=False,
extraRecipients=["listaddr@example.org"],
useTls=True, relayhost="smtp.example.com",
smtpPort=587, smtpUser="myuser@example.com",
smtpPassword="mypassword")

Note: If you see twisted.mail.smtp.TLSRequiredError exceptions in the log while using TLS, this
can be due either to the server not supporting TLS or to a missing PyOpenSSL (http://pyopenssl.sourceforge.net/)
package on the BuildMaster system.

In some cases it is desirable to have different information then what is provided in a standard MailNoti-
fier message. For this purpose MailNotifier provides the argument messageFormatter (an instance of
MessageFormatter) which allows for the creation of messages with unique content.

For example, if only short emails are desired (e.g., for delivery to phones):

from buildbot.plugins import reporters
mn = reporters.MailNotifier(fromaddr="buildbot@example.org",

sendToInterestedUsers=False,
mode=('problem',),
extraRecipients=['listaddr@example.org'],
messageFormatter=reporters.MessageFormatter(template=

→˓"STATUS: {{ summary }}"))

Another example of a function delivering a customized html email is given below:

from buildbot.plugins import reporters

template=u'''\
<h4>Build status: {{ summary }}</h4>
<p> Worker used: {{ workername }}</p>
{% for step in build['steps'] %}
<p> {{ step['name'] }}: {{ step['result'] }}</p>
{% endfor %}
<p> -- The Buildbot</p>
'''

mn = reporters.MailNotifier(fromaddr="buildbot@example.org",
sendToInterestedUsers=False,
mode=('failing',),
extraRecipients=['listaddr@example.org'],
messageFormatter=reporters.MessageFormatter(

template=template, template_type='html',
wantProperties=True, wantSteps=True))

MailNotifier arguments

fromaddr The email address to be used in the ‘From’ header.

sendToInterestedUsers (boolean). If True (the default), send mail to all of the Interested Users. If
False, only send mail to the extraRecipients list.

extraRecipients (list of strings). A list of email addresses to which messages should be sent (in addition to
the InterestedUsers list, which includes any developers who made Changes that went into this build). It is
a good idea to create a small mailing list and deliver to that, then let subscribers come and go as they please.

2.4. Configuration 179

http://pyopenssl.sourceforge.net/

Buildbot Documentation, Release 0.9.1

subject (string). A string to be used as the subject line of the message. %(builder)s will be replaced with
the name of the builder which provoked the message.

mode Mode is a list of strings; however there are two strings which can be used as shortcuts instead of the full
lists. The possible shortcuts are:

all Always send mail about builds. Equivalent to (change, failing, passing, problem,
warnings, exception).

warnings Equivalent to (warnings, failing).

(list of strings). A combination of:

change Send mail about builds which change status.

failing Send mail about builds which fail.

passing Send mail about builds which succeed.

problem Send mail about a build which failed when the previous build has passed.

warnings Send mail about builds which generate warnings.

exception Send mail about builds which generate exceptions.

Defaults to (failing, passing, warnings).

builders (list of strings). A list of builder names for which mail should be sent. Defaults to None (send mail
for all builds). Use either builders or tags, but not both.

tags (list of strings). A list of tag names to serve status information for. Defaults to None (all tags). Use either
builders or tags, but not both.

schedulers (list of strings). A list of scheduler names to serve status information for. Defaults to None (all
schedulers).

branches (list of strings). A list of branch names to serve status information for. Defaults to None (all
branches).

addLogs (boolean). If True, include all build logs as attachments to the messages. These can be quite large.
This can also be set to a list of log names, to send a subset of the logs. Defaults to False.

addPatch (boolean). If True, include the patch content if a patch was present. Patches are usually used on a
Try server. Defaults to True.

buildSetSummary (boolean). If True, send a single summary email consisting of the concatenation of all
build completion messages rather than a completion message for each build. Defaults to False.

relayhost (string). The host to which the outbound SMTP connection should be made. Defaults to ‘localhost’

smtpPort (int). The port that will be used on outbound SMTP connections. Defaults to 25.

useTls (boolean). When this argument is True (default is False) MailNotifier sends emails us-
ing TLS and authenticates with the relayhost. When using TLS the arguments smtpUser and
smtpPassword must also be specified.

smtpUser (string). The user name to use when authenticating with the relayhost.

smtpPassword (string). The password that will be used when authenticating with the relayhost.

lookup (implementor of IEmailLookup). Object which provides IEmailLookup, which is responsible for
mapping User names (which come from the VC system) into valid email addresses.

If the argument is not provided, the MailNotifier will attempt to build the
sendToInterestedUsers from the authors of the Changes that led to the Build via User Ob-
jects. If the author of one of the Build’s Changes has an email address stored, it will added to the recipients
list. With this method, owners are still added to the recipients. Note that, in the current implementation of
user objects, email addresses are not stored; as a result, unless you have specifically added email addresses
to the user database, this functionality is unlikely to actually send any emails.

180 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.1

Most of the time you can use a simple Domain instance. As a shortcut, you can pass as string: this will
be treated as if you had provided Domain(str). For example, lookup='example.com' will allow
mail to be sent to all developers whose SVN usernames match their example.com account names. See
buildbot/reporters/mail.py for more details.

Regardless of the setting of lookup, MailNotifier will also send mail to addresses in the
extraRecipients list.

messageFormatter This is an optional instance of the reporters.MessageFormatter
class that can be used to generate a custom mail message. This class uses the Jinja2
(http://jinja.pocoo.org/docs/dev/templates/) templating language to generate the body and optionally
the subject of the mails. Templates can either be given inline (as string), or read from the filesystem.

extraHeaders (dictionary). A dictionary containing key/value pairs of extra headers to add to sent e-mails.
Both the keys and the values may be a Interpolate instance.

messageFormatterMissingWorker This is an optional instance of the
reporters.messageFormatterMissingWorker class that can be used to generate a custom
mail message for missing workers. This class uses the Jinja2 (http://jinja.pocoo.org/docs/dev/templates/)
templating language to generate the body and optionally the subject of the mails. Templates can either be
given inline (as string), or read from the filesystem.

MessageFormatter arguments

The easiest way to use the messageFormatter parameter is to create a new instance of the
reporters.MessageFormatter class. The constructor to that class takes the following arguments:

template_dir This is the directory that is used to look for the various templates.

template_filename This is the name of the file in the template_dir directory that will be used to gen-
erate the body of the mail. It defaults to default_mail.txt.

template If this parameter is set, this parameter indicates the content of the template used to generate the body
of the mail as string.

template_type This indicates the type of the generated template. Use either ‘plain’ (the default) or ‘html’.

subject_filename This is the name of the file in the template_dir directory that contains the content
of the subject of the mail.

subject Alternatively, this is the content of the subject of the mail as string.

ctx This is an extension of the standard context that will be given to the templates. Use this to add content to the
templates that is otherwise not available.

Alternatively, you can subclass MessageFormatter and override the buildAdditionalContext in or-
der to grab more context from the data API.

buildAdditionalContext(master, ctx)

Parameters

• master – the master object

• ctx – the context dictionary to enhance

Returns optionally deferred

default implementation will add self.ctx into the current template context

wantProperties This parameter (defaults to True) will extend the content of the given build object with
the Properties from the build.

wantSteps This parameter (defaults to False) will extend the content of the given build object with informa-
tion about the steps of the build. Use it only when necessary as this increases the overhead in term of CPU
and memory on the master.

2.4. Configuration 181

http://jinja.pocoo.org/docs/dev/templates/
http://jinja.pocoo.org/docs/dev/templates/

Buildbot Documentation, Release 0.9.1

wantLogs This parameter (defaults to False) will extend the content of the steps of the given build object
with the full Logs of each steps from the build. This requires wantSteps to be True. Use it only when
mandatory as this increases the overhead in term of CPU and memory on the master greatly.

As a help to those writing Jinja2 templates the following table describes how to get some useful pieces of infor-
mation from the various data objects:

Name of the builder that generated this event {{ buildername }}

Title of the BuildMaster {{ projects }}

MailNotifier mode {{ mode }} (a combination of change, failing, passing, problem, warnings,
exception, all)

URL to build page {{ build_url }}

URL to buildbot main page {{ buildbot_url }}

Build text {{ build['state_string'] }}

Mapping of property names to (values, source) {{ build['properties'] }}

For instance the build reason (from a forced build) {{ build['properties']['reason'][0] }}

Worker name {{ workername }}

List of responsible users {{ blamelist | join(',') }}

MessageFormatterMissingWorkers arguments

The easiest way to use the messageFormatterMissingWorkers parameter is to create a new instance of
the reporters.MessageFormatterMissingWorkers class.

The constructor to that class takes the same arguments as MessageFormatter, minus wantLogs,
wantProperties, wantSteps.

The default ctx for the missing worker email is made of:

buildbot_title The buildbot title as per c['title'] from the master.cfg

buildbot_url The buildbot title as per c['title'] from the master.cfg

worker The worker object as defined in the REST api plus two attributes:

notify List of emails to be notified for this worker.

last_connection String describing the approximate the time of last connection for this worker.

IRC Bot

The IRC reporter creates an IRC bot which will attach to certain channels and be available for status queries. It
can also be asked to announce builds as they occur, or be told to shut up.

The IRC Bot in buildbot nine, is mostly a rewrite, and not all functionality has been ported yet. Patches are very
welcome for restoring the full functionality.

Note: Security Note

Please note that any user having access to your irc channel or can PM the bot will be able to create or stop builds
bug #3377 (http://trac.buildbot.net/ticket/3377).

from buildbot.plugins import reporters
irc = reporters.IRC("irc.example.org", "botnickname",

useColors=False,
channels=[{"channel": "#example1"},

182 Chapter 2. Buildbot Manual

http://trac.buildbot.net/ticket/3377

Buildbot Documentation, Release 0.9.1

{"channel": "#example2",
"password": "somesecretpassword"}],

password="mysecretnickservpassword",
notify_events={

'exception': 1,
'successToFailure': 1,
'failureToSuccess': 1,

})
c['services'].append(irc)

The following parameters are accepted by this class:

host (mandatory) The IRC server address to connect to.

nick (mandatory) The name this bot will use on the IRC server.

channels (mandatory) This is a list of channels to join on the IRC server. Each channel can be a string
(e.g. #buildbot), or a dictionary {'channel': '#buildbot','password': 'secret'}
if each channel requires a different password. A global password can be set with the password parameter.

pm_to_nicks (optional) This is a list of person to contact on the IRC server.

port (optional, default to 6667) The port to connect to on the IRC server.

allowForce (optional, disabled by default) This allow user to force builds via this bot.

tags (optional) When set, this bot will only communicate about builders containing those tags. (tags function-
ality is not yet ported)

password (optional) The global password used to register the bot to the IRC server. If provided, it will be sent
to Nickserv to claim the nickname: some IRC servers will not allow clients to send private messages until
they have logged in with a password.

notify_events (optional) A dictionary of events to be notified on the IRC channels. At the moment, irc bot
can listen to build ‘start’ and ‘finish’ events. This parameter can be changed during run-time by sending the
notify command to the bot.

showBlameList (optional, disabled by default) Whether or not to display the blame list for failed builds.
(blame list functionality is not ported yet)

useRevisions (optional, disabled by default) Whether or not to display the revision leading to the build the
messages are about. (useRevisions functionality is not ported yet)

useSSL (optional, disabled by default) Whether or not to use SSL when connecting to the IRC server. Note that
this option requires PyOpenSSL (http://pyopenssl.sourceforge.net/).

lostDelay (optional) Delay to wait before reconnecting to the server when the connection has been lost.

failedDelay (optional) Delay to wait before reconnecting to the IRC server when the connection failed.

useColors (optional, enabled by default) The bot can add color to some of its messages. You might turn it off
by setting this parameter to False.

allowShutdown (optional, disabled by default) This allow users to shutdown the master.

To use the service, you address messages at the Buildbot, either normally (botnickname: status) or with
private messages (/msg botnickname status). The Buildbot will respond in kind.

If you issue a command that is currently not available, the Buildbot will respond with an error message. If
the noticeOnChannel=True option was used, error messages will be sent as channel notices instead of
messaging.

Some of the commands currently available:

list builders Emit a list of all configured builders

status BUILDER Announce the status of a specific Builder: what it is doing right now.

status all Announce the status of all Builders

2.4. Configuration 183

http://pyopenssl.sourceforge.net/

Buildbot Documentation, Release 0.9.1

watch BUILDER If the given Builder is currently running, wait until the Build is finished and then an-
nounce the results.

last BUILDER Return the results of the last build to run on the given Builder.

join CHANNEL Join the given IRC channel

leave CHANNEL Leave the given IRC channel

notify on|off|list EVENT Report events relating to builds. If the command is issued as a private mes-
sage, then the report will be sent back as a private message to the user who issued the command. Otherwise,
the report will be sent to the channel. Available events to be notified are:

started A build has started

finished A build has finished

success A build finished successfully

failure A build failed

exception A build generated and exception

xToY The previous build was x, but this one is Y, where x and Y are each one of success, warnings, failure,
exception (except Y is capitalized). For example: successToFailure will notify if the previous
build was successful, but this one failed

help COMMAND Describe a command. Use help commands to get a list of known commands.

shutdown ARG Control the shutdown process of the Buildbot master. Available arguments are:

check Check if the Buildbot master is running or shutting down

start Start clean shutdown

stop Stop clean shutdown

now Shutdown immediately without waiting for the builders to finish

source Announce the URL of the Buildbot’s home page.

version Announce the version of this Buildbot.

Additionally, the config file may specify default notification options as shown in the example earlier.

If the allowForce=True option was used, some additional commands will be available:

force build [--codebase=CODEBASE] [--branch=BRANCH] [--revision=REVISION] [--props=PROP1=VAL1,PROP2=VAL2...] BUILDER REASON
Tell the given Builder to start a build of the latest code. The user requesting the build
and REASON are recorded in the Build status. The Buildbot will announce the build’s sta-
tus when it finishes.The user can specify a branch and/or revision with the optional parameters
--branch=BRANCH and --revision=REVISION . The user can also give a list of properties with
--props=PROP1=VAL1,PROP2=VAL2...

stop build BUILDER REASON Terminate any running build in the given Builder. REASON will be
added to the build status to explain why it was stopped. You might use this if you committed a bug, corrected
it right away, and don’t want to wait for the first build (which is destined to fail) to complete before starting
the second (hopefully fixed) build.

If the tags is set (see the tags option in Builder Configuration) changes related to only builders belonging to those
tags of builders will be sent to the channel.

If the useRevisions option is set to True, the IRC bot will send status messages that replace the build number with
a list of revisions that are contained in that build. So instead of seeing build #253 of ..., you would see something
like build containing revisions [a87b2c4]. Revisions that are stored as hashes are shortened to 7 characters in
length, as multiple revisions can be contained in one build and may exceed the IRC message length limit.

Two additional arguments can be set to control how fast the IRC bot tries to reconnect when it encounters connec-
tion issues. lostDelay is the number of of seconds the bot will wait to reconnect when the connection is lost,
where as failedDelay is the number of seconds until the bot tries to reconnect when the connection failed.
lostDelay defaults to a random number between 1 and 5, while failedDelay defaults to a random one

184 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.1

between 45 and 60. Setting random defaults like this means multiple IRC bots are less likely to deny each other
by flooding the server.

GerritStatusPush

class buildbot.status.status_gerrit.GerritStatusPush

GerritStatusPush sends review of the Change back to the Gerrit server, optionally also sending a message
when a build is started. GerritStatusPush can send a separate review for each build that completes, or a single
review summarizing the results for all of the builds.

class GerritStatusPush(server, username, reviewCB, startCB, port, reviewArg, startArg, summa-
ryCB, summaryArg, identity_file, builders, notify...)

Parameters

• server (string) – Gerrit SSH server’s address to use for push event notifications.

• username (string) – Gerrit SSH server’s username.

• identity_file – (optional) Gerrit SSH identity file.

• port (int) – (optional) Gerrit SSH server’s port (default: 29418)

• reviewCB – (optional) Called each time a build finishes. Build properties are avail-
able. Can be a deferred.

• reviewArg – (optional) argument passed to the review callback.

If reviewCB callback is specified, it must return a message and optionally labels. If
no message is specified, nothing will be sent to Gerrit. It should return a dictionary:

{'message': message,
'labels': {label-name: label-score,

...}
}

For example:

def gerritReviewCB(builderName, build, result, master, arg):
if result == util.RETRY:

return dict()

message = "Buildbot finished compiling your patchset\n"
message += "on configuration: %s\n" % builderName
message += "The result is: %s\n" % util.Results[result].

→˓upper()

if arg:
message += "\nFor more details visit:\n"
message += build['url'] + "\n"

if result == util.SUCCESS:
verified = 1

else:
verified = -1

return dict(message=message, labels={'Verified': verified})

Which require an extra import in the config:

from buildbot.plugins import util

• startCB – (optional) Called each time a build is started. Build properties are available.
Can be a deferred.

2.4. Configuration 185

Buildbot Documentation, Release 0.9.1

• startArg – (optional) argument passed to the start callback.

If startCB is specified, it must return a message and optionally labels. If no message
is specified, nothing will be sent to Gerrit. It should return a dictionary:

{'message': message,
'labels': {label-name: label-score,

...}
}

For example:

def gerritStartCB(builderName, build, arg):
message = "Buildbot started compiling your patchset\n"
message += "on configuration: %s\n" % builderName
message += "See your build here: %s" % build['url']

return dict(message=message)

• summaryCB – (optional) Called each time a buildset finishes. Each build in the buildset
has properties available. Can be a deferred.

• summaryArg – (optional) argument passed to the summary callback.

If summaryCB callback is specified, it must return a message and optionally labels. If
no message is specified, nothing will be sent to Gerrit. The message and labels should
be a summary of all the builds within the buildset. It should return a dictionary:

{'message': message,
'labels': {label-name: label-score,

...}
}

For example:

def gerritSummaryCB(buildInfoList, results, status, arg):
success = False
failure = False

msgs = []

for buildInfo in buildInfoList:
msg = "Builder %(name)s %(resultText)s (%(text)s)" %

→˓buildInfo
link = buildInfo.get('url', None)
if link:

msg += " - " + link
else:

msg += "."

msgs.append(msg)

if buildInfo['result'] == util.SUCCESS:
success = True

else:
failure = True

if success and not failure:
verified = 1

else:
verified = -1

return dict(message='\n\n'.join(msgs),
labels={

186 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.1

'Verified': verified
})

• builders – (optional) list of builders to send results for. This method allows to filter
results for a specific set of builder. By default, or if builders is None, then no filtering is
performed.

• notify – (optional) control who gets notified by Gerrit once the status is posted. The
possible values for notify can be found in your version of the Gerrit documentation for
the gerrit review command.

Note: By default, a single summary review is sent; that is, a default summaryCB is provided, but no reviewCB
or startCB.

Note: If reviewCB or summaryCB do not return any labels, only a message will be pushed to the Gerrit server.

See also:

master/docs/examples/git_gerrit.cfg and master/docs/examples/repo_gerrit.cfg
in the Buildbot distribution provide a full example setup of Git+Gerrit or Repo+Gerrit of GerritStatusPush.

HttpStatusPush

from buildbot.plugins import reporters
sp = reporters.HttpStatusPush(serverUrl="http://example.com/submit")
c['services'].append(sp)

HttpStatusPush builds on StatusPush and sends HTTP requests to serverUrl, with all the items json-
encoded. It is useful to create a status front end outside of Buildbot for better scalability.

It requires either txrequests (https://pypi.python.org/pypi/txrequests) or treq (https://pypi.python.org/pypi/treq) to
be installed to allow interaction with http server.

Note: The json data object sent is completly different from the one that was generated by 0.8.x buildbot. It is
indeed generated using data api.

class HttpStatusPush(serverUrl, user=None, password=None, auth=None, format_fn=None,
builders=None, wantProperties=False, wantSteps=False, wantPrevious-
Build=False, wantLogs=False)

Parameters

• serverUrl (string) – the url where to do the http post

• user (string) – the BasicAuth user to post as

• password (string) – the BasicAuth user’s password

• auth – the authentication method to use. Refer to the documentation of the requests
library for more information.

• format_fn (function) – a function that takes the build as parameter and returns a
dictionnary to be pushed to the server (as json).

• builders (list) – only send update for specified builders

• wantProperties (boolean) – include ‘properties’ in the build dictionary

• wantSteps (boolean) – include ‘steps’ in the build dictionary

2.4. Configuration 187

https://pypi.python.org/pypi/txrequests
https://pypi.python.org/pypi/treq

Buildbot Documentation, Release 0.9.1

• wantLogs (boolean) – include ‘logs’ in the steps dictionaries. This needs
wantSteps=True. This dumps the full content of logs and may consume lots of memory
and CPU depending on the log size.

• wantPreviousBuild (boolean) – include ‘prev_build’ in the build dictionary

Json object spec

The default json object sent is a build object agremented wih some more data as follow.

{
"url": "http://yourbot/path/to/build",
"<build data api values>": "[...]",
"buildset": "<buildset data api values>",
"builder": "<builder data api values>",
"buildrequest": "<buildrequest data api values>"

}

If you want another format, don’t hesitate to use the format_fn parameter to customize the payload. The
build parameter given to that function is of type build, optionally enhanced with properties, steps, and logs
information.

GitHubStatusPush

class buildbot.reporters.github.GitHubStatusPush

from buildbot.plugins import reporters, util

context = Interpolate("buildbot/%(prop:buildername)s")
gs = status.GitHubStatusPush(token='githubAPIToken',

context=context,
startDescription='Build started.',
endDescription='Build done.')

factory = util.BuildFactory()
buildbot_bbtools = util.BuilderConfig(

name='builder-name',
workernames=['worker1'],
factory=factory)

c['builders'].append(buildbot_bbtools)
c['services'].append(gs)

GitHubStatusPush publishes a build status using GitHub Status API
(http://developer.github.com/v3/repos/statuses).

It requires txrequests (https://pypi.python.org/pypi/txrequests) package to allow interaction with GitHub REST
API.

It is configured with at least a GitHub API token.

You can create a token from you own GitHub - Profile - Applications - Register new application
(https://github.com/settings/applications) or use an external tool to generate one.

class GitHubStatusPush(token, startDescription=None, endDescription=None, context=None,
baseURL=None, verbose=False, builders=None)

Parameters

• token (string) – token used for authentication.

• string startDescription (rendereable) – Custom start message (default:
‘Build started.’)

188 Chapter 2. Buildbot Manual

http://developer.github.com/v3/repos/statuses
https://pypi.python.org/pypi/txrequests
https://github.com/settings/applications

Buildbot Documentation, Release 0.9.1

• string endDescription (rendereable) – Custom end message (default:
‘Build done.’)

• string context (rendereable) – Passed to GitHub to differentiate between
statuses. A static string can be passed or Interpolate for dynamic substitution.
The default context is buildbot/%(prop:buildername)s.

• baseURL (string) – specify the github api endpoint if you work with GitHub Enter-
prise

• verbose (boolean) – if True, logs a message for each successful status push

• builders (list) – only send update for specified builders

StashStatusPush

class buildbot.reporters.stash.StashStatusPush

from buildbot.plugins import reporters

ss = reporters.StashStatusPush('https://stash.example.com:8080/',
'stash_username',
'secret_password')

c['services'].append(ss)

StashStatusPush publishes build status using Stash Build Integration REST API
(https://developer.atlassian.com/static/rest/stash/3.6.0/stash-build-integration-rest.html). The build status is
published to a specific commit SHA in Stash. It tracks the last build for each builderName for each commit built.

Specifically, it follows the Updating build status for commits (https://developer.atlassian.com/stash/docs/latest/how-
tos/updating-build-status-for-commits.html) document.

It requires txgithub (https://pypi.python.org/pypi/txrequests) package to allow interaction with GitHub API.

It requires txrequests (https://pypi.python.org/pypi/txrequests) package to allow interaction with Stash REST API.

It uses HTTP Basic AUTH. As a result, we recommend you use https in your base_url rather than http.

class StashStatusPush(base_url, user, password, builders = None)

Parameters

• base_url (string) – the base url of the stash host, up to and optionally including
the first / of the path.

• user (string) – the stash user to post as

• password (string) – the stash user’s password

• builders (list) – only send update for specified builders

BitbucketStatusPush

class buildbot.reporters.bitbucket.BitbucketStatusPush

from buildbot.plugins import reporters
bs = reporters.BitbucketStatusPush('oauth_key', 'oauth_secret')
c['services'].append(bs)

BitbucketStatusPush publishes build status using Bitbucket Build Status API
(https://confluence.atlassian.com/bitbucket/buildstatus-resource-779295267.html). The build status is pub-
lished to a specific commit SHA in Bitbucket. It tracks the last build for each builderName for each commit
built.

2.4. Configuration 189

https://developer.atlassian.com/static/rest/stash/3.6.0/stash-build-integration-rest.html
https://developer.atlassian.com/stash/docs/latest/how-tos/updating-build-status-for-commits.html
https://pypi.python.org/pypi/txrequests
https://pypi.python.org/pypi/txrequests
https://confluence.atlassian.com/bitbucket/buildstatus-resource-779295267.html

Buildbot Documentation, Release 0.9.1

It requires txrequests (https://pypi.python.org/pypi/txrequests) package to allow interaction with the Bitbucket
REST and OAuth APIs.

It uses OAuth 2.x to authenticate with Bitbucket. To enable this, you need to go to your Bitbucket Settings ->
OAuth page. Click “Add consumer”. Give the new consumer a name, eg ‘buildbot’, and put in any URL as the
callback (this is needed for Oauth 2.x but is not used by this reporter, eg ‘https://localhost:8010/callback‘). Give
the consumer Repositories:Write access. After creating the consumer, you will then be able to see the OAuth key
and secret.

class BitbucketStatusPush(oauth_key, oauth_secret, base_url=’https://api.bitbucket.org/2.0/repositories’,
oauth_url=’https://bitbucket.org/site/oauth2/access_token’,
builders=None)

Parameters

• oauth_key (string) – The OAuth consumer key

• oauth_secret (string) – The OAuth consumer secret

• base_url (string) – Bitbucket’s Build Status API URL

• oauth_url (string) – Bitbucket’s OAuth API URL

• builders (list) – only send update for specified builders

GitLabStatusPush

class buildbot.reporters.gitlab.GitLabStatusPush

from buildbot.plugins import reporters

gl = reporters.GitLabStatusPush('private-token', context='continuous-integration/
→˓buildbot', baseUrl='https://git.yourcompany.com')
c['services'].append(gl)

GitLabStatusPush publishes build status using GitLab Commit Status API
(http://doc.gitlab.com/ce/api/commits.html#commit-status). The build status is published to a specific com-
mit SHA in GitLab.

It requires txrequests (https://pypi.python.org/pypi/txrequests) package to allow interaction with GitLab Commit
Status API.

It uses private token auth, and the token owner is required to have at least developer access to each repository. As
a result, we recommend you use https in your base_url rather than http.

class GitLabStatusPush(token, startDescription=None, endDescription=None, context=None,
baseURL=None, verbose=False)

Parameters

• token (string) – Private token of user permitted to update status for commits

• startDescription (string) – Description used when build starts

• endDescription (string) – Description used when build ends

• context (string) – Name of your build system, eg. continuous-integration/buildbot

• baseURL (string) – the base url of the GitLab host, up to and optionally including
the first / of the path. Do not include /api/

• verbose (string) – Be more verbose

HipchatStatusPush

class buildbot.reporters.hipchat.HipchatStatusPush

190 Chapter 2. Buildbot Manual

https://pypi.python.org/pypi/txrequests
https://localhost:8010/callback
http://doc.gitlab.com/ce/api/commits.html#commit-status
https://pypi.python.org/pypi/txrequests

Buildbot Documentation, Release 0.9.1

from buildbot.plugins import reporters

hs = reporters.HipchatStatusPush('private-token', endpoint='https://chat.
→˓yourcompany.com')
c['services'].append(hs)

HipchatStatusPush publishes a custom message using Hipchat API v2
(https://www.hipchat.com/docs/apiv2). The message is published to a user and/or room in Hipchat,

It requires txrequests (https://pypi.python.org/pypi/txrequests) package to allow interaction with Hipchat API.

It uses API token auth, and the token owner is required to have at least message/notification access to each
destination.

HipchatStatusPush(auth_token, endpoint="https://api.hipchat.com",
builder_room_map=None, builder_user_map=None,
wantProperties=False, wantSteps=False, wantPreviousBuild=False, wantLogs=False)

Parameters

• auth_token (string) – Private API token with access to the “Send Message” and
“Send Notification” scopes.

• endpoint (string) – (optional) URL of your Hipchat server. Defaults to https:
//api.hipchat.com

• builder_room_map (dictionary) – (optional) If specified, will forward events
about a builder (based on name) to the corresponding room ID.

• builder_user_map (dictionary) – (optional) If specified, will forward events
about a builder (based on name) to the corresponding user ID.

• wantProperties (boolean) – (optional) include ‘properties’ in the build dictio-
nary

• wantSteps (boolean) – (optional) include ‘steps’ in the build dictionary

• wantLogs (boolean) – (optional) include ‘logs’ in the steps dictionaries. This needs
wantSteps=True. This dumps the full content of logs.

• wantPreviousBuild (boolean) – (optional) include ‘prev_build’ in the build dic-
tionary

Note: No message will be sent if the message is empty or there is no destination found.

Note: If a builder name appears in both the room and user map, the same message will be sent to both destinations.

Json object spec

The default json object contains the minimal required parameters to send a message to Hipchat.

{
"message": "Buildbot started/finished build MyBuilderName (with result

→˓success) here: http://mybuildbot.com/#/builders/23",
"id_or_email": "12"

}

If you require different parameters, the Hipchat reporter utilizes the template design pattern and will call
getRecipientList getMessage getExtraParams before sending a message. This allows you to easily
override the default implementation for those methods. All of those methods can be deferred.

2.4. Configuration 191

https://www.hipchat.com/docs/apiv2
https://pypi.python.org/pypi/txrequests
https://api.hipchat.com
https://api.hipchat.com

Buildbot Documentation, Release 0.9.1

Method signatures:

getRecipientList(self, build, event_name)

Parameters

• build – A Build object

• event_name (string) – the name of the event trigger for this invocation. either
‘new’ or ‘finished’

Returns Deferred

The deferred should return a dictionary containing the key(s) ‘id_or_email’ for a private user message and/or
‘room_id_or_name’ for room notifications.

getMessage(self, build, event_name)

Parameters

• build – A Build object

• event_name (string) – the name of the event trigger for this invocation. either
‘new’ or ‘finished’

Returns Deferred

The deferred should return a string to send to Hipchat.

getExtraParams(self, build, event_name)

Parameters

• build – A Build object

• event_name (string) – the name of the event trigger for this invocation. either
‘new’ or ‘finished’

Returns Deferred

The deferred should return a dictionary containing any extra parameters you wish to include in your JSON
POST request that the Hipchat API can consume.

Here’s a complete example:

class MyHipchatStatusPush(HipChatStatusPush):
name = "MyHipchatStatusPush"

send all messages to the same room
def getRecipientList(self, build, event_name):

return {
'room_id_or_name': 'AllBuildNotifications'

}

only send notifications on finished events
def getMessage(self, build, event_name):

event_messages = {
'finished': 'Build finished.'

}
return event_messages.get(event_name, '')

color notifications based on the build result
and alert room on build failure
def getExtraParams(self, build, event_name):

result = {}
if event_name == 'finished':

result['color'] = 'green' if build['results'] == 0 else 'red'
result['notify'] = (build['results'] != 0)

return result

192 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.1

2.4.12 Web Server

Note: As of Buildbot 0.9.0, the built-in web server replaces the old WebStatus plugin.

Buildbot contains a built-in web server. This server is configured with the www configuration key, which specifies
a dictionary with the following keys:

port The TCP port on which to serve requests. Note that SSL is not supported. To host Buildbot with SSL, use
an HTTP proxy such as lighttpd, nginx, or Apache. If this is None, the default, then the master will not
implement a web server.

json_cache_seconds The number of seconds into the future at which an HTTP API response should expire.

rest_minimum_version The minimum supported REST API version. Any versions less than this value will
not be available. This can be used to ensure that no clients are depending on API versions that will soon be
removed from Buildbot.

plugins This key gives a dictionary of additional UI plugins to load, along with configuration for those
plugins. These plugins must be separately installed in the Python environment, e.g., pip install
buildbot-waterfall-view. For example:

c['www'] = {
'plugins': {'waterfall_view': {'num_builds': 50}}

}

debug If true, then debugging information will be output to the browser. This is best set to false (the default) on
production systems, to avoid the possibility of information leakage.

allowed_origins This gives a list of origins which are allowed to access the Buildbot API (including
control via JSONRPC 2.0). It implements cross-origin request sharing (CORS), allowing pages at ori-
gins other than the Buildbot UI to use the API. Each origin is interpreted as filename match expres-
sion, with ? matching one character and * matching anything. Thus ['*'] will match all origins, and
['https://*.buildbot.net'] will match secure sites under buildbot.net. The Buildbot UI
will operate correctly without this parameter; it is only useful for allowing access from other web applica-
tions.

auth Authentication module to use for the web server. See Authentication plugins.

avatar_methods List of methods that can be used to get avatar pictures to use for the web server. By default,
buildbot uses Gravatar to get images associated with each users, if you want to disable this you can just
specify empty list:

c['www'] = {
'avatar_methods': []

}

For use of corporate pictures, you can use LdapUserInfo, which can also acts as an avatar provider. See
Authentication plugins.

logfileName Filename used for http access logs, relative to the master directory. If set to None or the empty
string, the content of the logs will land in the main twisted.log log file. (Default to http.log)

logRotateLength The amount of bytes after which the http.log file will be rotated. (Default to the same
value as for the twisted.log file, set in buildbot.tac)

maxRotatedFiles The amount of log files that will be kept when rotating (Default to the same value as for
the twisted.log file, set in buildbot.tac)

versions Custom component versions that you’d like to display on the About page. Buildbot will automatically
prepend the versions of Python, twisted and buildbot itself to the list.

versions should be a list of tuples. for example:

2.4. Configuration 193

Buildbot Documentation, Release 0.9.1

c['www'] = {
...
'versions': [

('master.cfg', '0.1'),
('OS', 'Ubuntu 14.04'),

]
}

The first element of a tuple stands for the name of the component, the second stands for the corresponding
version.

custom_templates_dir This directory will be parsed for custom angularJS templates to replace the one of
the original website templates. if the directory string is relative, it will be joined to the master’s basedir. Ei-
ther *.jade files or *.html files can be used, and will be used to override views/<filename>.html
templates in the angularjs templateCache. Unlike with the regular nodejs based angularjs build system,
Python only jade interpreter is used to parse the jade templates. pip install pyjade is be required
to use jade templates. You can also override plugin’s directives, but they have to be in another directory.

replace the template whose source is in:
www/base/src/app/builders/build/build.tpl.jade
build.jade

replace the template whose source is in
www/console_view/src/module/view/builders-header/buildersheader.tpl.jade
console_view/buildersheader.html

Known differences between nodejs jade and pyjade:

• quotes in attributes are not quoted. https://github.com/syrusakbary/pyjade/issues/132 This means
you should use double quotes for attributes e.g: tr(ng-repeat="br in buildrequests |
orderBy:'-submitted_at'")

change_hook_dialects See Change Hooks.

Note: The buildbotURL configuration value gives the base URL that all masters will use to generate links.
The www configuration gives the settings for the webserver. In simple cases, the buildbotURL contains the
hostname and port of the master, e.g., http://master.example.com:8010/. In more complex cases,
with multiple masters, web proxies, or load balancers, the correspondance may be less obvious.

Authentication plugins

By default, Buildbot does not require people to authenticate in order to see the readonly data. In order to access
control features in the web UI, you will need to configure an authentication plugin.

Authentication plugins are implemented as classes, and passed as the auth parameter to www .

The available classes are described here:

class buildbot.www.auth.NoAuth
This class is the default authentication plugin, which disables authentication

class buildbot.www.auth.UserPasswordAuth(users)

Parameters users – list of ("user","password") tuples, or a dictionary of {"user":
"password",..}

Simple username/password authentication using a list of user/password tuples provided in the configuration
file.

from buildbot.plugins import util
c['www'] = {

194 Chapter 2. Buildbot Manual

https://github.com/syrusakbary/pyjade/issues/132

Buildbot Documentation, Release 0.9.1

...
'auth': util.UserPasswordAuth({"homer": "doh!"}),

}

class buildbot.www.auth.HTPasswdAuth(passwdFile)

Parameters passwdFile – An .htpasswd file to read

This class implements simple username/password authentication against a standard .htpasswd file.

from buildbot.plugins import util
c['www'] = {

...
'auth': util.HTPasswdAuth("my_htpasswd"),

}

class buildbot.www.oauth2.GoogleAuth(clientId, clientSecret)

Parameters

• clientId – The client ID of your buildbot application

• clientSecret – The client secret of your buildbot application

This class implements an authentication with Google (https://developers.google.com/accounts/docs/OAuth2)
single sign-on. You can look at the Google (https://developers.google.com/accounts/docs/OAuth2) oauth2
documentation on how to register your Buildbot instance to the Google systems. The developer console
will give you the two parameters you have to give to GoogleAuth

Register your Buildbot instance with the BUILDBOT_URL/auth/login url as the allowed redirect URI.

Example:

from buildbot.plugins import util
c['www'] = {

...
'auth': util.GoogleAuth("clientid", "clientsecret"),

}

in order to use this module, you need to install the Python requests module

pip install requests

class buildbot.www.oauth2.GitHubAuth(clientId, clientSecret)

Parameters

• clientId – The client ID of your buildbot application

• clientSecret – The client secret of your buildbot application

This class implements an authentication with GitHub (http://developer.github.com/v3/oauth_authorizations/)
single sign-on. It functions almost identically to the GoogleAuth class.

Register your Buildbot instance with the BUILDBOT_URL/auth/login url as the allowed redirect URI.

The user’s email-address (for e.g. authorization) is set to the “primary” address set by the user in GitHub.
When using group-based authorization, the user’s groups are equal to the names of the GitHub organizations
the user is a member of.

Example:

from buildbot.plugins import util
c['www'] = {

...
'auth': util.GitHubAuth("clientid", "clientsecret"),

}

2.4. Configuration 195

https://developers.google.com/accounts/docs/OAuth2
https://developers.google.com/accounts/docs/OAuth2
http://developer.github.com/v3/oauth_authorizations/

Buildbot Documentation, Release 0.9.1

class buildbot.www.oauth2.GitLabAuth(instanceUri, clientId, clientSecret)

Parameters

• instanceUri – The URI of your GitLab instance

• clientId – The client ID of your buildbot application

• clientSecret – The client secret of your buildbot application

This class implements an authentication with GitLab (http://doc.gitlab.com/ce/integration/oauth_provider.html)
single sign-on. It functions almost identically to the GoogleAuth class.

Register your Buildbot instance with the BUILDBOT_URL/auth/login url as the allowed redirect URI.

Example:

from buildbot.plugins import util
c['www'] = {

...
'auth': util.GitLabAuth("https://gitlab.com", "clientid", clientsecret"),

}

class buildbot.www.auth.RemoteUserAuth

Parameters

• header – header to use to get the username (defaults to REMOTE_USER)

• headerRegex – regular expression to get the username from header value (defaults
to "(?P<username>[^ @]+)@(?P<realm>[^ @]+)"). Note that your at least
need to specify a ?P<username> regular expression named group.

• userInfoProvider – user info provider; see User Information

If the Buildbot UI is served through a reverse proxy that supports HTTP-based authentication (like apache
or lighttpd), it’s possible to to tell Buildbot to trust the web server and get the username from th request
headers.

Administrator must make sure that it’s impossible to get access to Buildbot using other way than through
frontend. Usually this means that Buildbot should listen for incoming connections only on localhost (or
on some firewall-protected port). The reverse proxy must require HTTP authentication to access Buildbot
pages (using any source for credentials, such as htpasswd, PAM, LDAP, Kerberos).

Example:

from buildbot.plugins import util
c['www'] = {

...
'auth': util.RemoteUserAuth(),

}

A corresponding Apache configuration example

<Location "/">
AuthType Kerberos
AuthName "Buildbot login via Kerberos"
KrbMethodNegotiate On
KrbMethodK5Passwd On
KrbAuthRealms <<YOUR CORP REALMS>>
KrbVerifyKDC off
KrbServiceName Any
Krb5KeyTab /etc/krb5/krb5.keytab
KrbSaveCredentials Off
require valid-user
Order allow,deny

196 Chapter 2. Buildbot Manual

http://doc.gitlab.com/ce/integration/oauth_provider.html

Buildbot Documentation, Release 0.9.1

Satisfy Any

#] SSO
RewriteEngine On
RewriteCond %{LA-U:REMOTE_USER} (.+)$
RewriteRule . - [E=RU:%1,NS]
RequestHeader set REMOTE_USER %{RU}e

</Location>

The advantage of this sort of authentication is that it is uses a proven and fast implementation for authenti-
cation. The problem is that the only information that is passed to Buildbot is the username, and there is no
way to pass any other information like user email, user groups, etc. That information can be very useful to
the mailstatus plugin, or for authorization processes. See User Information for a mechanism to supply that
information.

User Information

For authentication mechanisms which cannot provide complete information about a user, Buildbot needs another
way to get user data. This is useful both for authentication (to fetch more data about the logged-in user) and for
avatars (to fetch data about other users).

This extra information is provided by, appropriately enough, user info providers. These can be passed to
RemoteUserAuth and as an element of avatar_methods.

This can also be passed to oauth2 authentication plugins. In this case the username provided by oauth2 will be
used, and all other informations will be taken from ldap (Full Name, email, and groups):

Currently only one provider is available:

class buildbot.ldapuserinfo.LdapUserInfo(uri, bindUser, bindPw, accountBase, account-
Pattern, groupBase=None, groupMemberPat-
tern=None, groupName=None, accountFull-
Name, accountEmail, avatarPattern=None,
avatarData=None, accountExtraFields=None)

param uri uri of the ldap server

param bindUser username of the ldap account that is used to get the infos for other
users (usually a “faceless” account)

param bindPw password of the bindUser

param accountBase the base dn (distinguished name)of the user database

param accountPattern the pattern for searching in the account database. This must
contain the %(username)s string, which is replaced by the searched username

param accountFullName the name of the field in account ldap database where the
full user name is to be found.

param accountEmail the name of the field in account ldap database where the user
email is to be found.

param groupBase the base dn of the groups database.

param groupMemberPattern the pattern for searching in the group database. This
must contain the %(dn)s string, which is replaced by the searched username’s dn

param groupName the name of the field in groups ldap database where the group
name is to be found.

param avatarPattern the pattern for searching avatars from emails in the account
database. This must contain the %(email)s string, which is replaced by the
searched email

2.4. Configuration 197

Buildbot Documentation, Release 0.9.1

param avatarData the name of the field in groups ldap database where the avatar
picture is to be found. This field is supposed to contain the raw picture, format is
automatically detected from jpeg, png or git.

param accountExtraFields extra fields to extracts for use with the authorization poli-
cies.

If one of the three optional groups parameters is supplied, then all of them become mandatory.
If none is supplied, the retrieved user info has an empty list of groups.

Example:

from buildbot.plugins import util

this configuration works for MS Active Directory ldap implementation
we use it for user info, and avatars
userInfoProvider = util.LdapUserInfo(

uri='ldap://ldap.mycompany.com:3268',
bindUser='ldap_user',
bindPw='p4$$wd',
accountBase='dc=corp,dc=mycompany,dc=com',
groupBase='dc=corp,dc=mycompany,dc=com',
accountPattern='(&(objectClass=person)(sAMAccountName=%(username)s))',
accountFullName='displayName',
accountEmail='mail',
groupMemberPattern='(&(objectClass=group)(member=%(dn)s))',
groupName='cn',
avatarPattern='(&(objectClass=person)(mail=%(email)s))',
avatarData='thumbnailPhoto',

)
c['www'] = dict(port=PORT, allowed_origins=["*"],

url=c['buildbotURL'],
auth=util.

→˓RemoteUserAuth(userInfoProvider=userInfoProvider),
avatar_methods=[userInfoProvider,

util.AvatarGravatar()])

.. note::

In order to use this module, you need to install the ``python3-ldap``
→˓module:

.. code-block:: bash

pip install python3-ldap

In the case of oauth2 authentications, you have to pass the userInfoProvider
→˓as keyword argument::

from buildbot.plugins import util
userInfoProvider = util.LdapUserInfo(...)
c['www'] = {

...
'auth': util.GoogleAuth("clientid", "clientsecret",

→˓userInfoProvider=userInfoProvider),
}

Reverse Proxy Configuration

It is usually better to put buildbot behind a reverse proxy in production.

• Provides automatic gzip compression

198 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.1

• Provides SSL support with a widely used implementation

• Provides support for http/2 or spdy for fast parallel REST api access from the browser

Reverse proxy however might be problematic for websocket, you have to configure it specifically to pass web
socket requests. Here is an nginx configuration that is known to work (nginx 1.6.2):

server {
Enable SSL and http2
listen 443 ssl http2 default_server;

server_name yourdomain.com;

root html;
index index.html index.htm;

ssl on;
ssl_certificate /etc/nginx/ssl/server.cer;
ssl_certificate_key /etc/nginx/ssl/server.key;

put a one day session timeout for websockets to stay longer
ssl_session_cache shared:SSL:1440m;
ssl_session_timeout 1440m;

please consult latest nginx documentation for current secure encryption
→˓settings

ssl_protocols ..
ssl_ciphers ..
ssl_prefer_server_ciphers on;
#

force https
add_header Strict-Transport-Security "max-age=31536000; includeSubdomains;

→˓";
spdy_headers_comp 5;

you could use / if you use domain based proxy instead of path based proxy
location /buildbot/ {

proxy_pass http://localhost:5000/;
}
location /buildbot/sse/ {

proxy buffering will prevent sse to work
proxy_buffering off;
proxy_pass http://localhost:5000/sse/;

}
required for websocket
location /buildbot/ws {

proxy_http_version 1.1;
proxy_set_header Upgrade $http_upgrade;
proxy_set_header Connection "upgrade";
proxy_pass http://localhost:5000/ws;
raise the proxy timeout for the websocket
proxy_read_timeout 6000s;

}
}

To run with Apache2, you’ll need mod_proxy_wstunnel (https://httpd.apache.org/docs/2.4/mod/mod_proxy_wstunnel.html)
in addition to mod_proxy_http (https://httpd.apache.org/docs/2.4/mod/mod_proxy_http.html). Serving HTTPS
(mod_ssl (https://httpd.apache.org/docs/2.4/mod/mod_ssl.html)) is advised to prevent issues with enterprise
proxies (see Server Sent Events), even if you don’t need the encryption itself.

Here is a configuration that is known to work (Apache 2.4.10 / Debian 8), directly at the top of the domain.

2.4. Configuration 199

https://httpd.apache.org/docs/2.4/mod/mod_proxy_wstunnel.html
https://httpd.apache.org/docs/2.4/mod/mod_proxy_http.html
https://httpd.apache.org/docs/2.4/mod/mod_ssl.html

Buildbot Documentation, Release 0.9.1

<VirtualHost *:443>
ServerName buildbot.example
ServerAdmin webmaster@buildbot.example

<Location /ws>
ProxyPass ws://localhost:8020/ws
ProxyPassReverse ws://localhost:8020/ws

</Location>

ProxyPass /ws !
ProxyPass / http://localhost:8020/
ProxyPassReverse / http://localhost:8020/

SetEnvIf X-Url-Scheme https HTTPS=1
ProxyPreserveHost On

SSLEngine on
SSLCertificateFile /path/to/cert.pem
SSLCertificateKeyFile /path/to/cert.key

check Apache2 documentation for current safe SSL settings
This is actually the Debian 8 default at the time of this writing:
SSLProtocol all -SSLv3

</VirtualHost>

Authorization rules

Endpoint matchers

Endpoint matchers are responsible for creating rules to match REST endpoints, and requiring roles for them. The
following sequence is implemented by each EndpointMatcher class

• Check whether the requested endpoint is supported by this matcher

• Get necessary info from data api, and decides whether it matches.

• Looks if the users has the required role.

Several endpoints matchers are currently implemented

class buildbot.www.authz.endpointmatchers.AnyEndpointMatcher(role)

Parameters role – The role which grants access to any endpoint.

AnyEndpointMatcher grants all rights to a people with given role (usually “admins”)

class buildbot.www.authz.endpointmatchers.ForceBuildEndpointMatcher(builder,
role)

Parameters

• builder – name of the builder.

• role – The role needed to get access to such endpoints.

ForceBuildEndpointMatcher grants all rights to a people with given role (usually “admins”)

class buildbot.www.authz.endpointmatchers.StopBuildEndpointMatcher(builder,
role)

Parameters

• builder – name of the builder.

• role – The role needed to get access to such endpoints.

200 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.1

StopBuildEndpointMatcher grants all rights to a people with given role (usually “admins”)

class buildbot.www.authz.endpointmatchers.RebuildBuildEndpointMatcher(builder,
role)

Parameters

• builder – name of the builder.

• role – The role needed to get access to such endpoints.

RebuildBuildEndpointMatcher grants all rights to a people with given role (usually “admins”)

Role matchers

Endpoint matchers are responsible for creating rules to match people and grant them roles. You can grant roles
from groups information provided by the Auth plugins, or if you prefer directly to people’s email.

class buildbot.www.authz.roles.RolesFromGroups(groupPrefix)

Parameters groupPrefix – prefix to remove from each group

RolesFromGroups grants roles from the groups of the user. If a user has group buildbot-admin, and
groupPrefix is buildbot-, then user will be granted the role ‘admin’

ex:

roleMatchers=[
util.RolesFromGroups(groupPrefix="buildbot-")

]

class buildbot.www.authz.roles.RolesFromEmails(roledict)

Parameters roledict – dictionary with key=role, and value=list of email strings

RolesFromEmails grants roles to users according to the hardcoded emails.

ex:

roleMatchers=[
util.RolesFromEmails(admins=["my@email.com"])

]

class buildbot.www.authz.roles.RolesFromOwner(roledict)

Parameters roledict – dictionary with key=role, and value=list of email strings

RolesFromOwner grants a given role when property owner matches the email of the user

ex:

roleMatchers=[
RolesFromOwner(role="owner")

]

Example Configs

Simple config which allows admin people to run everything:

from buildbot.plugins import *
authz = util.Authz(

allowRules=[
util.StopBuildEndpointMatcher(role="admins"),
util.ForceBuildEndpointMatcher(role="admins"),
util.RebuildBuildEndpointMatcher(role="admins")

2.4. Configuration 201

Buildbot Documentation, Release 0.9.1

],
roleMatchers=[
util.RolesFromEmails(admins=["my@email.com"])

]
)
auth=util.UserPasswordAuth({'my@email.com': 'mypass'})
c['www']['auth'] = auth
c['www']['authz'] = authz

More complex config with separation per branch:

from buildbot.plugins import *

authz = util.Authz(
stringsMatcher=util.fnmatchStrMatcher, # simple matcher with '*' glob

→˓character
stringsMatcher = util.reStrMatcher, # if you prefer regular expressions
allowRules=[

admins can do anything,
defaultDeny=False: if user does not have the admin role, we continue

→˓parsing rules
util.AnyEndpointMatcher(role="admins", defaultDeny=False),

StopBuildEndpointMatcher(role="owner"),

*-try groups can start "try" builds
util.ForceBuildEndpointMatcher(builder="try", role="*-try"),
*-mergers groups can start "merge" builds
util.ForceBuildEndpointMatcher(builder="merge", role="*-mergers"),
*-releasers groups can start "release" builds
util.ForceBuildEndpointMatcher(builder="release", role="*-releasers"),

],
roleMatchers=[

RolesFromGroups(groupPrefix="buildbot-"),
RolesFromEmails(admins=["homer@springfieldplant.com"],

reaper-try=["007@mi6.uk"]),
role owner is granted when property owner matches the email of the user
RolesFromOwner(role="owner")

]
)
c['www']['authz'] = authz

Using GitHub authentication and allowing access to all endpoints for users in the “BuildBot” organization:

from buildbot.plugins import *
authz = util.Authz(

allowRules=[
util.AnyEndpointMatcher(role="BuildBot", defaultDeny=True)

],
roleMatchers=[
util.RolesFromGroups()

]
)
auth=util.GitHubAuth('CLIENT_ID', 'CLIENT_SECRET')
c['www']['auth'] = auth
c['www']['authz'] = authz

2.4.13 Change Hooks

The /change_hook url is a magic URL which will accept HTTP requests and translate them into changes
for buildbot. Implementations (such as a trivial json-based endpoint and a GitHub implementation) can be

202 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.1

found in https://github.com/buildbot/buildbot/blob/master/master/buildbot/www/hooks. The format of the url is
/change_hook/DIALECT where DIALECT is a package within the hooks directory. Change_hook is disabled
by default and each DIALECT has to be enabled separately, for security reasons

An example www configuration line which enables change_hook and two DIALECTS:

c['www'] = dict(
change_hook_dialects={

'base': True,
'somehook': {'option1':True,

'option2':False}}))

Within the www config dictionary arguments, the change_hook key enables/disables the module and
change_hook_dialects whitelists DIALECTs where the keys are the module names and the values are
optional arguments which will be passed to the hooks.

The post_build_request.py script in master/contrib allows for the submission of an arbitrary
change request. Run post_build_request.py --help for more information. The base dialect must
be enabled for this to work.

Mercurial hook

The Mercurial hook uses the base dialect:

c['www'] = dict(
...,
change_hook_dialects={'base': True},

)

Once this is configured on your buildmaster add the following hook on your server-side Mercurial repository’s
hgrc:

[hooks]
changegroup.buildbot = python:/path/to/hgbuildbot.py:hook

You’ll find hgbuildbot.py, and its inline documentation, in the contrib directory of Buildbot’s repository.

GitHub hook

Note: There is a standalone HTTP server available for receiving GitHub notifications as well:
contrib/github_buildbot.py. This script may be useful in cases where you cannot expose the Web-
Status for public consumption.

The GitHub hook has the following parameters:

secret (default None) Secret token to use to validate payloads

strict (default False) If the hook must be strict regarding valid payloads. If the value is False (default), the
signature will only be checked if a secret is specified and a signature was supplied with the payload. If the
value is True, a secret must be provided, and payloads without signature will be ignored.

codebase (default None) The codebase value to include with created changes. If the value is a function (or any
other callable), it will be called with the GitHub event payload as argument and the function must return the
codebase value to use for the event.

class (default None) A class to be used for processing incoming payloads. If the value is None (default), the
default class – buildbot.status.web.hooks.github.GitHubEventHandler – will be used.
The default class handles ping, push and pull_request events only. If you’d like to handle other events
(see Event Types & Payloads (https://developer.github.com/v3/activity/events/types/) for more information),

2.4. Configuration 203

https://github.com/buildbot/buildbot/blob/master/master/buildbot/www/hooks
https://developer.github.com/v3/activity/events/types/

Buildbot Documentation, Release 0.9.1

you’d need to subclass GitHubEventHandler and add handler methods for the corresponding events. For
example, if you’d like to handle blah events, your code should look something like this:

from buildbot.status.web.hooks.github import GitHubEventHandler

class MyBlahHandler(GitHubEventHandler):

def handle_blah(self, payload):
Do some magic here
return [], 'git'

The simples way to use GitHub hook is as follows:

c['www'] = dict(...,
change_hook_dialects={'github': { }})

Having added this line, you should add a webhook for your GitHub project (see Creating Webhooks page at
GitHub (https://developer.github.com/webhooks/creating/)). The parameters are:

Payload URL This URL should point to /change_hook/github relative to the root of the web status.
For example, if the base URL is http://builds.example.com/buildbot, then point GitHub to
http://builds.example.com/buildbot/change_hook/github. To specify a project asso-
ciated to the repository, append ?project=name to the URL.

Content Type Specify application/x-www-form-urlencoded or application/json.

Secret Any value. If you provide a non-empty value (recommended), make sure that your hook is configured to
use it:

c['www'] = dict(
...,
change_hook_dialects={

'github': {
'secret': 'MY-SECRET',
'strict': True

}
},
...))

Which events would you like to trigger this webhook? Leave the default – Just the push event – other
kind of events are not currently supported.

And then press the Add Webhook button.

Warning: The incoming HTTP requests for this hook are not authenticated by default. Anyone who can
access the web server can “fake” a request from GitHub, potentially causing the buildmaster to run arbitrary
code.

To protect URL against unauthorized access you either specify a secret, or you should use change_hook_auth
option:

c['www'] = dict(...,
change_hook_auth=["file:changehook.passwd"]))

create a file changehook.passwd:

user:password

and change the the Payload URL of your GitHub webhook to http://user:password@builds.example.com/bbot/change_hook/github.

See the documentation for twisted cred (https://twistedmatrix.com/documents/current/core/howto/cred.html) for
more options to pass to change_hook_auth.

204 Chapter 2. Buildbot Manual

https://developer.github.com/webhooks/creating/
https://developer.github.com/webhooks/creating/
https://twistedmatrix.com/documents/current/core/howto/cred.html

Buildbot Documentation, Release 0.9.1

Note that not using change_hook_auth can expose you to security risks.

Patches are welcome to implement: https://developer.github.com/webhooks/securing/

Note: When using a ChangeFilter with a GitHub webhook ensure that your filter matches all desired requests as
fields such as repository and project may differ in different events.

BitBucket hook

The BitBucket hook is as simple as GitHub one and it also takes no options.

c['www'] = dict(...,
change_hook_dialects={ 'bitbucket' : True }))

When this is setup you should add a POST service pointing to /change_hook/bitbucket relative to the
root of the web status. For example, it the grid URL is http://builds.example.com/bbot/grid, then
point BitBucket to http://builds.example.com/change_hook/bitbucket. To specify a project
associated to the repository, append ?project=name to the URL.

Note that there is a standalone HTTP server available for receiving BitBucket notifications, as well:
contrib/bitbucket_buildbot.py. This script may be useful in cases where you cannot expose the
WebStatus for public consumption.

Warning: As in the previous case, the incoming HTTP requests for this hook are not authenticated by
default. Anyone who can access the web status can “fake” a request from BitBucket, potentially causing the
buildmaster to run arbitrary code.

To protect URL against unauthorized access you should use change_hook_auth option.

c['www'] = dict(...,
change_hook_auth=["file:changehook.passwd"]))

Then, create a BitBucket service hook (see https://confluence.atlassian.com/
display/BITBUCKET/POST+Service+Management) with a WebHook URL like
http://user:password@builds.example.com/bbot/change_hook/bitbucket.

Note that as before, not using change_hook_auth can expose you to security risks.

Google Code hook

The Google Code hook is quite similar to the GitHub Hook. It has one option for the “Post-Commit Authentication
Key” used to check if the request is legitimate:

c['www'] = dict(...,
change_hook_dialects={'googlecode': {'secret_key': 'FSP3p-Ghdn4T0oqX'}}

)

This will add a “Post-Commit URL” for the project in the Google Code administrative interface, pointing to
/change_hook/googlecode relative to the root of the web status.

Alternatively, you can use the GoogleCodeAtomPoller ChangeSource that periodically poll the Google Code
commit feed for changes.

Note: Google Code doesn’t send the branch on which the changes were made. So, the hook always returns
'default' as the branch, you can override it with the 'branch' option:

2.4. Configuration 205

https://developer.github.com/webhooks/securing/
https://confluence.atlassian.com/display/BITBUCKET/POST+Service+Management
https://confluence.atlassian.com/display/BITBUCKET/POST+Service+Management

Buildbot Documentation, Release 0.9.1

change_hook_dialects={'googlecode': {'secret_key': 'FSP3p-Ghdn4T0oqX', 'branch':
→˓'master'}}

Poller hook

The poller hook allows you to use GET or POST requests to trigger polling. One advantage of this is your buildbot
instance can poll at launch (using the pollAtLaunch flag) to get changes that happened while it was down, but then
you can still use a commit hook to get fast notification of new changes.

Suppose you have a poller configured like this:

c['change_source'] = SVNPoller(
repourl="https://amanda.svn.sourceforge.net/svnroot/amanda/amanda",
split_file=split_file_branches,
pollInterval=24*60*60,
pollAtLaunch=True)

And you configure your WebStatus to enable this hook:

c['www'] = dict(...,
change_hook_dialects={'poller': True}

)

Then you will be able to trigger a poll of the SVN repository by poking the /change_hook/poller URL
from a commit hook like this:

curl -s -F poller=https://amanda.svn.sourceforge.net/svnroot/amanda/amanda \
http://yourbuildbot/change_hook/poller

If no poller argument is provided then the hook will trigger polling of all polling change sources.

You can restrict which pollers the webhook has access to using the allowed option:

c['www'] = dict(...,
change_hook_dialects={'poller': {'allowed': ['https://amanda.svn.sourceforge.

→˓net/svnroot/amanda/amanda']}}
)

GitLab hook

The GitLab hook is as simple as GitHub one and it also takes no options.

c['www'] = dict(...,
change_hook_dialects={ 'gitlab' : True }

)

When this is setup you should add a POST service pointing to /change_hook/gitlab relative to the root of
the web status. For example, it the grid URL is http://builds.example.com/bbot/grid, then point
GitLab to http://builds.example.com/change_hook/gitlab. The project and/or codebase can
also be passed in the URL by appending ?project=name or ?codebase=foo to the URL. These parameters
will be passed along to the scheduler.

Note: Your Git step must be configured with a git@ repourl, not a https: one, else the change from the webhook
will not trigger a build.

206 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.1

Warning: As in the previous case, the incoming HTTP requests for this hook are not authenticated by default.
Anyone who can access the web status can “fake” a request from your GitLab server, potentially causing the
buildmaster to run arbitrary code.

To protect URL against unauthorized access you should use change_hook_auth option.

c['www'] = dict(...,
change_hook_auth=["file:changehook.passwd"]

)

Then, create a GitLab service hook (see https://your.gitlab.server/help/web_hooks) with a
WebHook URL like http://user:password@builds.example.com/bbot/change_hook/gitlab.

Note that as before, not using change_hook_auth can expose you to security risks.

Gitorious Hook

The Gitorious hook is as simple as GitHub one and it also takes no options.

c['www'] = dict(...,
change_hook_dialects={'gitorious': True}

)

When this is setup you should add a POST service pointing to /change_hook/gitorious relative to the
root of the web status. For example, it the grid URL is http://builds.example.com/bbot/grid, then
point Gitorious to http://builds.example.com/change_hook/gitorious.

Warning: As in the previous case, the incoming HTTP requests for this hook are not authenticated by default.
Anyone who can access the web status can “fake” a request from your Gitorious server, potentially causing the
buildmaster to run arbitrary code.

To protect URL against unauthorized access you should use change_hook_auth option.

c['www'] = dict(...,
change_hook_auth=["file:changehook.passwd"]

)

Then, create a Gitorious web hook with a WebHook URL like http://user:password@builds.example.com/bbot/change_hook/gitorious.

Note that as before, not using change_hook_auth can expose you to security risks.

Note: Web hooks are only available for local Gitorious installations, since this feature is not offered as part of
Gitorious.org yet.

2.4.14 Custom Services

For advanced users or plugins writers, the ‘services’ key is available, and holds a list of
buildbot.util.service.BuildbotService. As this feature for advanced users, it is described
in the developer section of the manual.

This section will grow as soon as ready-to-use services are created.

2.4. Configuration 207

Buildbot Documentation, Release 0.9.1

2.4.15 DbConfig

DbConfig is an utility for master.cfg to get easy to use key/value storage in the buildbot database

DbConfig can get and store any jsonable object to the db for use by other masters or separate ui plugins to edit
them.

The design is voluntary simplistic, the focus is on the easy use rather than efficiency. A separate db connection is
created each time get() or set() is called.

Example:

from buildbot.plugins import util, worker
c = BuildmasterConfig = {}
c['db_url'] = 'mysql://user@pass:mysqlserver/buildbot'
dbConfig = util.DbConfig(BuildmasterConfig, basedir)
workers = dbConfig.get("workers")
c['workers'] = [

worker.Worker(worker['name'], worker['passwd'],
properties=worker.get('properties')),

for worker in workers
]

class DbConfig

__init__(BuildmasterConfig, basedir)

Parameters

• BuildmasterConfig – the BuildmasterConfig, where db_url is already config-
ured

• basedir – basedir global variable of the master.cfg run environment. Sqlite urls are
relative to this dir.

get(name, default=MarkerClass)

Parameters

• name – the name of the config variable to retrieve

• default – In case the config variable has not been set yet, default is returned if
defined, else KeyError is raised.

set(name, value)

Parameters

• name – the name of the config variable to be set

• value – the value of the config variable to be set

2.5 Transition to “worker” terminology

Since version 0.9.0 of Buildbot “slave”-based terminology is deprecated in favor of “worker”-based terminology.

API change is done in backward compatible way, so old “slave”-containing classes, functions and attributes are
still available and can be used. Old API support will be removed in the future versions of Buildbot.

Rename of API introduced in beta versions of Buildbot 0.9.0 done without providing fallback. See release notes
for the list of breaking changes of private interfaces.

208 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.1

2.5.1 Old names fallback settings

Use of obsolete names will raise Python warnings with category buildbot.worker_transition.DeprecatedWorkerAPIWarning.
By default these warnings are printed in the application log. This behaviour can be changed by setting appropriate
Python warnings settings via Python’s warnings module:

import warnings
from buildbot.worker_transition import DeprecatedWorkerAPIWarning
Treat old-name usage as errors:
warnings.simplefilter("error", DeprecatedWorkerAPIWarning)

See Python’s warnings module documentation for complete list of available actions, in particular warnings can
be disabled using "ignore" action.

It’s recommended to configure warnings inside buildbot.tac, before using any other Buildbot classes.

2.5.2 Changed API

In general “Slave” and “Buildslave” parts in identifiers and messages were replaced with “Worker”; “Slave-
Builder” with “WorkerForBuilder”.

Below is the list of changed API (use of old names from this list will work). Note that some of these symbols
are not included in Buildbot’s public API. Compatibility is provided as a convenience to those using the private
symbols anyway.

Old name New name
buildbot.interfaces.IBuildSlave IWorker
buildbot.interfaces.NoSlaveError (private) left as is, but deprecated (it shouldn’t be used at all)
buildbot.interfaces.BuildSlaveTooOldError WorkerTooOldError
buildbot.interfaces.LatentBuildSlaveFailedToSubstantiate (private) LatentWorkerFailedToSubstantiate
buildbot.interfaces.ILatentBuildSlave ILatentWorker
buildbot.interfaces.ISlaveStatus (will be removed in 0.9.x) IWorkerStatus
buildbot.buildslave module with all contents buildbot.worker
buildbot.buildslave.AbstractBuildSlave buildbot.worker.AbstractWorker
buildbot.buildslave.AbstractBuildSlave.slavename (private) buildbot.worker.AbstractWorker.workername
buildbot.buildslave.AbstractLatentBuildSlave buildbot.worker.AbstractLatentWorker
buildbot.buildslave.BuildSlave buildbot.worker.Worker
buildbot.buildslave.ec2 buildbot.worker.ec2
buildbot.buildslave.ec2.EC2LatentBuildSlave buildbot.worker.ec2.EC2LatentWorker
buildbot.buildslave.libvirt buildbot.worker.libvirt
buildbot.buildslave.libvirt.LibVirtSlave buildbot.worker.libvirt.LibVirtWorker
buildbot.buildslave.openstack buildbot.worker.openstack
buildbot.buildslave.openstack.OpenStackLatentBuildSlave buildbot.worker.openstack.OpenStackLatentWorker
buildbot.config.MasterConfig.slaves workers
buildbot.config.BuilderConfig constructor keyword argument slavename was renamed to workername
buildbot.config.BuilderConfig constructor keyword argument slavenames was renamed to workernames
buildbot.config.BuilderConfig constructor keyword argument slavebuilddir was renamed to workerbuilddir
buildbot.config.BuilderConfig constructor keyword argument nextSlave was renamed to nextWorker
buildbot.config.BuilderConfig.slavenames workernames
buildbot.config.BuilderConfig.slavebuilddir workerbuilddir
buildbot.config.BuilderConfig.nextSlave nextWorker
buildbot.process.slavebuilder buildbot.process.workerforbuilder
buildbot.process.slavebuilder.AbstractSlaveBuilder buildbot.process.workerforbuilder.AbstractWorkerForBuilder
buildbot.process.slavebuilder.AbstractSlaveBuilder.slave buildbot.process.workerforbuilder.AbstractWorkerForBuilder.worker
buildbot.process.slavebuilder.SlaveBuilder buildbot.process.workerforbuilder.WorkerForBuilder
buildbot.process.slavebuilder.LatentSlaveBuilder buildbot.process.workerforbuilder.LatentWorkerForBuilder
buildbot.process.build.Build.getSlaveName getWorkerName

Continued on next page

2.5. Transition to “worker” terminology 209

Buildbot Documentation, Release 0.9.1

Table 2.2 – continued from previous page
Old name New name
buildbot.process.build.Build.slavename workername
buildbot.process.builder.enforceChosenSlave enforceChosenWorker
buildbot.process.builder.Builder.canStartWithSlavebuilder canStartWithWorkerForBuilder
buildbot.process.builder.Builder.attaching_slaves attaching_workers
buildbot.process.builder.Builder.slaves workers
buildbot.process.builder.Builder.addLatentSlave addLatentWorker
buildbot.process.builder.Builder.getAvailableSlaves getAvailableWorkers
buildbot.schedulers.forcesched.BuildslaveChoiceParameter WorkerChoiceParameter
buildbot.process.buildstep.BuildStep.buildslave buildbot.process.buildstep.BuildStep.worker (also it was moved from class static attribute to instance attribute)
buildbot.process.buildstep.BuildStep.setBuildSlave buildbot.process.buildstep.BuildStep.setWorker
buildbot.process.buildstep.BuildStep.slaveVersion buildbot.process.buildstep.BuildStep.workerVersion
buildbot.process.buildstep.BuildStep.slaveVersionIsOlderThan buildbot.process.buildstep.BuildStep.workerVersionIsOlderThan
buildbot.process.buildstep.BuildStep.checkSlaveHasCommand buildbot.process.buildstep.BuildStep.checkWorkerHasCommand
buildbot.process.buildstep.BuildStep.getSlaveName buildbot.process.buildstep.BuildStep.getWorkerName
buildbot.locks.SlaveLock buildbot.locks.WorkerLock
buildbot.locks.SlaveLock.maxCountForSlave buildbot.locks.WorkerLock.maxCountForWorker
buildbot.locks.SlaveLock constructor argument maxCountForSlave was renamed maxCountForWorker
buildbot.steps.slave buildbot.steps.worker
buildbot.steps.slave.SlaveBuildStep buildbot.steps.worker.WorkerBuildStep
buildbot.steps.slave.CompositeStepMixin.getFileContentFromSlave buildbot.steps.worker.CompositeStepMixin.getFileContentFromWorker
buildbot.steps.transfer.FileUpload.slavesrc workersrc
buildbot.steps.transfer.FileUpload constructor argument slavesrc was renamed to workersrc
buildbot.steps.transfer.DirectoryUpload.slavesrc workersrc
buildbot.steps.transfer.DirectoryUpload constructor argument slavesrc was renamed to workersrc
buildbot.steps.transfer.MultipleFileUpload.slavesrcs workersrcs
buildbot.steps.transfer.MultipleFileUpload constructor argument slavesrcs was renamed to workersrcs
buildbot.steps.transfer.FileDownload.slavedest workerdest
buildbot.steps.transfer.FileDownload constructor argument slavedest was renamed to workerdest
buildbot.steps.transfer.StringDownload.slavedest workerdest
buildbot.steps.transfer.StringDownload constructor argument slavedest was renamed to workerdest
buildbot.steps.transfer.JSONStringDownload.slavedest workerdest
buildbot.steps.transfer.JSONStringDownload constructor argument slavedest was renamed to workerdest
buildbot.steps.transfer.JSONPropertiesDownload.slavedest workerdest
buildbot.steps.transfer.JSONPropertiesDownload constructor argument slavedest was renamed to workerdest
buildbot.process.remotecommand.RemoteCommand.buildslave worker

2.5.3 Plugins

buildbot.buildslave entry point was renamed to buildbot.worker, new plugins should be updated
accordingly.

Plugins that use old buildbot.buildslave entry point are still available in the configuration file in the same
way, as they were in versions prior 0.9.0:

from buildbot.plugins import buildslave # deprecated, use "worker" instead
w = buildslave.ThirdPartyWorker()

But also they available using new namespace inside configuration file, so its recommended to use
buildbot.plugins.worker name even if plugin uses old entry points:

from buildbot.plugins import worker
ThirdPartyWorker can be defined in using `buildbot.buildslave` entry
point, this still will work.
w = worker.ThirdPartyWorker()

210 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.1

Other changes:

• buildbot.plugins.util.BuildslaveChoiceParameter is deprecated in favor of
WorkerChoiceParameter.

• buildbot.plugins.util.enforceChosenSlave is deprecated in favor of
enforceChosenWorker.

• buildbot.plugins.util.SlaveLock is deprecated in favor of WorkerLock.

2.5.4 BuildmasterConfig changes

• c['slaves'] was replaced with c['workers']. Use of c['slaves'] will work, but is considered
deprecated, and will be removed in the future versions of Buildbot.

• Configuration key c['slavePortnum'] is deprecated in favor of
c['protocols']['pb']['port'].

2.5.5 Docker latent worker changes

In addition to class being renamed, environment variables that are set inside container SLAVENAME and
SLAVEPASS were renamed to WORKERNAME and WORKERPASS accordingly. Old environment variable are
still available, but are deprecated and will be removed in the future.

2.5.6 EC2 latent worker changes

Use of default values of keypair_name and security_name constructor arguments of
buildbot.worker.ec2.EC2LatentWorker is deprecated. Please specify them explicitly.

2.5.7 steps.slave.SetPropertiesFromEnv changes

In addition to buildbot.steps.slave module being renamed to buildbot.steps.worker, de-
fault source value for SetPropertiesFromEnv was changed from "SlaveEnvironment" to
"WorkerEnvironment".

2.5.8 Local worker changes

Working directory for local workers were changed from master-basedir/slaves/name to
master-basedir/workers/name.

2.5.9 Worker Manager changes

slave_config function argument was renamed to worker_config.

2.5.10 Properties

• slavename property is deprecated in favor of workername property. Render of deprecated property
will produce warning.

buildbot.worker.AbstractWorker (previously buildbot.buildslave.AbstractBuildSlave)
slavename property source were changed from BuildSlave to Worker (deprecated)

AbstractWorker now sets workername property with source Worker which should be used.

2.5. Transition to “worker” terminology 211

Buildbot Documentation, Release 0.9.1

2.5.11 Metrics

• buildbot.process.metrics.AttachedSlavesWatcher was renamed to
buildbot.process.metrics.AttachedWorkersWatcher.

• buildbot.worker.manager.WorkerManager.name (previously
buildbot.buildslave.manager.BuildslaveManager.name) metric measurement class
name changed from BuildslaveManager to WorkerManager

• buildbot.worker.manager.WorkerManager.managed_services_name (previously
buildbot.buildslave.manager.BuildslaveManager.managed_services_name`)
metric measurement managed service name changed from ``buildslaves to
workers

Renamed events:

Old name New name
AbstractBuildSlave.attached_slaves AbstractWorker.attached_workers
BotMaster.attached_slaves BotMaster.attached_workers
BotMaster.slaveLost() BotMaster.workerLost()
BotMaster.getBuildersForSlave() BotMaster.getBuildersForWorker()
AttachedSlavesWatcher AttachedWorkersWatcher
attached_slaves attached_workers

2.5.12 Database

Schema changes:

Old name New name
buildslaves table workers
builds.buildslaveid (not ForeignKey) column workerid (now ForeignKey)
configured_buildslaves table configured_workers
configured_buildslaves.buildslaveid
(ForeignKey) column

workerid

connected_buildslaves table connected_workers
connected_buildslaves.buildslaveid (ForeignKey)
column

workerid

buildslaves_name index workers_name
configured_slaves_buildmasterid index configured_workers_buildmasterid
configured_slaves_slaves index configured_workers_workers
configured_slaves_identity index configured_workers_identity
connected_slaves_masterid index connected_workers_masterid
connected_slaves_slaves index connected_workers_workers
connected_slaves_identity index connected_workers_identity
builds_buildslaveid index builds_workerid

List of database-related changes in API (fallback for old API is provided):

Old name New name
buildbot.db.buildslaves workers
buildbot.db.buildslaves.BuildslavesConnectorComponentbuildbot.db.workers.WorkersConnectorComponent
buildbot.db.buildslaves.BuildslavesConnectorComponent.getBuildslaves
(rewritten in nine)

buildbot.db.workers.WorkersConnectorComponent.getWorkers

buildbot.db.connector.DBConnector.buildslavesbuildbot.db.connector.DBConnector.workers

2.5.13 usePTY changes

usePTY default value has been changed from slave-config to None (use of slave-config will still
work, but discouraged).

212 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.1

2.5.14 buildbot-worker

buildbot-slave package has been renamed to buildbot-worker.

buildbot-worker has backward incompatible changes and requires buildmaster >= 0.9.0b8.
buildbot-slave from 0.8.x will work with both 0.8.x and 0.9.x versions of buildmaster, so there is no
need to upgrade currently deployed buildbot-slaves during switch from 0.8.x to 0.9.x.

Table 2.3: Master/worker compatibility table

master 0.8.x master 0.9.x
buildbot-slave yes yes
buildbot-worker no yes

buildbot-worker doesn’t support worker-side specification of usePTY (with --usepty command line
switch of buildbot-worker create-worker), you need to specify this option on master side.

getSlaveInfo remote command was renamed to getWorkerInfo in buildbot-worker.

2.6 Customization

For advanced users, Buildbot acts as a framework supporting a customized build application. For the most part,
such configurations consist of subclasses set up for use in a regular Buildbot configuration file.

This chapter describes some of the more common idioms in advanced Buildbot configurations.

At the moment, this chapter is an unordered set of suggestions:

• Programmatic Configuration Generation

• Collapse Request Functions

• Builder Priority Functions

• Build Priority Functions

• Customizing SVNPoller

– PROJECT/BRANCHNAME/FILEPATH repositories

– BRANCHNAME/PROJECT/FILEPATH repositories

• Writing Change Sources

– Writing a Notification-based Change Source

– Writing a Change Poller

• Writing a New Latent Worker Implementation

• Custom Build Classes

• Factory Workdir Functions

• Writing New BuildSteps

– Writing BuildStep Constructors

– Step Execution Process

– Running Commands

– Updating Status Strings

– About Logfiles

2.6. Customization 213

Buildbot Documentation, Release 0.9.1

– Writing Log Files

– Reading Logfiles

– Adding LogObservers

– Using Properties

– Using Statistics

– BuildStep URLs

– Discovering files

• Writing New Status Plugins

• A Somewhat Whimsical Example (or “It’s now customized, how do I deploy it?”)

– Inclusion in the master.cfg file

– Python file somewhere on the system

– Install this code into a standard Python library directory

– Distribute a Buildbot Plug-In

– Submit the code for inclusion in the Buildbot distribution

– Summary

If you’d like to clean it up, fork the project on GitHub and get started!

2.6.1 Programmatic Configuration Generation

Bearing in mind that master.cfg is a Python file, large configurations can be shortened considerably by judi-
cious use of Python loops. For example, the following will generate a builder for each of a range of supported
versions of Python:

pythons = ['python2.4', 'python2.5', 'python2.6', 'python2.7',
'python3.2', 'python3.3']

pytest_workers = ["worker%s" % n for n in range(10)]
for python in pythons:

f = util.BuildFactory()
f.addStep(steps.SVN(...))
f.addStep(steps.ShellCommand(command=[python, 'test.py']))
c['builders'].append(util.BuilderConfig(

name="test-%s" % python,
factory=f,
workernames=pytest_workers))

Next step would be the loading of pythons list from a .yaml/.ini file.

2.6.2 Collapse Request Functions

The logic Buildbot uses to decide which build request can be merged can be customized by providing a Python
function (a callable) instead of True or False described in Collapsing Build Requests.

Arguments for the callable are:

master pointer to the master object, which can be used to make additional data api calls via mas-
ter.data.get

builder dictionary of type builder

req1 dictionary of type buildrequest

214 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.1

req2 dictionary of type buildrequest

Warning: The number of invocations of the callable is proportional to the square of the request queue length,
so a long-running callable may cause undesirable delays when the queue length grows.

It should return true if the requests can be merged, and False otherwise. For example:

@defer.inlineCallbacks
def collapseRequests(master, builder, req1, req2):

"any requests with the same branch can be merged"

get the buildsets for each buildrequest
selfBuildset , otherBuildset = yield defer.gatherResults([

master.data.get(('buildsets', req1['buildsetid'])),
master.data.get(('buildsets', req2['buildsetid']))
])

selfSourcestamps = selfBuildset['sourcestamps']
otherSourcestamps = otherBuildset['sourcestamps']

if len(selfSourcestamps) != len(otherSourcestamps):
defer.returnValue(False)

for selfSourcestamp, otherSourcestamp in zip(selfSourcestamps,
→˓otherSourcestamps):

if selfSourcestamp['branch'] != otherSourcestamp['branch']:
defer.returnValue(False)

defer.returnValue(True)

c['collapseRequests'] = collapseRequests

In many cases, the details of the sourcestamp and buildrequest are important.

In the following example, only buildrequest with the same “reason” are merged; thus developers forcing
builds for different reasons will see distinct builds.

Note the use of the buildrequest.BuildRequest.canBeCollapsedmethod to access the source stamp
compatibility algorithm.

@defer.inlineCallbacks
def collapseRequests(master, builder, req1, req2):

canBeCollapsed = yield buildrequest.BuildRequest.canBeCollapsed(master, req1,
→˓req2)

if canBeCollapsed and req1.reason == req2.reason:
defer.returnValue(True)

else:
defer.returnValue(False)

c['collapseRequests'] = collapseRequests

Another common example is to prevent collapsing of requests coming from a Trigger step. Trigger step can
indeed be used in order to implement parallel testing of the same source.

Buildrequests will all have the same sourcestamp, but probably different properties, and shall not be collapsed.

Note: In most of the cases, just setting collapseRequests=False for triggered builders will do the trick.

In other cases, parent_buildid from buildset can be used:

@defer.inlineCallbacks
def collapseRequests(master, builder, req1, req2):

canBeCollapsed = yield buildrequest.BuildRequest.canBeCollapsed(master, req1,
→˓req2)

2.6. Customization 215

Buildbot Documentation, Release 0.9.1

selfBuildset , otherBuildset = yield defer.gatherResults([
master.data.get(('buildsets', req1['buildsetid'])),
master.data.get(('buildsets', req2['buildsetid']))

])
if canBeCollapsed and selfBuildset['parent_buildid'] != None and otherBuildset[

→˓'parent_buildid'] != None:
defer.returnValue(True)

else:
defer.returnValue(False)

c['collapseRequests'] = collapseRequests

If it’s necessary to perform some extended operation to determine whether two requests can be merged, then the
collapseRequests callable may return its result via Deferred.

Warning: Again, the number of invocations of the callable is proportional to the square of the request queue
length, so a long-running callable may cause undesirable delays when the queue length grows.

For example:

@defer.inlineCallbacks
def collapseRequests(master, builder, req1, req2):

info1, info2 = yield defer.gatherResults([
getMergeInfo(req1),
getMergeInfo(req2),

])
defer.returnValue(info1 == info2)

c['collapseRequests'] = collapseRequests

2.6.3 Builder Priority Functions

The prioritizeBuilders configuration key specifies a function which is called with two arguments: a
BuildMaster and a list of Builder objects. It should return a list of the same Builder objects, in the
desired order. It may also remove items from the list if builds should not be started on those builders. If necessary,
this function can return its results via a Deferred (it is called with maybeDeferred).

A simple prioritizeBuilders implementation might look like this:

def prioritizeBuilders(buildmaster, builders):
"""Prioritize builders. 'finalRelease' builds have the highest
priority, so they should be built before running tests, or
creating builds."""
builderPriorities = {

"finalRelease": 0,
"test": 1,
"build": 2,

}
builders.sort(key=lambda b: builderPriorities.get(b.name, 0))
return builders

c['prioritizeBuilders'] = prioritizeBuilders

2.6.4 Build Priority Functions

When a builder has multiple pending build requests, it uses a nextBuild function to decide which build it
should start first. This function is given two parameters: the Builder, and a list of BuildRequest objects
representing pending build requests.

216 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.1

A simple function to prioritize release builds over other builds might look like this:

def nextBuild(bldr, requests):
for r in requests:

if r.source.branch == 'release':
return r

return requests[0]

If some non-immediate result must be calculated, the nextBuild function can also return a Deferred:

def nextBuild(bldr, requests):
d = get_request_priorities(requests)
def pick(priorities):

if requests:
return sorted(zip(priorities, requests))[0][1]

d.addCallback(pick)
return d

The nextBuild function is passed as parameter to BuilderConfig:

... BuilderConfig(..., nextBuild=nextBuild, ...) ...

2.6.5 Customizing SVNPoller

Each source file that is tracked by a Subversion repository has a fully-qualified SVN URL in the following form:
(REPOURL)(PROJECT-plus-BRANCH)(FILEPATH). When you create the SVNPoller, you give it a
repourl value that includes all of the REPOURL and possibly some portion of the PROJECT-plus-BRANCH
string. The SVNPoller is responsible for producing Changes that contain a branch name and a FILEPATH
(which is relative to the top of a checked-out tree). The details of how these strings are split up depend upon how
your repository names its branches.

PROJECT/BRANCHNAME/FILEPATH repositories

One common layout is to have all the various projects that share a repository get a single top-level directory each,
with branches, tags, and trunk subdirectories:

amanda/trunk
/branches/3_2

/3_3
/tags/3_2_1

/3_2_2
/3_3_0

To set up a SVNPoller that watches the Amanda trunk (and nothing else), we would use the following, using
the default split_file:

from buildbot.plugins import changes
c['change_source'] = changes.SVNPoller(

repourl="https://svn.amanda.sourceforge.net/svnroot/amanda/amanda/trunk")

In this case, every Change that our SVNPoller produces will have its branch attribute set to None, to indicate
that the Change is on the trunk. No other sub-projects or branches will be tracked.

If we want our ChangeSource to follow multiple branches, we have to do two things. First we have to
change our repourl= argument to watch more than just amanda/trunk. We will set it to amanda
so that we’ll see both the trunk and all the branches. Second, we have to tell SVNPoller how to split
the (PROJECT-plus-BRANCH)(FILEPATH) strings it gets from the repository out into (BRANCH) and
(FILEPATH).

2.6. Customization 217

Buildbot Documentation, Release 0.9.1

We do the latter by providing a split_file function. This function is responsible for split-
ting something like branches/3_3/common-src/amanda.h into branch='branches/3_3' and
filepath='common-src/amanda.h'. The function is always given a string that names a file relative to
the subdirectory pointed to by the SVNPoller‘s repourl= argument. It is expected to return a dictionary with
at least the path key. The splitter may optionally set branch, project and repository. For backwards
compatibility it may return a tuple of (branchname,path). It may also return None to indicate that the file
is of no interest.

Note: The function should return branches/3_3 rather than just 3_3 because the SVN checkout step, will
append the branch name to the baseURL, which requires that we keep the branches component in there. Other
VC schemes use a different approach towards branches and may not require this artifact.

If your repository uses this same {PROJECT}/{BRANCH}/{FILEPATH} naming scheme, the following func-
tion will work:

def split_file_branches(path):
pieces = path.split('/')
if len(pieces) > 1 and pieces[0] == 'trunk':

return (None, '/'.join(pieces[1:]))
elif len(pieces) > 2 and pieces[0] == 'branches':

return ('/'.join(pieces[0:2]),
'/'.join(pieces[2:]))

else:
return None

In fact, this is the definition of the provided split_file_branches function. So to have our Twisted-
watching SVNPoller follow multiple branches, we would use this:

from buildbot.plugins import changes, util
c['change_source'] = changes.SVNPoller("svn://svn.twistedmatrix.com/svn/Twisted",

split_file=util.svn.split_file_branches)

Changes for all sorts of branches (with names like "branches/1.5.x", and None to indicate the trunk) will
be delivered to the Schedulers. Each Scheduler is then free to use or ignore each branch as it sees fit.

If you have multiple projects in the same repository your split function can attach a project name to the Change to
help the Scheduler filter out unwanted changes:

from buildbot.plugins import util
def split_file_projects_branches(path):

if not "/" in path:
return None

project, path = path.split("/", 1)
f = util.svn.split_file_branches(path)
if f:

info = dict(project=project, path=f[1])
if f[0]:

info['branch'] = f[0]
return info

return f

Again, this is provided by default. To use it you would do this:

from buildbot.plugins import changes, util
c['change_source'] = changes.SVNPoller(

repourl="https://svn.amanda.sourceforge.net/svnroot/amanda/",
split_file=util.svn.split_file_projects_branches)

Note here that we are monitoring at the root of the repository, and that within that repository is a amanda sub-
directory which in turn has trunk and branches. It is that amanda subdirectory whose name becomes the
project field of the Change.

218 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.1

BRANCHNAME/PROJECT/FILEPATH repositories

Another common way to organize a Subversion repository is to put the branch name at the top, and the projects
underneath. This is especially frequent when there are a number of related sub-projects that all get released in a
group.

For example, Divmod.org hosts a project named Nevow as well as one named Quotient. In a checked-out
Nevow tree there is a directory named formless that contains a Python source file named webform.py. This
repository is accessible via webdav (and thus uses an http: scheme) through the divmod.org hostname. There are
many branches in this repository, and they use a ({BRANCHNAME})/({PROJECT}) naming policy.

The fully-qualified SVN URL for the trunk version of webform.py is
http://divmod.org/svn/Divmod/trunk/Nevow/formless/webform.py. The 1.5.x branch ver-
sion of this file would have a URL of http://divmod.org/svn/Divmod/branches/1.5.x/Nevow/formless/webform.py.
The whole Nevow trunk would be checked out with http://divmod.org/svn/Divmod/trunk/Nevow,
while the Quotient trunk would be checked out using http://divmod.org/svn/Divmod/trunk/Quotient.

Now suppose we want to have an SVNPoller that only cares about the Nevow trunk. This case looks just like
the PROJECT/BRANCH layout described earlier:

from buildbot.plugins import changes
c['change_source'] = changes.SVNPoller("http://divmod.org/svn/Divmod/trunk/Nevow")

But what happens when we want to track multiple Nevow branches? We have to point our repourl= high
enough to see all those branches, but we also don’t want to include Quotient changes (since we’re only building
Nevow). To accomplish this, we must rely upon the split_file function to help us tell the difference between
files that belong to Nevow and those that belong to Quotient, as well as figuring out which branch each one is on.

from buildbot.plugins import changes
c['change_source'] = changes.SVNPoller("http://divmod.org/svn/Divmod",

split_file=my_file_splitter)

The my_file_splitter function will be called with repository-relative pathnames like:

trunk/Nevow/formless/webform.py This is a Nevow file, on the trunk. We want the Change that in-
cludes this to see a filename of formless/webform.py, and a branch of None

branches/1.5.x/Nevow/formless/webform.py This is a Nevow file, on a branch. We want to get
branch='branches/1.5.x' and filename='formless/webform.py'.

trunk/Quotient/setup.py This is a Quotient file, so we want to ignore it by having
my_file_splitter return None.

branches/1.5.x/Quotient/setup.py This is also a Quotient file, which should be ignored.

The following definition for my_file_splitter will do the job:

def my_file_splitter(path):
pieces = path.split('/')
if pieces[0] == 'trunk':

branch = None
pieces.pop(0) # remove 'trunk'

elif pieces[0] == 'branches':
pieces.pop(0) # remove 'branches'
grab branch name
branch = 'branches/' + pieces.pop(0)

else:
return None # something weird

projectname = pieces.pop(0)
if projectname != 'Nevow':

return None # wrong project
return dict(branch=branch, path='/'.join(pieces))

If you later decide you want to get changes for Quotient as well you could replace the last 3 lines with simply:

2.6. Customization 219

Buildbot Documentation, Release 0.9.1

return dict(project=projectname, branch=branch, path='/'.join(pieces))

2.6.6 Writing Change Sources

For some version-control systems, making Buildbot aware of new changes can be a challenge. If the pre-supplied
classes in Change Sources are not sufficient, then you will need to write your own.

There are three approaches, one of which is not even a change source. The first option is to write a change source
that exposes some service to which the version control system can “push” changes. This can be more complicated,
since it requires implementing a new service, but delivers changes to Buildbot immediately on commit.

The second option is often preferable to the first: implement a notification service in an external process (perhaps
one that is started directly by the version control system, or by an email server) and delivers changes to Buildbot
via PBChangeSource. This section does not describe this particular approach, since it requires no customization
within the buildmaster process.

The third option is to write a change source which polls for changes - repeatedly connecting to an external service
to check for new changes. This works well in many cases, but can produce a high load on the version control
system if polling is too frequent, and can take too long to notice changes if the polling is not frequent enough.

Writing a Notification-based Change Source

A custom change source must implement buildbot.interfaces.IChangeSource.

The easiest way to do this is to subclass buildbot.changes.base.ChangeSource, implementing the
describemethod to describe the instance. ChangeSource is a Twisted service, so you will need to implement
the startService and stopService methods to control the means by which your change source receives
notifications.

When the class does receive a change, it should call self.master.addChange(..) to submit it to the
buildmaster. This method shares the same parameters as master.db.changes.addChange, so consult the
API documentation for that function for details on the available arguments.

You will probably also want to set compare_attrs to the list of object attributes which Buildbot will use to
compare one change source to another when reconfiguring. During reconfiguration, if the new change source is
different from the old, then the old will be stopped and the new started.

Writing a Change Poller

Polling is a very common means of seeking changes, so Buildbot supplies a utility parent class to make it eas-
ier. A poller should subclass buildbot.changes.base.PollingChangeSource, which is a subclass
of ChangeSource. This subclass implements the Service methods, and calls the poll method according
to the pollInterval and pollAtLaunch options. The poll method should return a Deferred to signal its
completion.

Aside from the service methods, the other concerns in the previous section apply here, too.

2.6.7 Writing a New Latent Worker Implementation

Writing a new latent worker should only require subclassing buildbot.worker.AbstractLatentWorker
and implementing start_instance and stop_instance.

def start_instance(self):
responsible for starting instance that will try to connect with this
master. Should return deferred. Problems should use an errback. The
callback value can be None, or can be an iterable of short strings to
include in the "substantiate success" status message, such as
identifying the instance that started.

220 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.1

raise NotImplementedError

def stop_instance(self, fast=False):
responsible for shutting down instance. Return a deferred. If `fast`,
we're trying to shut the master down, so callback as soon as is safe.
Callback value is ignored.
raise NotImplementedError

See buildbot.worker.ec2.EC2LatentWorker for an example.

2.6.8 Custom Build Classes

The standard BuildFactory object creates Build objects by default. These Builds will each execute a collec-
tion of BuildSteps in a fixed sequence. Each step can affect the results of the build, but in general there is little
intelligence to tie the different steps together.

By setting the factory’s buildClass attribute to a different class, you can instantiate a different build class. This
might be useful, for example, to create a build class that dynamically determines which steps to run. The skeleton
of such a project would look like:

class DynamicBuild(Build):
override some methods
...

f = factory.BuildFactory()
f.buildClass = DynamicBuild
f.addStep(...)

2.6.9 Factory Workdir Functions

It is sometimes helpful to have a build’s workdir determined at runtime based on the parameters of the build. To
accomplish this, set the workdir attribute of the build factory to a callable. That callable will be invoked with
the SourceStamp for the build, and should return the appropriate workdir. Note that the value must be returned
immediately - Deferreds are not supported.

This can be useful, for example, in scenarios with multiple repositories submitting changes to Buildbot. In this
case you likely will want to have a dedicated workdir per repository, since otherwise a sourcing step with mode
= “update” will fail as a workdir with a working copy of repository A can’t be “updated” for changes from a
repository B. Here is an example how you can achieve workdir-per-repo:

def workdir(source_stamp):
return hashlib.md5(source_stamp.repository).hexdigest()[:8]

build_factory = factory.BuildFactory()
build_factory.workdir = workdir

build_factory.addStep(Git(mode="update"))
...
builders.append ({'name': 'mybuilder',

'workername': 'myworker',
'builddir': 'mybuilder',
'factory': build_factory})

The end result is a set of workdirs like

Repo1 => <worker-base>/mybuilder/a78890ba
Repo2 => <worker-base>/mybuilder/0823ba88

2.6. Customization 221

Buildbot Documentation, Release 0.9.1

You could make the workdir function compute other paths, based on parts of the repo URL in the sourcestamp,
or lookup in a lookup table based on repo URL. As long as there is a permanent 1:1 mapping between repos and
workdir, this will work.

2.6.10 Writing New BuildSteps

Warning: Buildbot has transitioned to a new, simpler style for writing custom steps. See New-Style Build
Steps for details. This section documents new-style steps. Old-style steps are supported in Buildbot-0.9.0, but
not in later releases.

While it is a good idea to keep your build process self-contained in the source code tree, sometimes it is convenient
to put more intelligence into your Buildbot configuration. One way to do this is to write a custom BuildStep.
Once written, this Step can be used in the master.cfg file.

The best reason for writing a custom BuildStep is to better parse the results of the command being run. For
example, a BuildStep that knows about JUnit could look at the logfiles to determine which tests had been run,
how many passed and how many failed, and then report more detailed information than a simple rc==0 -based
good/bad decision.

Buildbot has acquired a large fleet of build steps, and sports a number of knobs and hooks to make steps easier to
write. This section may seem a bit overwhelming, but most custom steps will only need to apply one or two of the
techniques outlined here.

For complete documentation of the build step interfaces, see BuildSteps.

Writing BuildStep Constructors

Build steps act as their own factories, so their constructors are a bit more complex than necessary. The config-
uration file instantiates a BuildStep object, but the step configuration must be re-used for multiple builds, so
Buildbot needs some way to create more steps.

Consider the use of a BuildStep in master.cfg:

f.addStep(MyStep(someopt="stuff", anotheropt=1))

This creates a single instance of class MyStep. However, Buildbot needs a new object each time the step is
executed. An instance of BuildStep remembers how it was constructed, and can create copies of itself. When
writing a new step class, then, keep in mind are that you cannot do anything “interesting” in the constructor – limit
yourself to checking and storing arguments.

It is customary to call the parent class’s constructor with all otherwise-unspecified keyword arguments. Keep a
**kwargs argument on the end of your options, and pass that up to the parent class’s constructor.

The whole thing looks like this:

class Frobnify(LoggingBuildStep):
def __init__(self,

frob_what="frobee",
frob_how_many=None,
frob_how=None,
**kwargs):

check
if frob_how_many is None:

raise TypeError("Frobnify argument how_many is required")

override a parent option
kwargs['parentOpt'] = 'xyz'

222 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.1

call parent
LoggingBuildStep.__init__(self, **kwargs)

set Frobnify attributes
self.frob_what = frob_what
self.frob_how_many = how_many
self.frob_how = frob_how

class FastFrobnify(Frobnify):
def __init__(self,

speed=5,
**kwargs):

Frobnify.__init__(self, **kwargs)
self.speed = speed

Step Execution Process

A step’s execution occurs in its run method. When this method returns (more accurately, when the Deferred it
returns fires), the step is complete. The method’s result must be an integer, giving the result of the step. Any other
output from the step (logfiles, status strings, URLs, etc.) is the responsibility of the run method.

The ShellCommand class implements this run method, and in most cases steps subclassing ShellCommand
simply implement some of the subsidiary methods that its run method calls.

Running Commands

To spawn a command in the worker, create a RemoteCommand instance in your step’s run method and run it
with runCommand:

cmd = RemoteCommand(args)
d = self.runCommand(cmd)

The CommandMixin class offers a simple interface to several common worker-side commands.

For the much more common task of running a shell command on the worker, use ShellMixin. This class
provides a method to handle the myriad constructor arguments related to shell commands, as well as a method
to create new RemoteCommand instances. This mixin is the recommended method of implementing custom
shell-based steps. The older pattern of subclassing ShellCommand is no longer recommended.

A simple example of a step using the shell mixin is:

class RunCleanup(buildstep.ShellMixin, buildstep.BuildStep):
def __init__(self, cleanupScript='./cleanup.sh', **kwargs):

self.cleanupScript = cleanupScript
kwargs = self.setupShellMixin(kwargs, prohibitArgs=['command'])
buildstep.BuildStep.__init__(self, **kwargs)

@defer.inlineCallbacks
def run(self):

cmd = yield self.makeRemoteShellCommand(
command=[self.cleanupScript])

yield self.runCommand(cmd)
if cmd.didFail():

cmd = yield self.makeRemoteShellCommand(
command=[self.cleanupScript, '--force'],
logEnviron=False)

yield self.runCommand(cmd)
defer.returnValue(cmd.results())

@defer.inlineCallbacks

2.6. Customization 223

Buildbot Documentation, Release 0.9.1

def run(self):
cmd = RemoteCommand(args)
log = yield self.addLog('output')
cmd.useLog(log, closeWhenFinished=True)
yield self.runCommand(cmd)

Updating Status Strings

Each step can summarize its current status in a very short string. For example, a compile step might display the
file being compiled. This information can be helpful users eager to see their build finish.

Similarly, a build has a set of short strings collected from its steps summarizing the overall state of the build.
Useful information here might include the number of tests run, but probably not the results of a make clean
step.

As a step runs, Buildbot calls its getCurrentSummary method as necessary to get the step’s current status. “As
necessary” is determined by calls to buildbot.process.buildstep.BuildStep.updateSummary .
Your step should call this method every time the status summary may have changed. Buildbot will take care of
rate-limiting summary updates.

When the step is complete, Buildbot calls its getResultSummary method to get a final summary of the step
along with a summary for the build.

About Logfiles

Each BuildStep has a collection of log files. Each one has a short name, like stdio or warnings. Each log file
contains an arbitrary amount of text, usually the contents of some output file generated during a build or test step,
or a record of everything that was printed to stdout/stderr during the execution of some command.

Each can contain multiple channels, generally limited to three basic ones: stdout, stderr, and headers. For example,
when a shell command runs, it writes a few lines to the headers channel to indicate the exact argv strings being
run, which directory the command is being executed in, and the contents of the current environment variables.
Then, as the command runs, it adds a lot of stdout and stderr messages. When the command finishes, a final
header line is added with the exit code of the process.

Status display plugins can format these different channels in different ways. For example, the web page shows log
files as text/html, with header lines in blue text, stdout in black, and stderr in red. A different URL is available
which provides a text/plain format, in which stdout and stderr are collapsed together, and header lines are stripped
completely. This latter option makes it easy to save the results to a file and run grep or whatever against the
output.

Writing Log Files

Most commonly, logfiles come from commands run on the worker. Internally, these are configured by supplying
the RemoteCommand instance with log files via the useLog method:

@defer.inlineCallbacks
def run(self):

...
log = yield self.addLog('stdio')
cmd.useLog(log, closeWhenFinished=True, 'stdio')
yield self.runCommand(cmd)

The name passed to useLog must match that configured in the command. In this case, stdio is the default.

If the log file was already added by another part of the step, it can be retrieved with getLog:

stdioLog = self.getLog('stdio')

224 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.1

Less frequently, some master-side processing produces a log file. If this log file is short and easily stored in
memory, this is as simple as a call to addCompleteLog:

@defer.inlineCallbacks
def run(self):

...
summary = u'\n'.join('%s: %s' % (k, count)

for (k, count) in self.lint_results.iteritems())
yield self.addCompleteLog('summary', summary)

Note that the log contents must be a unicode string.

Longer logfiles can be constructed line-by-line using the add methods of the log file:

@defer.inlineCallbacks
def run(self):

...
updates = yield self.addLog('updates')
while True:

...
yield updates.addStdout(some_update)

Again, note that the log input must be a unicode string.

Finally, addHTMLLog is similar to addCompleteLog, but the resulting log will be tagged as containing
HTML. The web UI will display the contents of the log using the browser.

The logfiles= argument to ShellCommand and its subclasses creates new log files and fills them in realtime
by asking the worker to watch a actual file on disk. The worker will look for additions in the target file and report
them back to the BuildStep. These additions will be added to the log file by calling addStdout.

All log files can be used as the source of a LogObserver just like the normal stdio LogFile. In fact, it’s
possible for one LogObserver to observe a logfile created by another.

Reading Logfiles

For the most part, Buildbot tries to avoid loading the contents of a log file into memory as a single string. For
large log files on a busy master, this behavior can quickly consume a great deal of memory.

Instead, steps should implement a LogObserver to examine log files one chunk or line at a time.

For commands which only produce a small quantity of output, RemoteCommand will collect the command’s
stdout into its stdout attribute if given the collectStdout=True constructor argument.

Adding LogObservers

Most shell commands emit messages to stdout or stderr as they operate, especially if you ask them nicely with a
option –verbose flag of some sort. They may also write text to a log file while they run. Your BuildStep can
watch this output as it arrives, to keep track of how much progress the command has made or to process log output
for later summarization.

To accomplish this, you will need to attach a LogObserver to the log. This observer is given all text as it is
emitted from the command, and has the opportunity to parse that output incrementally.

There are a number of pre-built LogObserver classes that you can choose from (defined in
buildbot.process.buildstep, and of course you can subclass them to add further customization. The
LogLineObserver class handles the grunt work of buffering and scanning for end-of-line delimiters, allowing
your parser to operate on complete stdout/stderr lines.

For example, let’s take a look at the TrialTestCaseCounter, which is used by the Trial step to count test
cases as they are run. As Trial executes, it emits lines like the following:

2.6. Customization 225

Buildbot Documentation, Release 0.9.1

buildbot.test.test_config.ConfigTest.testDebugPassword ... [OK]
buildbot.test.test_config.ConfigTest.testEmpty ... [OK]
buildbot.test.test_config.ConfigTest.testIRC ... [FAIL]
buildbot.test.test_config.ConfigTest.testLocks ... [OK]

When the tests are finished, trial emits a long line of ====== and then some lines which summarize the tests
that failed. We want to avoid parsing these trailing lines, because their format is less well-defined than the [OK]
lines.

A simple version of the parser for this output looks like this. The full version is in https://github.com/buildbot/
buildbot/blob/master/master/buildbot/steps/python_twisted.py.

from buildbot.plugins import util

class TrialTestCaseCounter(util.LogLineObserver):
_line_re = re.compile(r'^([\w\.]+) \.\.\. \[([^\]]+)\]$')
numTests = 0
finished = False

def outLineReceived(self, line):
if self.finished:

return
if line.startswith("=" * 40):

self.finished = True
return

m = self._line_re.search(line.strip())
if m:

testname, result = m.groups()
self.numTests += 1
self.step.setProgress('tests', self.numTests)

This parser only pays attention to stdout, since that’s where trial writes the progress lines. It has a mode flag
named finished to ignore everything after the ==== marker, and a scary-looking regular expression to match
each line while hopefully ignoring other messages that might get displayed as the test runs.

Each time it identifies a test has been completed, it increments its counter and delivers the new progress value to
the step with self.step.setProgress. This helps Buildbot to determine the ETA for the step.

To connect this parser into the Trial build step, Trial.__init__ ends with the following clause:

this counter will feed Progress along the 'test cases' metric
counter = TrialTestCaseCounter()
self.addLogObserver('stdio', counter)
self.progressMetrics += ('tests',)

This creates a TrialTestCaseCounter and tells the step that the counter wants to watch the stdio log. The
observer is automatically given a reference to the step in its step attribute.

Using Properties

In custom BuildSteps, you can get and set the build properties with the getProperty and setProperty
methods. Each takes a string for the name of the property, and returns or accepts an arbitrary JSON-able (lists,
dicts, strings, and numbers) object. For example:

class MakeTarball(ShellCommand):
def start(self):

if self.getProperty("os") == "win":
self.setCommand([...]) # windows-only command

else:
self.setCommand([...]) # equivalent for other systems

ShellCommand.start(self)

226 Chapter 2. Buildbot Manual

https://github.com/buildbot/buildbot/blob/master/master/buildbot/steps/python_twisted.py
https://github.com/buildbot/buildbot/blob/master/master/buildbot/steps/python_twisted.py

Buildbot Documentation, Release 0.9.1

Remember that properties set in a step may not be available until the next step begins. In particular, any
Property or Interpolate instances for the current step are interpolated before the step starts, so they cannot
use the value of any properties determined in that step.

Using Statistics

Statistics can be generated for each step, and then summarized across all steps in a build. For example, a test step
might set its warnings statistic to the number of warnings observed. The build could then sum the warnings
on all steps to get a total number of warnings.

Statistics are set and retrieved with the setStatistic and getStatistic methods. The hasStatistic
method determines whether a statistic exists.

The Build method getSummaryStatistic can be used to aggregate over all steps in a Build.

BuildStep URLs

Each BuildStep has a collection of links. Each has a name and a target URL. The web display displays clickable
links for each link, making them a useful way to point to extra information about a step. For example, a step that
uploads a build result to an external service might include a link to the uploaded file.

To set one of these links, the BuildStep should call the addURL method with the name of the link and the
target URL. Multiple URLs can be set. For example:

@defer.inlineCallbacks
def run(self):

... # create and upload report to coverage server
url = 'http://coverage.example.com/reports/%s' % reportname
yield self.addURL('coverage', url)

Discovering files

When implementing a BuildStep it may be necessary to know about files that are created during the build.
There are a few worker commands that can be used to find files on the worker and test for the existence (and type)
of files and directories.

The worker provides the following file-discovery related commands:

• stat calls os.stat for a file in the worker’s build directory. This can be used to check if a known file exists
and whether it is a regular file, directory or symbolic link.

• listdir calls os.listdir for a directory on the worker. It can be used to obtain a list of files that are
present in a directory on the worker.

• glob calls glob.glob on the worker, with a given shell-style pattern containing wildcards.

For example, we could use stat to check if a given path exists and contains *.pyc files. If the path does not exist
(or anything fails) we mark the step as failed; if the path exists but is not a directory, we mark the step as having
“warnings”.

from buildbot.plugins import steps, util
from buildbot.interfaces import WorkerTooOldError
import stat

class MyBuildStep(steps.BuildStep):

def __init__(self, dirname, **kwargs):
buildstep.BuildStep.__init__(self, **kwargs)
self.dirname = dirname

2.6. Customization 227

Buildbot Documentation, Release 0.9.1

def start(self):
make sure the worker knows about stat
workerver = (self.workerVersion('stat'),

self.workerVersion('glob'))
if not all(workerver):

raise WorkerTooOldError('need stat and glob')

cmd = buildstep.RemoteCommand('stat', {'file': self.dirname})

d = self.runCommand(cmd)
d.addCallback(lambda res: self.evaluateStat(cmd))
d.addErrback(self.failed)
return d

def evaluateStat(self, cmd):
if cmd.didFail():

self.step_status.setText(["File not found."])
self.finished(util.FAILURE)
return

s = cmd.updates["stat"][-1]
if not stat.S_ISDIR(s[stat.ST_MODE]):

self.step_status.setText(["'tis not a directory"])
self.finished(util.WARNINGS)
return

cmd = buildstep.RemoteCommand('glob', {'path': self.dirname + '/*.pyc'})

d = self.runCommand(cmd)
d.addCallback(lambda res: self.evaluateGlob(cmd))
d.addErrback(self.failed)
return d

def evaluateGlob(self, cmd):
if cmd.didFail():

self.step_status.setText(["Glob failed."])
self.finished(util.FAILURE)
return

files = cmd.updates["files"][-1]
if len(files):

self.step_status.setText(["Found pycs"]+files)
else:

self.step_status.setText(["No pycs found"])
self.finished(util.SUCCESS)

For more information on the available commands, see Master-Worker API.

Todo

Step Progress BuildStepFailed

2.6.11 Writing New Status Plugins

Each status plugin is an object which provides the twisted.application.service.IService interface,
which creates a tree of Services with the buildmaster at the top [not strictly true]. The status plugins are all children
of an object which implements buildbot.interfaces.IStatus, the main status object. From this object,
the plugin can retrieve anything it wants about current and past builds. It can also subscribe to hear about new and
upcoming builds.

Status plugins which only react to human queries (like the Waterfall display) never need to subscribe to anything:

228 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.1

they are idle until someone asks a question, then wake up and extract the information they need to answer it, then
they go back to sleep. Plugins which need to act spontaneously when builds complete (like the MailNotifier
plugin) need to subscribe to hear about new builds.

If the status plugin needs to run network services (like the HTTP server used by the Waterfall plugin), they can be
attached as Service children of the plugin itself, using the IServiceCollection interface.

2.6.12 A Somewhat Whimsical Example (or “It’s now customized, how do I de-
ploy it?”)

Let’s say that we’ve got some snazzy new unit-test framework called Framboozle. It’s the hottest thing since sliced
bread. It slices, it dices, it runs unit tests like there’s no tomorrow. Plus if your unit tests fail, you can use its name
for a Web 2.1 startup company, make millions of dollars, and hire engineers to fix the bugs for you, while you
spend your afternoons lazily hang-gliding along a scenic pacific beach, blissfully unconcerned about the state of
your tests. 1

To run a Framboozle-enabled test suite, you just run the ‘framboozler’ command from the top of your source
code tree. The ‘framboozler’ command emits a bunch of stuff to stdout, but the most interesting bit is that it
emits the line “FNURRRGH!” every time it finishes running a test case You’d like to have a test-case counting
LogObserver that watches for these lines and counts them, because counting them will help the buildbot more
accurately calculate how long the build will take, and this will let you know exactly how long you can sneak out
of the office for your hang-gliding lessons without anyone noticing that you’re gone.

This will involve writing a new BuildStep (probably named “Framboozle”) which inherits from
ShellCommand. The BuildStep class definition itself will look something like this:

from buildbot.plugins import steps, util

class FNURRRGHCounter(util.LogLineObserver):
numTests = 0
def outLineReceived(self, line):

if "FNURRRGH!" in line:
self.numTests += 1
self.step.setProgress('tests', self.numTests)

class Framboozle(steps.ShellCommand):
command = ["framboozler"]

def __init__(self, **kwargs):
steps.ShellCommand.__init__(self, **kwargs) # always upcall!
counter = FNURRRGHCounter()
self.addLogObserver('stdio', counter)
self.progressMetrics += ('tests',)

So that’s the code that we want to wind up using. How do we actually deploy it?

You have a number of different options:

• Inclusion in the master.cfg file

• Python file somewhere on the system

• Install this code into a standard Python library directory

• Distribute a Buildbot Plug-In

• Submit the code for inclusion in the Buildbot distribution

• Summary

1 framboozle.com is still available. Remember, I get 10% :).

2.6. Customization 229

Buildbot Documentation, Release 0.9.1

Inclusion in the master.cfg file

The simplest technique is to simply put the step class definitions in your master.cfg file, somewhere before
the BuildFactory definition where you actually use it in a clause like:

f = BuildFactory()
f.addStep(SVN(repourl="stuff"))
f.addStep(Framboozle())

Remember that master.cfg is secretly just a Python program with one job: populating the
BuildmasterConfig dictionary. And Python programs are allowed to define as many classes as they like.
So you can define classes and use them in the same file, just as long as the class is defined before some other code
tries to use it.

This is easy, and it keeps the point of definition very close to the point of use, and whoever replaces you after
that unfortunate hang-gliding accident will appreciate being able to easily figure out what the heck this stupid
“Framboozle” step is doing anyways. The downside is that every time you reload the config file, the Framboozle
class will get redefined, which means that the buildmaster will think that you’ve reconfigured all the Builders that
use it, even though nothing changed. Bleh.

Python file somewhere on the system

Instead, we can put this code in a separate file, and import it into the master.cfg file just like we would the normal
buildsteps like ShellCommand and SVN .

Create a directory named ~/lib/python, put the step class definitions in
~/lib/python/framboozle.py, and run your buildmaster using:

PYTHONPATH=~/lib/python buildbot start MASTERDIR

or use the Makefile.buildbot to control the way buildbot start works. Or add something like this to
something like your ~/.bashrc or ~/.bash_profile or ~/.cshrc:

export PYTHONPATH=~/lib/python

Once we’ve done this, our master.cfg can look like:

from framboozle import Framboozle
f = BuildFactory()
f.addStep(SVN(repourl="stuff"))
f.addStep(Framboozle())

or:

import framboozle
f = BuildFactory()
f.addStep(SVN(repourl="stuff"))
f.addStep(framboozle.Framboozle())

(check out the Python docs for details about how import and from A import B work).

What we’ve done here is to tell Python that every time it handles an “import” statement for some named module,
it should look in our ~/lib/python/ for that module before it looks anywhere else. After our directories,
it will try in a bunch of standard directories too (including the one where buildbot is installed). By setting the
PYTHONPATH environment variable, you can add directories to the front of this search list.

Python knows that once it “import”s a file, it doesn’t need to re-import it again. This means that reconfiguring the
buildmaster (with buildbot reconfig, for example) won’t make it think the Framboozle class has changed
every time, so the Builders that use it will not be spuriously restarted. On the other hand, you either have to
start your buildmaster in a slightly weird way, or you have to modify your environment to set the PYTHONPATH
variable.

230 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.1

Install this code into a standard Python library directory

Find out what your Python’s standard include path is by asking it:

80:warner@luther% python
Python 2.4.4c0 (#2, Oct 2 2006, 00:57:46)
[GCC 4.1.2 20060928 (prerelease) (Debian 4.1.1-15)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import sys
>>> import pprint
>>> pprint.pprint(sys.path)
['',
'/usr/lib/python24.zip',
'/usr/lib/python2.4',
'/usr/lib/python2.4/plat-linux2',
'/usr/lib/python2.4/lib-tk',
'/usr/lib/python2.4/lib-dynload',
'/usr/local/lib/python2.4/site-packages',
'/usr/lib/python2.4/site-packages',
'/usr/lib/python2.4/site-packages/Numeric',
'/var/lib/python-support/python2.4',
'/usr/lib/site-python']

In this case, putting the code into /usr/local/lib/python2.4/site-packages/framboozle.py
would work just fine. We can use the same master.cfg import framboozle statement as in Option 2. By
putting it in a standard include directory (instead of the decidedly non-standard ~/lib/python), we don’t even
have to set PYTHONPATH to anything special. The downside is that you probably have to be root to write to one
of those standard include directories.

Distribute a Buildbot Plug-In

First of all, you must prepare a Python package (if you do not know what that is, please check How to package
Buildbot plugins, where you can find a couple of pointers to tutorials).

When you have a package, you will have a special file called setup.py. This file needs to be updated to include
a pointer to your new step:

setup(
...
entry_points = {

...,
'buildbot.steps': [

'Framboozle = framboozle:Framboozle'
]

},
...

)

Where:

• buildbot.steps is the kind of plugin you offer (more information about possible kinds you can find in
How to package Buildbot plugins)

• framboozle:Framboozle consists of two parts: framboozle is the name of the Python module
where to look for Framboozle class, which implements the plugin

• Framboozle is the name of the plugin.

This will allow users of your plugin to use it just like any other Buildbot plugins:

from buildbot.plugins import steps

... steps.Framboozle ...

2.6. Customization 231

Buildbot Documentation, Release 0.9.1

Now you can upload it to PyPI (http://pypi.python.org/) where other people can download it from and use
in their build systems. Once again, the information about how to prepare and upload a package to PyPI
(http://pypi.python.org/) can be found in tutorials listed in How to package Buildbot plugins.

Submit the code for inclusion in the Buildbot distribution

Make a fork of buildbot on http://github.com/buildbot/buildbot or post a patch in a bug at http://trac.buildbot.net/.
In either case, post a note about your patch to the mailing list, so others can provide feedback and, eventually,
commit it.

When it’s committed to the master, the usage is the same as in the previous approach:

from buildbot.plugins import steps, util

...
f = util.BuildFactory()
f.addStep(steps.SVN(repourl="stuff"))
f.addStep(steps.Framboozle())
...

And then you don’t even have to install framboozle.py anywhere on your system, since it will ship with
Buildbot. You don’t have to be root, you don’t have to set PYTHONPATH. But you do have to make a good case
for Framboozle being worth going into the main distribution, you’ll probably have to provide docs and some unit
test cases, you’ll need to figure out what kind of beer the author likes (IPA’s and Stouts for Dustin), and then
you’ll have to wait until the next release. But in some environments, all this is easier than getting root on your
buildmaster box, so the tradeoffs may actually be worth it.

Summary

Putting the code in master.cfg (1) makes it available to that buildmaster instance. Putting it in a file in a personal
library directory (2) makes it available for any buildmasters you might be running. Putting it in a file in a system-
wide shared library directory (3) makes it available for any buildmasters that anyone on that system might be
running. Getting it into the buildbot’s upstream repository (4) makes it available for any buildmasters that anyone
in the world might be running. It’s all a matter of how widely you want to deploy that new class.

2.7 New-Style Build Steps

In Buildbot-0.9.0, many operations performed by BuildStep subclasses return a Deferred. As a result, custom
build steps which call these methods will need to be rewritten.

Buildbot-0.8.9 supports old-style steps natively, while new-style steps are emulated. Buildbot-0.9.0 supports new-
style steps natively, while old-style steps are emulated. Later versions of Buildbot will not support old-style steps
at all. All custom steps should be rewritten in the new style as soon as possible.

Buildbot distinguishes new-style from old-style steps by the presence of a run method. If this method is present,
then the step is a new-style step.

2.7.1 Summary of Changes

• New-style steps have a run method that is simpler to implement than the old start method.

• Many methods are now asynchronous (return Deferreds), as they perform operations on the database.

• Logs are now implemented by a completely different class. This class supports the same log-writing meth-
ods (addStderr and so on), although they are now asynchronous. However, it does not support log-
reading methods such as getText. It was never advisable to handle logs as enormous strings. New-style
steps should, instead, use a LogObserver or (in Buildbot-0.9.0) fetch log lines bit by bit using the data API.

232 Chapter 2. Buildbot Manual

http://pypi.python.org/
http://pypi.python.org/
http://github.com/buildbot/buildbot
http://trac.buildbot.net/

Buildbot Documentation, Release 0.9.1

• buildbot.process.buildstep.LoggingBuildStep is deprecated and cannot be used in new-
style steps. Mix in buildbot.process.buildstep.ShellMixin instead.

• Step strings, derived by parameters like description, descriptionDone, and
descriptionSuffix, are no longer treated as lists. For backward compatibility, the parameters
may still be given as lists, but will be joined with spaces during execution (using join_list).

2.7.2 Backward Compatibility

Some hacks are in place to support old-style steps. These hacks are only activated when an old-style step is
detected. Support for old-style steps will be dropped soon after Buildbot-0.9.0 is released.

• The Deferreds from all asynchronous methods invoked during step execution are gathered internally. The
step is not considered finished until all such Deferreds have fired, and is marked EXCEPTION if any fail.
For logfiles, this is accomplished by means of a synchronous wrapper class.

• Logfile data is available while the step is still in memory. This means that logs returned from
step.getLog have the expected methods getText, readlines and so on.

• ShellCommand subclasses implicitly gather all stdio output in memory and provide it to the
createSummary method.

2.7.3 Rewriting start

If your custom buildstep implements the start method, then rename that method to run and set it up to return
a Deferred, either explicitly or via inlineCallbacks. The value of the Deferred should be the result of the
step (one of the codes in buildbot.process.results), or a Twisted failure instance to complete the step
as EXCEPTION. The new run method should not call self.finished or self.failed, instead signalling
the same via Deferred.

For example, the following old-style start method

def start(self): ## old style
cmd = remotecommand.RemoteCommand('stat', {'file': self.file })
d = self.runCommand(cmd)
d.addCallback(lambda res: self.convertResult(cmd))
d.addErrback(self.failed)

Becomes

@defer.inlineCallbacks
def run(self): ## new style

cmd = remotecommand.RemoteCommand('stat', {'file': self.file })
yield self.runCommand(cmd)
defer.returnValue(self.convertResult(cmd))

2.7.4 Newly Asynchronous Methods

The following methods now return a Deferred:

• buildbot.process.buildstep.BuildStep.addLog

• log.addStdout

• log.addStderr

• log.addHeader

• log.finish (see “Log Objects”, below)

• buildbot.process.remotecommand.RemoteCommand.addStdout

2.7. New-Style Build Steps 233

Buildbot Documentation, Release 0.9.1

• buildbot.process.remotecommand.RemoteCommand.addStderr

• buildbot.process.remotecommand.RemoteCommand.addHeader

• buildbot.process.remotecommand.RemoteCommand.addToLog

• buildbot.process.buildstep.BuildStep.addCompleteLog

• buildbot.process.buildstep.BuildStep.addHTMLLog

• buildbot.process.buildstep.BuildStep.addURL

Any custom code in a new-style step that calls these methods must handle the resulting Deferred. In some cases,
that means that the calling method’s signature will change. For example

def summarize(self): ## old-style
for m in self.MESSAGES:

if counts[m]:
self.addCompleteLog(m, "".join(summaries[m]))

self.setProperty("count-%s" % m, counts[m], "counter")

Is a synchronous function, not returning a Deferred. However, when converted to a new-style test, it must handle
Deferreds from the methods it calls, so it must be asynchronous. Syntactically, inlineCallbacks makes the
change fairly simple:

@defer.inlineCallbacks
def summarize(self): ## new-style

for m in self.MESSAGES:
if counts[m]:

yield self.addCompleteLog(m, "".join(summaries[m]))
self.setProperty("count-%s" % m, counts[m], "counter")

However, this method’s callers must now handle the Deferred that it returns. All methods that can be overridden
in custom steps can return a Deferred.

2.7.5 Properties

Good news! The API for properties is the same synchronous API as was available in old-style steps. Properties
are handled synchronously during the build, and persisted to the database at completion of each step.

2.7.6 Log Objects

Old steps had two ways of interacting with logfiles, both of which have changed.

The first is writing to logs while a step is executing. When using addCompleteLog or addHTMLLog, this is
straightforward, except that in new-style steps these methods return a Deferred.

The second method is via buildbot.process.buildstep.BuildStep.addLog. In new-style steps,
the returned object (via Deferred) has the following methods to add log content:

• addStdout

• addStderr

• addHeader

• finish

All of these methods now return Deferreds. None of the old log-reading methods are available on this object:

• hasContents

• getText

• readLines

234 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.1

• getTextWithHeaders

• getChunks

If your step uses such methods, consider using a LogObserver instead, or using the Data API to get the required
data.

The undocumented and unused subscribeConsumer method of logfiles has also been removed.

The subscribemethod now takes a callable, rather than an instance, and does not support catchup. This method
was primarily used by LogObserver, the implementation of which has been modified accordingly. Any other
uses of the subscribe method should be refactored to use a LogObserver.

2.7.7 Status Strings

The self.step_status.setText and setText2 methods have been removed. Similarly, the
_describe and describe methods are not used in new-style steps. In fact, steps no longer set their status
directly.

Instead, steps call buildbot.process.buildstep.BuildStep.updateSummary whenever the status
may have changed. This method calls getCurrentSummary or getResultSummary as appropriate and
update displays of the step’s status. Steps override the latter two methods to provide appropriate summaries.

2.7.8 Statistics

Support for statistics has been moved to the BuildStep and Build objects. Calls to
self.step_status.setStatistic should be rewritten as self.setStatistic.

2.8 Command-line Tool

This section describes command-line tools available after buildbot installation. Since version 0.8 the one-for-
all buildbot command-line tool was divided into two parts namely buildbot and buildslave, starting
from version 0.9 buildslave command was replaced with buildbot-worker command. The last one was
separated from main command-line tool to minimize dependencies required for running a worker while leaving
all other functions to buildbot tool.

Every command-line tool has a list of global options and a set of commands which have their own options. One
can run these tools in the following way:

buildbot [global options] command [command options]
buildbot-worker [global options] command [command options]

The buildbot command is used on the master, while buildbot-worker is used on the worker. Global
options are the same for both tools which perform the following actions:

--help Print general help about available commands and global options and exit. All
subsequent arguments are ignored.

--verbose Set verbose output.

--version Print current buildbot version and exit. All subsequent arguments are ig-
nored.

You can get help on any command by specifying --help as a command option:

buildbot @var{command} --help

You can also use manual pages for buildbot and buildbot-worker for quick reference on command-line
options.

The remainder of this section describes each buildbot command. See cmdline for a full list.

2.8. Command-line Tool 235

Buildbot Documentation, Release 0.9.1

2.8.1 buildbot

The buildbot command-line tool can be used to start or stop a buildmaster or buildbot, and to interact with a
running buildmaster. Some of its subcommands are intended for buildmaster admins, while some are for develop-
ers who are editing the code that the buildbot is monitoring.

Administrator Tools

The following buildbot sub-commands are intended for buildmaster administrators:

create-master

buildbot create-master -r {BASEDIR}

This creates a new directory and populates it with files that allow it to be used as a buildmaster’s base directory.

You will usually want to use the option -r option to create a relocatable buildbot.tac. This allows you to
move the master directory without editing this file.

upgrade-master

buildbot upgrade-master {BASEDIR}

This upgrades a previously created buildmaster’s base directory for a new version of buildbot master source code.
This will copy the web server static files, and potencially upgrade the db.

start

buildbot start [--nodaemon] {BASEDIR}

This starts a buildmaster which was already created in the given base directory. The daemon is launched in the
background, with events logged to a file named twistd.log.

The option –nodaemon option instructs Buildbot to skip daemonizing. The process will start in the foreground. It
will only return to the command-line when it is stopped.

restart

buildbot restart [--nodaemon] {BASEDIR}

Restart the buildmaster. This is equivalent to stop followed by start The option –nodaemon option has the
same meaning as for start.

stop

buildbot stop {BASEDIR}

This terminates the daemon (either buildmaster or worker) running in the given directory. The --clean option
shuts down the buildmaster cleanly. With --no-wait option buildbot stop command will send buildmas-
ter shutdown signal and will immediately exit, not waiting for complete buildmaster shutdown.

236 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.1

sighup

buildbot sighup {BASEDIR}

This sends a SIGHUP to the buildmaster running in the given directory, which causes it to re-read its
master.cfg file.

checkconfig

buildbot checkconfig {BASEDIR|CONFIG_FILE}

This checks if the buildmaster configuration is well-formed and contains no deprecated or invalid elements. If no
arguments are used or the base directory is passed as the argument the config file specified in buildbot.tac
is checked. If the argument is the path to a config file then it will be checked without using the buildbot.tac
file.

cleanupdb

buildbot cleanupdb {BASEDIR|CONFIG_FILE} [-q]

This command is frontend for various database maintainance jobs:

• optimiselogs: This optimization groups logs into bigger chunks to apply higher level of compression.

Developer Tools

These tools are provided for use by the developers who are working on the code that the buildbot is monitoring.

try

This lets a developer to ask the question What would happen if I committed this patch right
now?. It runs the unit test suite (across multiple build platforms) on the developer’s current code, allowing them
to make sure they will not break the tree when they finally commit their changes.

The buildbot try command is meant to be run from within a developer’s local tree, and starts by figuring out
the base revision of that tree (what revision was current the last time the tree was updated), and a patch that can
be applied to that revision of the tree to make it match the developer’s copy. This (revision,patch) pair is
then sent to the buildmaster, which runs a build with that SourceStamp. If you want, the tool will emit status
messages as the builds run, and will not terminate until the first failure has been detected (or the last success).

There is an alternate form which accepts a pre-made patch file (typically the output of a command like svn
diff). This --diff form does not require a local tree to run from. See try –diff concerning the --diff
command option.

For this command to work, several pieces must be in place: the Try_Jobdir or :Try_Userpass, as well as
some client-side configuration.

Locating the master

The try command needs to be told how to connect to the try scheduler, and must know which of the authentication
approaches described above is in use by the buildmaster. You specify the approach by using --connect=ssh or
--connect=pb (or try_connect = 'ssh' or try_connect = 'pb' in .buildbot/options).

For the PB approach, the command must be given a option –master argument (in the form HOST:PORT) that
points to TCP port that you picked in the Try_Userpass scheduler. It also takes a option –username and

2.8. Command-line Tool 237

Buildbot Documentation, Release 0.9.1

option –passwd pair of arguments that match one of the entries in the buildmaster’s userpass list. These
arguments can also be provided as try_master, try_username, and try_password entries in the
.buildbot/options file.

For the SSH approach, the command must be given option –host and option –username, to get to the build-
master host. It must also be given option –jobdir, which points to the inlet directory configured above.
The jobdir can be relative to the user’s home directory, but most of the time you will use an explicit path
like ~buildbot/project/trydir. These arguments can be provided in .buildbot/options as
try_host, try_username, try_password, and try_jobdir.

If you need to use something different from the default ssh command for connecting to the remote system, you
can use –ssh command line option or try_ssh in the configuration file.

The SSH approach also provides a option –buildbotbin argument to allow specification of the buildbot binary to
run on the buildmaster. This is useful in the case where buildbot is installed in a virtualenv on the buildmaster host,
or in other circumstances where the buildbot command is not on the path of the user given by option –username.
The option –buildbotbin argument can be provided in .buildbot/options as try_buildbotbin

The following command line arguments are deprecated, but retained for backward compatibility:

--tryhost is replaced by option –host

--trydir is replaced by option –jobdir

--master is replaced by option –masterstatus

Likewise, the following .buildbot/options file entries are deprecated, but retained for backward compati-
bility:

• try_dir is replaced by try_jobdir

• masterstatus is replaced by try_masterstatus

Waiting for results

If you provide the option –wait option (or try_wait = True in .buildbot/options), the buildbot
try command will wait until your changes have either been proven good or bad before exiting. Unless you use the
option –quiet option (or try_quiet=True), it will emit a progress message every 60 seconds until the builds
have completed.

The SSH connection method does not support waiting for results.

Choosing the Builders

A trial build is performed on multiple Builders at the same time, and the developer gets to choose which Builders
are used (limited to a set selected by the buildmaster admin with the TryScheduler‘s builderNames=
argument). The set you choose will depend upon what your goals are: if you are concerned about cross-platform
compatibility, you should use multiple Builders, one from each platform of interest. You might use just one builder
if that platform has libraries or other facilities that allow better test coverage than what you can accomplish on
your own machine, or faster test runs.

The set of Builders to use can be specified with multiple option –builder arguments on the command line. It can
also be specified with a single try_builders option in .buildbot/options that uses a list of strings to
specify all the Builder names:

try_builders = ["full-OSX", "full-win32", "full-linux"]

If you are using the PB approach, you can get the names of the builders that are configured for the try scheduler
using the get-builder-names argument:

buildbot try --get-builder-names --connect=pb --master=... --username=... --
→˓passwd=...

238 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.1

Specifying the VC system

The try command also needs to know how to take the developer’s current tree and extract the (revision, patch)
source-stamp pair. Each VC system uses a different process, so you start by telling the try command which
VC system you are using, with an argument like option –vc=cvs or option –vc=git. This can also be provided as
try_vc in .buildbot/options.

The following names are recognized: bzr cvs darcs hg git mtn p4 svn

Finding the top of the tree

Some VC systems (notably CVS and SVN) track each directory more-or-less independently, which means the
try command needs to move up to the top of the project tree before it will be able to construct a proper full-
tree patch. To accomplish this, the try command will crawl up through the parent directories until it finds a
marker file. The default name for this marker file is .buildbot-top, so when you are using CVS or SVN you
should touch .buildbot-top from the top of your tree before running buildbot try. Alternatively,
you can use a filename like ChangeLog or README, since many projects put one of these files in their top-most
directory (and nowhere else). To set this filename, use --topfile=ChangeLog, or set it in the options file
with try_topfile = 'ChangeLog'.

You can also manually set the top of the tree with --topdir=~/trees/mytree, or try_topdir =
'~/trees/mytree'. If you use try_topdir, in a .buildbot/options file, you will need a separate
options file for each tree you use, so it may be more convenient to use the try_topfile approach instead.

Other VC systems which work on full projects instead of individual directories (Darcs, Mercurial, Git, Monotone)
do not require try to know the top directory, so the option –try-topfile and option –try-topdir arguments will be
ignored.

If the try command cannot find the top directory, it will abort with an error message.

The following command line arguments are deprecated, but retained for backward compatibility:

• --try-topdir is replaced by option –topdir

• --try-topfile is replaced by option –topfile

Determining the branch name

Some VC systems record the branch information in a way that try can locate it. For the others, if you are using
something other than the default branch, you will have to tell the buildbot which branch your tree is using. You
can do this with either the option –branch argument, or a try_branch entry in the .buildbot/options
file.

Determining the revision and patch

Each VC system has a separate approach for determining the tree’s base revision and computing a patch.

CVS try pretends that the tree is up to date. It converts the current time into a option -D time specification, uses
it as the base revision, and computes the diff between the upstream tree as of that point in time versus the
current contents. This works, more or less, but requires that the local clock be in reasonably good sync with
the repository.

SVN try does a svn status -u to find the latest repository revision number (emitted on the last line in the
Status against revision: NN message). It then performs an svn diff -rNN to find out
how your tree differs from the repository version, and sends the resulting patch to the buildmaster. If your
tree is not up to date, this will result in the try tree being created with the latest revision, then backwards
patches applied to bring it back to the version you actually checked out (plus your actual code changes),
but this will still result in the correct tree being used for the build.

2.8. Command-line Tool 239

Buildbot Documentation, Release 0.9.1

bzr try does a bzr revision-info to find the base revision, then a bzr diff -r$base.. to obtain
the patch.

Mercurial hg parents --template '{node}\n' emits the full revision id (as opposed to the common
12-char truncated) which is a SHA1 hash of the current revision’s contents. This is used as the base revision.
hg diff then provides the patch relative to that revision. For try to work, your working directory must
only have patches that are available from the same remotely-available repository that the build process’
source.Mercurial will use.

Perforce try does a p4 changes -m1 ... to determine the latest changelist and implicitly assumes that
the local tree is synced to this revision. This is followed by a p4 diff -du to obtain the patch. A p4
patch differs slightly from a normal diff. It contains full depot paths and must be converted to paths relative
to the branch top. To convert the following restriction is imposed. The p4base (see P4Source) is assumed
to be //depot

Darcs try does a darcs changes --context to find the list of all patches back to and including the
last tag that was made. This text file (plus the location of a repository that contains all these patches) is
sufficient to re-create the tree. Therefore the contents of this context file are the revision stamp for
a Darcs-controlled source tree. It then does a darcs diff -u to compute the patch relative to that
revision.

Git git branch -v lists all the branches available in the local repository along with the revision ID it points
to and a short summary of the last commit. The line containing the currently checked out branch begins
with * (star and space) while all the others start with (two spaces). try scans for this line and extracts
the branch name and revision from it. Then it generates a diff against the base revision.

Todo

I’m not sure if this actually works the way it’s intended since the extracted base revision might not actually exist
in the upstream repository. Perhaps we need to add a –remote option to specify the remote tracking branch to
generate a diff against.

Monotone mtn automate get_base_revision_id emits the full revision id which is a SHA1 hash of
the current revision’s contents. This is used as the base revision. mtn diff then provides the patch relative
to that revision. For try to work, your working directory must only have patches that are available from
the same remotely-available repository that the build process’ source.Monotone will use.

patch information

You can provide the option –who=dev to designate who is running the try build. This will add the dev to the Rea-
son field on the try build’s status web page. You can also set try_who = dev in the .buildbot/options
file. Note that option –who=dev will not work on version 0.8.3 or earlier masters.

Similarly, option –comment=COMMENT will specify the comment for the patch, which is also displayed in the
patch information. The corresponding config-file option is try_comment.

Sending properties

You can set properties to send with your change using either the option –property=key=value option, which sets
a single property, or the option –properties=key1=value1,key2=value2... option, which sets multiple comma-
separated properties. Either of these can be sepcified multiple times. Note that the option –properties option uses
commas to split on properties, so if your property value itself contains a comma, you’ll need to use the option
–property option to set it.

240 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.1

try –diff

Sometimes you might have a patch from someone else that you want to submit to the buildbot. For example, a
user may have created a patch to fix some specific bug and sent it to you by email. You’ve inspected the patch and
suspect that it might do the job (and have at least confirmed that it doesn’t do anything evil). Now you want to test
it out.

One approach would be to check out a new local tree, apply the patch, run your local tests, then use buildbot
try to run the tests on other platforms. An alternate approach is to use the buildbot try --diff form to
have the buildbot test the patch without using a local tree.

This form takes a option –diff argument which points to a file that contains the patch you want to apply. By default
this patch will be applied to the TRUNK revision, but if you give the optional option –baserev argument, a tree of
the given revision will be used as a starting point instead of TRUNK.

You can also use buildbot try --diff=- to read the patch from stdin.

Each patch has a patchlevel associated with it. This indicates the number of slashes (and preceding path-
names) that should be stripped before applying the diff. This exactly corresponds to the option -p or option –strip
argument to the patch utility. By default buildbot try --diff uses a patchlevel of 0, but you can override
this with the option -p argument.

When you use option –diff, you do not need to use any of the other options that relate to a local tree, specifically
option –vc, option –try-topfile, or option –try-topdir. These options will be ignored. Of course you must still
specify how to get to the buildmaster (with option –connect, option –tryhost, etc).

Other Tools

These tools are generally used by buildmaster administrators.

sendchange

This command is used to tell the buildmaster about source changes. It is intended to be used from within a commit
script, installed on the VC server. It requires that you have a PBChangeSource (PBChangeSource) running
in the buildmaster (by being set in c['change_source']).

buildbot sendchange --master {MASTERHOST}:{PORT} --auth {USER}:{PASS}
--who {USER} {FILENAMES..}

The option –auth option specifies the credentials to use to connect to the master, in the form user:pass. If the
password is omitted, then sendchange will prompt for it. If both are omitted, the old default (username “change”
and password “changepw”) will be used. Note that this password is well-known, and should not be used on an
internet-accessible port.

The option –master and option –username arguments can also be given in the options file (see .buildbot config
directory). There are other (optional) arguments which can influence the Change that gets submitted:

--branch (or option branch) This provides the (string) branch specifier. If omitted, it
defaults to None, indicating the default branch. All files included in
this Change must be on the same branch.

--category (or option category) This provides the (string) category specifier. If omit-
ted, it defaults to None, indicating no category. The category property
can be used by schedulers to filter what changes they listen to.

--project (or option project) This provides the (string) project to which this change
applies, and defaults to ‘’. The project can be used by schedulers to decide
which builders should respond to a particular change.

--repository (or option repository) This provides the repository from which this
change came, and defaults to ''.

2.8. Command-line Tool 241

Buildbot Documentation, Release 0.9.1

--revision This provides a revision specifier, appropriate to the VC system in use.

--revision_file This provides a filename which will be opened and the contents used as the
revision specifier. This is specifically for Darcs, which uses the output of
darcs changes --context as a revision specifier. This context file
can be a couple of kilobytes long, spanning a couple lines per patch, and
would be a hassle to pass as a command-line argument.

--property This parameter is used to set a property on the Change generated by
sendchange. Properties are specified as a name:value pair, separated
by a colon. You may specify many properties by passing this parameter mul-
tiple times.

--comments This provides the change comments as a single argument. You may want to
use option –logfile instead.

--logfile This instructs the tool to read the change comments from the given file. If
you use - as the filename, the tool will read the change comments from stdin.

--encoding Specifies the character encoding for all other parameters, defaulting to
'utf8'.

--vc Specifies which VC system the Change is coming from, one of: cvs, svn,
darcs, hg, bzr, git, mtn, or p4. Defaults to None.

user

Note that in order to use this command, you need to configure a CommandlineUserManager instance in your
master.cfg file, which is explained in Users Options.

This command allows you to manage users in buildbot’s database. No extra requirements are needed to use this
command, aside from the Buildmaster running. For details on how Buildbot manages users, see Users.

--master The user command can be run virtually anywhere provided a location
of the running buildmaster. The option –master argument is of the form
MASTERHOST:PORT.

--username PB connection authentication that should match the arguments to Comman-
dlineUserManager.

--passwd PB connection authentication that should match the arguments to Comman-
dlineUserManager.

--op There are four supported values for the option –op argument: add, update,
remove, and get. Each are described in full in the following sections.

--bb_username Used with the option –op=update option, this sets the user’s username for
web authentication in the database. It requires option –bb_password to be set
along with it.

--bb_password Also used with the option –op=update option, this sets the password portion
of a user’s web authentication credentials into the database. The password is
first encrypted prior to storage for security reasons.

--ids When working with users, you need to be able to refer to them by unique
identifiers to find particular users in the database. The option –ids option lets
you specify a comma separated list of these identifiers for use with the user
command.

The option –ids option is used only when using option –op=remove or option
–op=get.

--info Users are known in buildbot as a collection of attributes tied together
by some unique identifier (see Users). These attributes are specified in
the form {TYPE}={VALUE} when using the option –info option. These

242 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.1

{TYPE}={VALUE} pairs are specified in a comma separated list, so for ex-
ample:

--info=svn=jdoe,git='John Doe <joe@example.com>'

The option –info option can be specified multiple times in the user com-
mand, as each specified option will be interpreted as a new user. Note that
option –info is only used with option –op=add or with option –op=update,
and whenever you use option –op=update you need to specify the identifier
of the user you want to update. This is done by prepending the option –info
arguments with {ID:}. If we were to update 'jschmo' from the previous
example, it would look like this:

--info=jdoe:git='Joe Doe <joe@example.com>'

Note that option –master, option –username, option –passwd, and option –op are always required to issue the
user command.

The option –master, option –username, and option –passwd options can be specified in the option file with key-
words user_master, user_username, and user_passwd, respectively. If user_master is not speci-
fied, then option –master from the options file will be used instead.

Below are examples of how each command should look. Whenever a user command is successful, results will
be shown to whoever issued the command.

For option –op=add:

buildbot user --master={MASTERHOST} --op=add \
--username={USER} --passwd={USERPW} \
--info={TYPE}={VALUE},...

For option –op=update:

buildbot user --master={MASTERHOST} --op=update \
--username={USER} --passwd={USERPW} \
--info={ID}:{TYPE}={VALUE},...

For option –op=remove:

buildbot user --master={MASTERHOST} --op=remove \
--username={USER} --passwd={USERPW} \
--ids={ID1},{ID2},...

For option –op=get:

buildbot user --master={MASTERHOST} --op=get \
--username={USER} --passwd={USERPW} \
--ids={ID1},{ID2},...

A note on option –op=update: when updating the option –bb_username and option –bb_password, the option
–info doesn’t need to have additional {TYPE}={VALUE} pairs to update and can just take the {ID} portion.

.buildbot config directory

Many of the buildbot tools must be told how to contact the buildmaster that they interact with. This spec-
ification can be provided as a command-line argument, but most of the time it will be easier to set them in an
options file. The buildbot command will look for a special directory named .buildbot, starting from
the current directory (where the command was run) and crawling upwards, eventually looking in the user’s home
directory. It will look for a file named options in this directory, and will evaluate it as a Python script, looking
for certain names to be set. You can just put simple name = 'value' pairs in this file to set the options.

2.8. Command-line Tool 243

Buildbot Documentation, Release 0.9.1

For a description of the names used in this file, please see the documentation for the individual buildbot sub-
commands. The following is a brief sample of what this file’s contents could be.

for status-reading tools
masterstatus = 'buildbot.example.org:12345'
for 'sendchange' or the debug port
master = 'buildbot.example.org:18990'

Note carefully that the names in the options file usually do not match the command-line option name.

master Equivalent to option –master for sendchange. It is the location of the pb.PBChangeSource for
`sendchange.

username Equivalent to option –username for the sendchange command.

branch Equivalent to option –branch for the sendchange command.

category Equivalent to option –category for the sendchange command.

try_connect Equivalent to option –connect, this specifies how the try command should deliver its request
to the buildmaster. The currently accepted values are ssh and pb.

try_builders Equivalent to option –builders, specifies which builders should be used for the try build.

try_vc Equivalent to option –vc for try , this specifies the version control system being used.

try_branch Equivalent to option –branch, this indicates that the current tree is on a non-trunk branch.

try_topdir

try_topfile Use try_topdir, equivalent to option –try-topdir, to explicitly indicate the top of your work-
ing tree, or try_topfile, equivalent to option –try-topfile to name a file that will only be found in that
top-most directory.

try_host

try_username

try_dir When try_connect is ssh, the command will use try_host for option –tryhost,
try_username for option –username, and try_dir for option –trydir. Apologies for the confusing
presence and absence of ‘try’.

try_username

try_password

try_master Similarly, when try_connect is pb, the command will pay attention to try_username for
option –username, try_password for option –passwd, and try_master for option –master.

try_wait

masterstatus try_wait and masterstatus (equivalent to option –wait and master, respectively) are
used to ask the try command to wait for the requested build to complete.

2.8.2 worker

buildbot-worker command-line tool is used for worker management only and does not provide any addi-
tional functionality. One can create, start, stop and restart the worker.

create-worker

This creates a new directory and populates it with files that let it be used as a worker’s base directory. You must
provide several arguments, which are used to create the initial buildbot.tac file.

The option -r option is advisable here, just like for create-master.

244 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.1

buildbot-worker create-worker -r {BASEDIR} {MASTERHOST}:{PORT} {WORKERNAME}
→˓{PASSWORD}

The create-worker options are described in Worker Options.

start

This starts a worker which was already created in the given base directory. The daemon is launched in the back-
ground, with events logged to a file named twistd.log.

buildbot-worker start [--nodaemon] BASEDIR

The option –nodaemon option instructs Buildbot to skip daemonizing. The process will start in the foreground. It
will only return to the command-line when it is stopped.

restart

buildbot-worker restart [--nodaemon] BASEDIR

This restarts a worker which is already running. It is equivalent to a stop followed by a start.

The option –nodaemon option has the same meaning as for start.

stop

This terminates the daemon worker running in the given directory.

buildbot stop BASEDIR

2.9 Resources

The Buildbot home page is http://buildbot.net/.

For configuration questions and general discussion, please use the buildbot-devel mailing list. The sub-
scription instructions and archives are available at http://lists.sourceforge.net/lists/listinfo/buildbot-devel

The #buildbot channel on Freenode’s IRC servers hosts development discussion, and often folks are available
to answer questions there, as well.

2.10 Optimization

If you’re feeling your Buildbot is running a bit slow, here are some tricks that may help you, but use them at your
own risk.

2.10.1 Properties load speedup

For example, if most of your build properties are strings, you can gain an approx. 30% speedup if you put this
snippet of code inside your master.cfg file:

2.9. Resources 245

http://buildbot.net/
http://lists.sourceforge.net/lists/listinfo/buildbot-devel

Buildbot Documentation, Release 0.9.1

def speedup_json_loads():
import json, re

original_decode = json._default_decoder.decode
my_regexp = re.compile(r'^\[\"([^"]*)\",\s+\"([^"]*)\"\]$')
def decode_with_re(str, *args, **kw):

m = my_regexp.match(str)
try:

return list(m.groups())
except Exception:

return original_decode(str, *args, **kw)
json._default_decoder.decode = decode_with_re

speedup_json_loads()

It patches json decoder so that it would first try to extract a value from JSON that is a list of two strings (which is
the case for a property being a string), and would fallback to general JSON decoder on any error.

2.11 Plugin Infrastructure in Buildbot

New in version 0.8.11.

Plugin infrastructure in Buildbot allows easy use of components that are not part of the core. It also allows unified
access to components that are included in the core.

The following snippet

from buildbot.plugins import kind

... kind.ComponentClass ...

allows to use a component of kind kind. Available kinds are:

worker workers, described in Workers

changes change source, described in Change Sources

schedulers schedulers, described in Schedulers

steps build steps, described in Build Steps

reporters reporters (or reporter targets), described in Reporters

util utility classes. For example, BuilderConfig, Build Factories, ChangeFilter and Locks are accessible
through util.

Web interface plugins are not used directly: as described in web server configuration section, they are listed in the
corresponding section of the web server configuration dictionary.

Note: If you are not very familiar with Python and you need to use different kinds of components, start your
master.cfg file with:

from buildbot.plugins import *

As a result, all listed above components will be available for use. This is what sample master.cfg file uses.

2.11.1 Finding Plugins

Buildbot maintains a list of plugins at http://trac.buildbot.net/wiki/Plugins.

246 Chapter 2. Buildbot Manual

http://trac.buildbot.net/wiki/Plugins

Buildbot Documentation, Release 0.9.1

2.11.2 Developing Plugins

Distribute a Buildbot Plug-In contains all necesary information for you to develop new plugins. Please edit
http://trac.buildbot.net/wiki/Plugins to add a link to your plugin!

2.11.3 Plugins of note

Plugins were introduced in Buildbot-0.8.11, so as of this writing, only components that are bundled with Buildbot
are available as plugins.

If you have an idea/need about extending Buildbot, head to How to package Buildbot plugins, create your own
plugins and let the world now how Buildbot can be made even more useful.

2.12 Deployment

This page aims at describing the common pitfalls and best practices when deploying buildbot.

• Using A Database Server

• Maintenance

• Troubleshooting

2.12.1 Using A Database Server

Buildbot uses the sqlite3 database backend by default. If you plan to host a lot of data, you may consider using a
more suitable database server.

If you want to use a database server (e.g., MySQL or Postgres) as the database backend for your Buildbot, use
option buildbot create-master –db to specify the connection string for the database, and make sure that the same
URL appears in the db_url of the db parameter in your configuration file.

Additional Requirements

Depending on the selected database, further Python packages will be required. Consult the SQLAlchemy dialect
list for a full description. The most common choice for MySQL is

MySQL-Python: http://mysql-python.sourceforge.net/

To communicate with MySQL, SQLAlchemy requires MySQL-Python. Any reasonably recent ver-
sion of MySQL-Python should suffice.

The most common choice for Postgres is

Psycopg: http://initd.org/psycopg/

SQLAlchemy uses Psycopg to communicate with Postgres. Any reasonably recent version should
suffice.

2.12.2 Maintenance

The buildmaster can be configured to send out email notifications when a worker has been offline for a while. Be
sure to configure the buildmaster with a contact email address for each worker so these notifications are sent to
someone who can bring it back online.

2.12. Deployment 247

http://trac.buildbot.net/wiki/Plugins
http://mysql-python.sourceforge.net/
http://initd.org/psycopg/

Buildbot Documentation, Release 0.9.1

If you find you can no longer provide a worker to the project, please let the project admins know, so they can put
out a call for a replacement.

The Buildbot records status and logs output continually, each time a build is performed. The status tends to be
small, but the build logs can become quite large. Each build and log are recorded in a separate file, arranged
hierarchically under the buildmaster’s base directory. To prevent these files from growing without bound, you
should periodically delete old build logs. A simple cron job to delete anything older than, say, two weeks should
do the job. The only trick is to leave the buildbot.tac and other support files alone, for which find‘s
-mindepth argument helps skip everything in the top directory. You can use something like the following
(assuming builds are stored in ./builds/ directory):

@weekly cd BASEDIR && find . -mindepth 2 i-path './builds/*' \
-prune -o -type f -mtime +14 -exec rm {} \;

@weekly cd BASEDIR && find twistd.log* -mtime +14 -exec rm {} \;

Alternatively, you can configure a maximum number of old logs to be kept using the --log-count command
line option when running buildbot-worker create-worker or buildbot create-master.

2.12.3 Troubleshooting

Here are a few hints on diagnosing common problems.

Starting the worker

Cron jobs are typically run with a minimal shell (/bin/sh, not /bin/bash), and tilde expansion is not always
performed in such commands. You may want to use explicit paths, because the PATH is usually quite short
and doesn’t include anything set by your shell’s startup scripts (.profile, .bashrc, etc). If you’ve installed
buildbot (or other Python libraries) to an unusual location, you may need to add a PYTHONPATH specification
(note that Python will do tilde-expansion on PYTHONPATH elements by itself). Sometimes it is safer to fully-
specify everything:

@reboot PYTHONPATH=~/lib/python /usr/local/bin/buildbot \
start /usr/home/buildbot/basedir

Take the time to get the @reboot job set up. Otherwise, things will work fine for a while, but the first power
outage or system reboot you have will stop the worker with nothing but the cries of sorrowful developers to remind
you that it has gone away.

Connecting to the buildmaster

If the worker cannot connect to the buildmaster, the reason should be described in the twistd.log logfile. Some
common problems are an incorrect master hostname or port number, or a mistyped bot name or password. If the
worker loses the connection to the master, it is supposed to attempt to reconnect with an exponentially-increasing
backoff. Each attempt (and the time of the next attempt) will be logged. If you get impatient, just manually stop
and re-start the worker.

When the buildmaster is restarted, all workers will be disconnected, and will attempt to reconnect as usual. The
reconnect time will depend upon how long the buildmaster is offline (i.e. how far up the exponential backoff curve
the workers have travelled). Again, buildbot-worker restart BASEDIR will speed up the process.

Contrib Scripts

While some features of Buildbot are included in the distribution, others are only available in contrib/ in the
source directory. The latest versions of such scripts are available at https://github.com/buildbot/buildbot/blob/
master/master/contrib.

248 Chapter 2. Buildbot Manual

https://github.com/buildbot/buildbot/blob/master/master/contrib
https://github.com/buildbot/buildbot/blob/master/master/contrib

CHAPTER 3

Buildbot Development

This chapter is the official repository for the collected wisdom of the Buildbot hackers. It is intended both for
developers writing patches that will be included in Buildbot itself, and for advanced users who wish to customize
Buildbot.

3.1 General Documents

This section gives some general information about Buildbot development.

3.1.1 Master Organization

Buildbot makes heavy use of Twisted Python’s support for services - software modules that can be started and
stopped dynamically. Buildbot adds the ability to reconfigure such services, too - see Reconfiguration. Twisted
arranges services into trees; the following section describes the service tree on a running master.

BuildMaster Object

The hierarchy begins with the master, a buildbot.master.BuildMaster instance. Most other services
contain a reference to this object in their master attribute, and in general the appropriate way to access other
objects or services is to begin with self.master and navigate from there.

The master has a number of useful attributes:

master.metrics A buildbot.process.metrics.MetricLogObserver instance that handles
tracking and reporting on master metrics.

master.caches A buildbot.process.caches.CacheManager instance that provides access to ob-
ject caches.

master.pbmanager A buildbot.pbmanager.PBManager instance that handles incoming PB connec-
tions, potentially on multiple ports, and dispatching those connections to appropriate components based on
the supplied username.

master.workers A buildbot.worker.manager.WorkerManager instance that provides wrapper
around multiple master-worker protocols(e.g. PB) to unify calls for them from higher level code

master.change_svc A buildbot.changes.manager.ChangeManager instance that manages the
active change sources, as well as the stream of changes received from those sources. All active change
sources are child services of this instance.

master.botmaster A buildbot.process.botmaster.BotMaster instance that manages all of the
workers and builders as child services.

249

Buildbot Documentation, Release 0.9.1

The botmaster acts as the parent service for a buildbot.process.botmaster.BuildRequestDistributor
instance (at master.botmaster.brd) as well as all active work-
ers (buildbot.worker.AbstractWorker instances) and builders
(buildbot.process.builder.Builder instances).

master.scheduler_manager A buildbot.schedulers.manager.SchedulerManager in-
stance that manages the active schedulers. All active schedulers are child services of this instance.

master.user_manager A buildbot.process.users.manager.UserManagerManager in-
stance that manages access to users. All active user managers are child services of this instance.

master.db A buildbot.db.connector.DBConnector instance that manages access to the buildbot
database. See Database for more information.

master.debug A buildbot.process.debug.DebugServices instance that manages debugging-
related access – the manhole, in particular.

master.status A buildbot.status.master.Status instance that provides access to all status data.
This instance is also the service parent for all status listeners.

master.masterid This is the ID for this master, from the masters table. It is used in the database and
messages to uniquely identify this master.

3.1.2 Definitions

Buildbot uses some terms and concepts that have specific meanings.

Repository

See Repository.

Project

See Project.

Version Control Comparison

Buildbot supports a number of version control systems, and they don’t all agree on their terms. This table should
help to disambiguate them.

Name Change Revision Branches
CVS patch [1] timestamp unnamed
Subversion revision integer directories
Git commit sha1 hash named refs
Mercurial changeset sha1 hash different repos or (permanently) named commits
Darcs ? none [2] different repos
Bazaar ? ? ?
Perforce ? ? ?
BitKeeper changeset ? different repos

• [1] note that CVS only tracks patches to individual files. Buildbot tries to recognize coordinated changes to
multiple files by correlating change times.

• [2] Darcs does not have a concise way of representing a particular revision of the source.

250 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.1

3.1.3 Buildbot Coding Style

Documentation

Buildbot strongly encourages developers to document the methods, behavior, and usage of classes that users might
interact with. However, this documentation should be in .rst files under master/docs/developer, rather
than in docstrings within the code. For private methods or where code deserves some kind of explanatory preface,
use comments instead of a docstring. While some docstrings remain within the code, these should be migrated to
documentation files and removed as the code is modified.

Within the reStructuredText files, write with each English sentence on its own line. While this does not affect
the generated output, it makes git diffs between versions of the documentation easier to read, as they are not
obscured by changes due to re-wrapping. This convention is not followed everywhere, but we are slowly migrating
documentation from the old (wrapped) style as we update it.

Symbol Names

Buildbot follows PEP8 (https://www.python.org/dev/peps/pep-0008/) regarding the formatting of symbol names.
Because Buildbot uses Twisted so heavily, and Twisted uses interCaps, this is not very consistently applied
throughout the codebase.

The single exception to PEP8 is in naming of functions and methods. That is, you should spell methods
and functions with the first character in lower-case, and the first letter of subsequent words capitalized, e.g.,
compareToOther or getChangesGreaterThan.

Symbols used as parameters to functions used in configuration files should use underscores.

In summary, then:

Symbol Type Format
Methods interCaps
Functions interCaps
Function Arguments under_scores
API method Arguments interCaps
Classes InitialCaps
Variables under_scores
Constants ALL_CAPS

Twisted Idioms

Programming with Twisted Python can be daunting. But sticking to a few well-defined patterns can help avoid
surprises.

Prefer to Return Deferreds

If you’re writing a method that doesn’t currently block, but could conceivably block sometime in the future, return
a Deferred and document that it does so. Just about anything might block - even getters and setters!

Helpful Twisted Classes

Twisted has some useful, but little-known classes. Brief descriptions follow, but you should consult the API
documentation or source code for the full details.

twisted.internet.task.LoopingCall Calls an asynchronous function repeatedly at set intervals.
Note that this will stop looping if the function fails. In general, you will want to wrap the function to
capture and log errors.

3.1. General Documents 251

https://www.python.org/dev/peps/pep-0008/

Buildbot Documentation, Release 0.9.1

twisted.application.internet.TimerService Similar to t.i.t.LoopingCall, but imple-
mented as a service that will automatically start and stop the function calls when the service starts and
stops. See the warning about failing functions for t.i.t.LoopingCall.

Sequences of Operations

Especially in Buildbot, we’re often faced with executing a sequence of operations, many of which may block.

In all cases where this occurs, there is a danger of pre-emption, so exercise the same caution you would if writing
a threaded application.

For simple cases, you can use nested callback functions. For more complex cases, inlineCallbacks is appropriate.
In all cases, please prefer maintainability and readability over performance.

Nested Callbacks

First, an admonition: do not create extra class methods that represent the continuations of the first:

def myMethod(self):
d = ...
d.addCallback(self._myMethod_2) # BAD!

def _myMethod_2(self, res): # BAD!
...

Invariably, this extra method gets separated from its parent as the code evolves, and the result is completely
unreadable. Instead, include all of the code for a particular function or method within the same indented block,
using nested functions:

def getRevInfo(revname):
results = {}
d = defer.succeed(None)
def rev_parse(_): # note use of '_' to quietly indicate an ignored parameter

return utils.getProcessOutput(git, ['rev-parse', revname])
d.addCallback(rev_parse)
def parse_rev_parse(res):

results['rev'] = res.strip()
return utils.getProcessOutput(git, ['log', '-1', '--format=%s%n%b',

→˓results['rev']])
d.addCallback(parse_rev_parse)
def parse_log(res):

results['comments'] = res.strip()
d.addCallback(parse_log)
def set_results(_):

return results
d.addCallback(set_results)
return d

it is usually best to make the first operation occur within a callback, as the deferred machinery will then handle
any exceptions as a failure in the outer Deferred. As a shortcut, d.addCallback works as a decorator:

d = defer.succeed(None)
@d.addCallback
def rev_parse(_): # note use of '_' to quietly indicate an ignored parameter

return utils.getProcessOutput(git, ['rev-parse', revname])

Be careful with local variables. For example, if parse_rev_parse, above, merely assigned rev =
res.strip(), then that variable would be local to parse_rev_parse and not available in set_results.
Mutable variables (dicts and lists) at the outer function level are appropriate for this purpose.

252 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.1

Note: do not try to build a loop in this style by chaining multiple Deferreds! Unbounded chaining can result in
stack overflows, at least on older versions of Twisted. Use inlineCallbacks instead.

In most of the cases if you need more than two callbacks in a method, it is more readable and maintainable to use
inlineCallbacks.

inlineCallbacks

twisted.internet.defer.inlineCallbacks is a great help to writing code that makes a lot of asyn-
chronous calls, particularly if those calls are made in loop or conditionals. Refer to the Twisted documentation for
the details, but the style within Buildbot is as follows:

from twisted.internet import defer

@defer.inlineCallbacks
def mymethod(self, x, y):

xval = yield getSomething(x)

for z in (yield getZValues()):
y += z

if xval > 10:
defer.returnValue(xval + y)
return

self.someOtherMethod()

The key points to notice here:

• Always import defer as a module, not the names within it.

• Use the decorator form of inlineCallbacks.

• In most cases, the result of a yield expression should be assigned to a variable. It can be used in a larger
expression, but remember that Python requires that you enclose the expression in its own set of parentheses.

• Python does not permit returning a value from a generator, so statements like return xval + y are
invalid. Instead, yield the result of defer.returnValue. Although this function does cause an imme-
diate function exit, for clarity follow it with a bare return, as in the example, unless it is the last statement
in a function.

The great advantage of inlineCallbacks is that it allows you to use all of the usual Pythonic control structures
in their natural form. In particular, it is easy to represent a loop, or even nested loops, in this style without losing
any readability.

Note that code using deferredGenerator is no longer acceptable in Buildbot.

Locking

Remember that asynchronous programming does not free you from the need to worry about concurrency issues.
Particularly if you are executing a sequence of operations, each time you wait for a Deferred, arbitrary other
actions can take place.

In general, you should try to perform actions atomically, but for the rare situations that require synchronization,
the following might be useful:

• twisted.internet.defer.DeferredLock

• buildbot.util.misc.deferredLocked

3.1. General Documents 253

Buildbot Documentation, Release 0.9.1

Joining Sequences

It’s often the case that you’ll want to perform multiple operations in parallel, and re-
join the results at the end. For this purpose, you’ll want to use a DeferredList
(http://twistedmatrix.com/documents/current/api/twisted.internet.defer.DeferredList.html)

def getRevInfo(revname):
results = {}
finished = dict(rev_parse=False, log=False)

rev_parse_d = utils.getProcessOutput(git, ['rev-parse', revname])
def parse_rev_parse(res):

return res.strip()
rev_parse_d.addCallback(parse_rev_parse)

log_d = utils.getProcessOutput(git, ['log', '-1', '--format=%s%n%b', results[
→˓'rev']])

def parse_log(res):
return res.strip()

log_d.addCallback(parse_log)

d = defer.DeferredList([rev_parse_d, log_d], consumeErrors=1,
→˓fireOnFirstErrback=1)

def handle_results(results):
return dict(rev=results[0][1], log=results[1][1])

d.addCallback(handle_results)
return d

Here the deferred list will wait for both rev_parse_d and log_d to fire, or for one of them to fail. You may
attach callbacks and errbacks to a DeferredList just as for a deferred.

Functions running outside of the main thread

It is very important in Twisted to be able to distinguish functions that runs in the main thread and functions that
don’t, as reactors and deferreds can only be used in the main thread. To make this distinction clearer, every
functions meant to be started in a secondary thread must be prefixed with thd_.

3.1.4 CoffeeScript Coding Style

The Buildbot development team is primarily Python experts and not front-end experts. Whlie we did spend lot of
time looking for front end best practices, we are happy to accept suggestions to this coding-style and best-practices
guide.

Here is a summary of what is the expected coding style for buildbot contributions, as well as some common
gotcha’s for developers with a Python background.

CoffeeScript looks like Python

Buildbot follows Python pep8 coding style as much as possible, except for naming convention (where twisted’s
interCaps are preferred). The same rules apply for CoffeeScript, whenever they makes sense:

254 Chapter 3. Buildbot Development

http://twistedmatrix.com/documents/current/api/twisted.internet.defer.DeferredList.html

Buildbot Documentation, Release 0.9.1

Symbol Type Format
Methods interCaps
Functions interCaps
Function Arguments interCaps
Classes InitialCaps
Controllers interCaps
Services interCaps
Filters interCaps
Constants ALL_CAPS

Coffeelint should be happy

Buildbot ships with a Gruntfile containing a coffeelint configuration which is expected to pass for buildbot Cof-
feeScript code.

CoffeeScript syntax sugar

CoffeeScript does not have inlineCallbacks, but have some syntax sugar for helping readability of nested callbacks.
However, those syntax sugars sometimes leads to surprises. Make sure you check the generated javascript in case
of weird behavior.

Follow the following suggestions:

• Use implicit parentheses for multi line function calls or object construction:

GOOD
d.then (res) ->

$scope.val = res

BAD
d.then((res) ->

$scope.val = res
)

push a dictionary into a list
GOOD
l.push

k1: v1
k2: v2

BAD
l.push(

k1: v1
k2: v2

)

BAD
l.push({

k1: v1
k2: v2

})

• Use explicit parentheses for single line function calls

GOOD
myFunc(service.getA(b))

BAD
myFunc service.getA b
(not enough visually-distinct from:)

3.1. General Documents 255

Buildbot Documentation, Release 0.9.1

myFunc service.getA, b
which means
myFunc(service.getA, b)

• always use return for multiline functions

In CoffeeScript, “everything is an expression”, and the default return value is the result of the last expression.
This is considered too error prone for Python and JS developers who are used to “return None” by default.
In buildbot code, every multiline function must end with an explicit return statement.

BAD: implicitly returns the return value of b()
myFunc = ->

if (a)
b()

GOOD
myFunc = ->

if (a)
b()

return null

GOOD
myFunc = ->

if (a)
return b()

return null

• never use return for single line functions

Single line functions is equivalent to Python lambda functions and thus must not use return.

GOOD
if p resolves with a non-null list, will return the list with all element
→˓incremented
p = p.then((res) -> _.each(res, (a) -> a + 1))

CoffeeScript does not include batteries

There is a very limited standard library in JS, and none in CoffeeScript. However, de-facto general purpose
libraries have emerged.

• JQuery considered harmful to access the DOM directly.

Buildbot ships with JQuery, because it is supposed to be more optimized than AngularJS’s own
jqlite, and because some 3rd party directives are requiring it. However, it must not be used in
Buildbot services or controllers, and should be avoided in directives. The Buildbot UI should
follow AngularJS best practices and only modify DOM via templates.

• Lodash is a clone of Underscore.js, and provides good utilities for standard types manipulation (array and
objects). Underscore-string is also available for string manipulation function (e.g. startsWith, endsWith)

Avoid using lodash decoration form. Those are considered tricky to use.

GOOD
_.each(res, (a) -> a + 1))

BAD
_(res).each((a) -> a + 1))

• Require.js is used as technical solution for plugin loading. It should not be used appart from this.

• Moment.js is used for manipulating dates and displaying them to the user in a human readable form (e.g
“one month ago”). It can be used anywhere it is useful.

256 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.1

$q “A+ promises” VS twisted’s deferred

The AngularJS $q module implements A+ promises. At first sight, this looks like Twisted Deferreds.

Warning: d.addCallbacks(successCb, errorCb) is not equivalent to p.then(successCb, errorCb)!

• Once a Twisted deferred has been “called”, its result is changed with the return value of each callback in the
callback queue.

• Once a $q promise has been “resolved”, its result is immutable. p.then() itself returns another promise
which can be used to alter result of another promise.

d = someFunction()
@d.addCallback
def addOneToResult(res):

return res + 1
return d # we return the same deferred as the one returned by someFunction()

Translate in coffeeScript to:

p = someFunction()
p = p.then (res) -> ## note assignment

return res + 1
return p # we return the another promise as the one returned by someFunction()

• With $q, only the promise creator can resolve it.

someFunction = ->
d = $q.defer()
$timeout ->

d.resolve("foo")
, 100

return d.promise
p = someFunction()
p.resolve() # cannot work, we can only call the "then" method of a promise

3.1.5 Buildbot’s Test Suite

Buildbot’s master tests are under buildbot.test, buildbot-worker package tests are under
buildbot_worker.test. Tests for the workers are similar to the master, although in some cases helpful
functionality on the master is not re-implemented on the worker.

Suites

Tests are divided into a few suites:

• Unit tests (buildbot.test.unit) - these follow unit-testing practices and attempt to maximally isolate
the system under test. Unit tests are the main mechanism of achieving test coverage, and all new code should
be well-covered by corresponding unit tests.

– Interface tests are a special type of unit tests, and are found in the same directory and often the same
file. In many cases, Buildbot has multiple implementations of the same interface – at least one “real”
implementation and a fake implementation used in unit testing. The interface tests ensure that these
implementations all meet the same standards. This ensures consistency between implementations, and
also ensures that the unit tests are testing against realistic fakes.

• Integration tests (buildbot.test.integration) - these test combinations of multiple units. Of ne-
cessity, integration tests are incomplete - they cannot test every condition; difficult to maintain - they tend
to be complex and touch a lot of code; and slow - they usually require considerable setup and execute a lot

3.1. General Documents 257

Buildbot Documentation, Release 0.9.1

of code. As such, use of integration tests is limited to a few, broad tests to act as a failsafe for the unit and
interface tests.

• Regression tests (buildbot.test.regressions) - these test to prevent re-occurrence of historical
bugs. In most cases, a regression is better tested by a test in the other suites, or unlike to recur, so this suite
tends to be small.

• Fuzz tests (buildbot.test.fuzz) - these tests run for a long time and apply randomization to try to
reproduce rare or unusual failures. The Buildbot project does not currently have a framework to run fuzz
tests regularly.

Unit Tests

Every code module should have corresponding unit tests. This is not currently true of Buildbot, due to a large
body of legacy code, but is a goal of the project. All new code must meet this requirement.

Unit test modules are be named after the package or class they test, replacing . with _ and omit-
ting the buildbot_. For example, test_status_web_authz_Authz.py tests the Authz class in
buildbot/status/web/authz.py. Modules with only one class, or a few trivial classes, can be tested
in a single test module. For more complex situations, prefer to use multiple test modules.

Unit tests using renderables require special handling. The following example shows how the same test would be
written with the ‘param’ parameter and with the same parameter as a renderable.:

def test_param(self):
f = self.ConcreteClass(param='val')
self.assertEqual(f.param, 'val')

When the parameter is renderable, you need to instantiate the Class before you can you renderables:

def setUp(self):
self.build = Properties(paramVal='val')

@defer.inlineCallbacks
def test_param_renderable(self):

f = self.ConcreteClass(param=Interpolate('%(kw:rendered_val)s',
rendered_val=Property('paramVal'))

yield f.start_instance(self.build)
self.assertEqual(f.param, 'val')

Interface Tests

Interface tests exist to verify that multiple implementations of an interface meet the same requirements. Note that
the name ‘interface’ should not be confused with the sparse use of Zope Interfaces in the Buildbot code – in this
context, an interface is any boundary between testable units.

Ideally, all interfaces, both public and private, should be tested. Certainly, any public interfaces need interface
tests.

Interface tests are most often found in files named for the “real” implementation, e.g., test_db_changes.py.
When there is ambiguity, test modules should be named after the interface they are testing. Interface tests have
the following form:

from buildbot.test.util import interfaces
from twistd.trial import unittest

class Tests(interfaces.InterfaceTests):

define methods that must be overridden per implementation
def someSetupMethod(self):

raise NotImplementedError

258 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.1

method signature tests
def test_signature_someMethod(self):

@self.assertArgSpecMatches(self.systemUnderTest.someMethod)
def someMethod(self, arg1, arg2):

pass

tests that all implementations must pass
def test_something(self):

pass # ...

class RealTests(Tests):

tests that only *real* implementations must pass
def test_something_else(self):

pass # ...

All of the test methods are defined here, segregated into tests that all implementations must pass, and tests that the
fake implementation is not expected to pass. The test_signature_someMethod test above illustrates the
buildbot.test.util.interfaces.assertArgSpecMatches decorator, which can be used to com-
pare the argument specification of a callable with a reference signature conveniently written as a nested function.
Wherever possible, prefer to add tests to the Tests class, even if this means testing one method (e.g,. setFoo)
in terms of another (e.g., getFoo).

The assertArgSpecMatches method can take multiple methods to test; it will check each one in turn.

At the bottom of the test module, a subclass is created for each implementation, implementing the setup methods
that were stubbed out in the parent classes:

class TestFakeThing(unittest.TestCase, Tests):

def someSetupMethod(self):
pass # ...

class TestRealThing(unittest.TestCase, RealTests):

def someSetupMethod(self):
pass # ...

For implementations which require optional software, such as an AMQP server, this is the appropriate place to
signal that tests should be skipped when their prerequisites are not available.

Integration Tests

Integration test modules test several units at once, including their interactions. In general, they serve as a catch-all
for failures and bugs that were not detected by the unit and interface tests. As such, they should not aim to be
exhaustive, but merely representative.

Integration tests are very difficult to maintain if they reach into the internals of any part of Buildbot. Where
possible, try to use the same means as a user would to set up, run, and check the results of an integration test. That
may mean writing a master.cfg to be parsed, and checking the results by examining the database (or fake DB
API) afterward.

Regression Tests

Regression tests are even more rare in Buildbot than integration tests. In many cases, a regression test is not
necessary – either the test is better-suited as a unit or interface test, or the failure is so specific that a test will never
fail again.

3.1. General Documents 259

Buildbot Documentation, Release 0.9.1

Regression tests tend to be closely tied to the code in which the error occurred. When that code is refactored, the
regression test generally becomes obsolete, and is deleted.

Fuzz Tests

Fuzz tests generally run for a fixed amount of time, running randomized tests against a system. They do not run
at all during normal runs of the Buildbot tests, unless BUILDBOT_FUZZ is defined. This is accomplished with
something like the following at the end of each test module:

if 'BUILDBOT_FUZZ' not in os.environ:
del LRUCacheFuzzer

Mixins

Buildbot provides a number of purpose-specific mixin classes in https://github.com/buildbot/buildbot/blob/master/
master/buildbot/util. These generally define a set of utility functions as well as setUpXxx and tearDownXxx
methods. These methods should be called explicitly from your subclass’s setUp and tearDown methods. Note
that some of these methods return Deferreds, which should be handled properly by the caller.

Fakes

Buildbot provides a number of pre-defined fake implementations of internal interfaces, in https://github.com/
buildbot/buildbot/blob/master/master/buildbot/test/fake. These are designed to be used in unit tests to limit the
scope of the test. For example, the fake DB API eliminates the need to create a real database when testing code
that uses the DB API, and isolates bugs in the system under test from bugs in the real DB implementation.

The danger of using fakes is that the fake interface and the real interface can differ. The interface tests exist to
solve this problem. All fakes should be fully tested in an integration test, so that the fakes pass the same tests as
the “real” thing. It is particularly important that the method signatures be compared.

Type Validation

The https://github.com/buildbot/buildbot/blob/master/master/buildbot/test/util/validation.py provides a set of
classes and definitions for validating Buildbot data types. It supports four types of data:

• DB API dictionaries, as returned from the getXxx methods,

• Data API dictionaries, as returned from get,

• Data API messages, and

• Simple data types.

These are validated from elsewhere in the codebase with calls to

• verifyDbDict(testcase,type,value),

• verifyData(testcase,type,options,value),

• verifyMessage(testcase,routingKey,message), and

• verifyType(testcase,name,value,validator).

respectively. The testcase argument is used to fail the test case if the validation does not succeed. For DB
dictionaries and data dictionaries, the type identifies the expected data type. For messages, the type is determined
from the first element of the routing key.

All messages sent with the fake MQ implementation are automatically validated using verifyMessage. The
verifyType method is used to validate simple types, e.g.,

260 Chapter 3. Buildbot Development

https://github.com/buildbot/buildbot/blob/master/master/buildbot/util
https://github.com/buildbot/buildbot/blob/master/master/buildbot/util
https://github.com/buildbot/buildbot/blob/master/master/buildbot/test/fake
https://github.com/buildbot/buildbot/blob/master/master/buildbot/test/fake
https://github.com/buildbot/buildbot/blob/master/master/buildbot/test/util/validation.py

Buildbot Documentation, Release 0.9.1

validation.verifyType(self, 'param1', param1, validation.StringValidator())

In any case, if testcase is None, then the functions will raise an AssertionError on failure.

Validator Classes

A validator is an instance of the Validator class. Its validate method is a generator function that takes a
name and an object to validate. It yields error messages describing any deviations of object from the designated
data type. The name argument is used to make such messages more helpful.

A number of validators are supplied for basic types. A few classes deserve special mention:

• NoneOk wraps another validator, allowing the object to be None.

• Any will match any object without error.

• IdentifierValidator will match identifiers; see identifier.

• DictValidator takes key names as keyword arguments, with the values giving validators for each key.
The optionalNames argument is a list of keys which may be omitted without error.

• SourcedPropertiesValidator matches dictionaries with (value, source) keys, the representation
used for properties in the data API.

• MessageValidator validates messages. It checks that the routing key is a tuple of strings. The first tuple
element gives the message type. The last tuple element is the event, and must be a member of the events
set. The remaining “middle” tuple elements must match the message values identified by keyFields.
The messageValidator should be a DictValidator configured to check the message body. This
validator’s validate method is called with a tuple (routingKey,message).

• Selector allows different validators to be selected based on matching functions. Its add method takes
a matching function, which should return a boolean, and a validator to use if the matching function returns
true. If the matching function is None, it is used as a default. This class is used for message and data
validation.

Defining Validators

DB validators are defined in the dbdict dictionary, e.g.,

dbdict['foodict'] = DictValidator(
id=IntValidator(),
name=StringValidator(),
...

)

Data validators are Selector validators, where the selector is the options passed to verifyData.

data['foo'] = Selector()
data['foo'].add(lambda opts : opt.get('fanciness') > 10,

DictValidator(
fooid=IntValidator(),
name=StringValidator(),
...

))

Similarly, message validators are Selector validators, where the selector is the routing key. The underlying
validator should be a MessageValidator.

message['foo'] = Selector()
message['foo'].add(lambda rk : rk[-1] == 'new',

MessageValidator(

3.1. General Documents 261

Buildbot Documentation, Release 0.9.1

keyFields=['fooid'],
events=['new', 'complete'],
messageValidator=DictValidator(

fooid=IntValidator(),
name=StringValidator(),
...

)))

Good Tests

Bad tests are worse than no tests at all, since they waste developers’ time wondering “was that a spurious failure?”
or “what the heck is this test trying to do?” Buildbot needs good tests. So what makes a good test?

Independent of Time

Tests that depend on wall time will fail. As a bonus, they run very slowly. Do not use reactor.callLater to
wait “long enough” for something to happen.

For testing things that themselves depend on time, consider using twisted.internet.tasks.Clock. This
may mean passing a clock instance to the code under test, and propagating that instance as necessary to ensure
that all of the code using callLater uses it. Refactoring code for testability is difficult, but worthwhile.

For testing things that do not depend on time, but for which you cannot detect the “end” of an operation: add a
way to detect the end of the operation!

Clean Code

Make your tests readable. This is no place to skimp on comments! Others will attempt to learn about the expected
behavior of your class by reading the tests. As a side note, if you use a Deferred chain in your test, write the
callbacks as nested functions, rather than using methods with funny names:

def testSomething(self):
d = doThisFirst()
def andThisNext(res):

pass # ...
d.addCallback(andThisNext)
return d

This isolates the entire test into one indented block. It is OK to add methods for common functionality, but give
them real names and explain in detail what they do.

Good Name

Test method names should follow the pattern test_METHOD_CONDITION where METHOD is the method
being tested, and CONDITION is the condition under which it’s tested. Since we can’t always test a single
method, this is not a hard-and-fast rule.

Assert Only One Thing

Where practical, each test should have a single assertion. This may require a little bit of work to get several related
pieces of information into a single Python object for comparison. The problem with multiple assertions is that, if
the first assertion fails, the remainder are not tested. The test results then do not tell the entire story.

262 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.1

Prefer Fakes to Mocks

Mock objects are too “compliant”, and this often masks errors in the system under test. For example, a mis-spelled
method name on a mock object will not raise an exception.

Where possible, use one of the pre-written fake objects (see Fakes) instead of a mock object. Fakes themselves
should be well-tested using interface tests.

Where they are appropriate, Mock objects can be constructed easily using the aptly-named mock
(http://www.voidspace.org.uk/python/mock/) module, which is a requirement for Buildbot’s tests.

Small Tests

The shorter each test is, the better. Test as little code as possible in each test.

It is fine, and in fact encouraged, to write the code under test in such a way as to facilitate this. As an illustrative
example, if you are testing a new Step subclass, but your tests require instantiating a BuildMaster, you’re probably
doing something wrong!

This also applies to test modules. Several short, easily-digested test modules are preferred over a 1000-line
monster.

Isolation

Each test should be maximally independent of other tests. Do not leave files laying around after your test has
finished, and do not assume that some other test has run beforehand. It’s fine to use caching techniques to avoid
repeated, lengthy setup times.

Be Correct

Tests should be as robust as possible, which at a basic level means using the available frameworks correctly. All
Deferreds should have callbacks and be chained properly. Error conditions should be checked properly. Race
conditions should not exist (see Independent of Time, above).

Be Helpful

Note that tests will pass most of the time, but the moment when they are most useful is when they fail.

When the test fails, it should produce output that is helpful to the person chasing it down. This is particularly im-
portant when the tests are run remotely, in which case the person chasing down the bug does not have access to the
system on which the test fails. A test which fails sporadically with no more information than “AssertionFailed” is
a prime candidate for deletion if the error isn’t obvious. Making the error obvious also includes adding comments
describing the ways a test might fail.

Keeping State

Python does not allow assignment to anything but the innermost local scope or the global scope with the global
keyword. This presents a problem when creating nested functions:

def test_localVariable(self):
cb_called = False
def cb():

cb_called = True
cb()
self.assertTrue(cb_called) # will fail!

3.1. General Documents 263

http://www.voidspace.org.uk/python/mock/

Buildbot Documentation, Release 0.9.1

The cb_called = True assigns to a different variable than cb_called = False. In production code,
it’s usually best to work around such problems, but in tests this is often the clearest way to express the behavior
under test.

The solution is to change something in a common mutable object. While a simple list can serve as such a mutable
object, this leads to code that is hard to read. Instead, use State:

from buildbot.test.state import State

def test_localVariable(self):
state = State(cb_called=False)
def cb():

state.cb_called = True
cb()
self.assertTrue(state.cb_called) # passes

This is almost as readable as the first example, but it actually works.

3.1.6 Configuration

Wherever possible, Buildbot components should access configuration information as needed from the canonical
source, master.config, which is an instance of MasterConfig. For example, components should not keep
a copy of the buildbotURL locally, as this value may change throughout the lifetime of the master.

Components which need to be notified of changes in the configuration should be implemented as services, sub-
classing ReconfigurableServiceMixin, as described in Reconfiguration.

class buildbot.config.MasterConfig
The master object makes much of the configuration available from an object named master.config.
Configuration is stored as attributes of this object. Where possible, other Buildbot components should
access this configuration directly and not cache the configuration values anywhere else. This avoids the
need to ensure that update-from-configuration methods are called on a reconfig.

Aside from validating the configuration, this class handles any backward-compatibility issues - renamed
parameters, type changes, and so on - removing those concerns from other parts of Buildbot.

This class may be instantiated directly, creating an entirely default configuration, or via
FileLoader.loadConfig, which will load the configuration from a config file.

The following attributes are available from this class, representing the current configuration. This includes
a number of global parameters:

title
The title of this buildmaster, from title.

titleURL
The URL corresponding to the title, from titleURL.

buildbotURL
The URL of this buildmaster, for use in constructing WebStatus URLs; from buildbotURL.

changeHorizon
The current change horizon, from changeHorizon.

logHorizon
The current log horizon, from logHorizon.

buildHorizon
The current build horizon, from buildHorizon.

logCompressionLimit
The current log compression limit, from logCompressionLimit.

logCompressionMethod
The current log compression method, from logCompressionMethod.

264 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.1

logMaxSize
The current log maximum size, from logMaxSize.

logMaxTailSize
The current log maximum size, from logMaxTailSize.

logEncoding
The encoding to expect when logs are provided as bytestrings, from logEncoding.

properties
A Properties instance containing global properties, from properties.

collapseRequests
A callable, or True or False, describing how to collapse requests; from collapseRequests.

prioritizeBuilders
A callable, or None, used to prioritize builders; from prioritizeBuilders.

codebaseGenerator
A callable, or None, used to determine the codebase from an incoming Change, from
codebaseGenerator

protocols
The per-protocol port specification for worker connections. Based on protocols.

multiMaster
If true, then this master is part of a cluster; based on multiMaster.

manhole
The manhole instance to use, or None; from manhole.

The remaining attributes contain compound configuration structures, usually dictionaries:

validation
Validation regular expressions, a dictionary from validation. It is safe to assume that all expected
keys are present.

db
Database specification, a dictionary with key db_url. It is safe to assume that this key is present.

metrics
The metrics configuration from metrics, or an empty dictionary by default.

caches
The cache configuration, from caches as well as the deprecated buildCacheSize and
changeCacheSize parameters.

The keys Builds and Caches are always available; other keys should use
config.caches.get(cachename,1).

schedulers
The dictionary of scheduler instances, by name, from schedulers.

builders
The list of BuilderConfig instances from builders. Builders specified as dictionaries in the
configuration file are converted to instances.

workers
The list of Worker instances from workers.

change_sources
The list of IChangeSource providers from change_source.

user_managers
The list of user managers providers from user_managers.

www
The web server configuration from www . The keys port and url are always available.

3.1. General Documents 265

Buildbot Documentation, Release 0.9.1

services
The list of additional plugin services

classmethod loadFromDict(config_dict, filename)

Parameters

• config_dict (dict) – The dictionary containing the configuration to load.

• filename (string) – The filename to use when reporting errors.

Returns new MasterConfig instance

Load the configuration from the given dictionary.

Loading of the configuration file is generally triggered by the master, using the following class:

class buildbot.config.FileLoader

__init__(basedir, filename)

Parameters

• basedir (string) – directory to which config is relative

• filename (string) – the configuration file to load

The filename is treated as relative to the basedir, if it is not absolute.

loadConfig(basedir, filename)

Returns new MasterConfig instance

Load the configuration in the given file. Aside from syntax errors, this will also detect a number of
semantic errors such as multiple schedulers with the same name.

buildbot.config.loadConfigDict(basedir, filename)

Parameters

• basedir (string) – directory to which config is relative

• filename (string) – the configuration file to load

Raises ConfigErrors if any errors occur

Returns dict The BuildmasterConfig dictionary.

Load the configuration dictionary in the given file.

The filename is treated as relative to the basedir, if it is not absolute.

Builder Configuration

class buildbot.config.BuilderConfig([keyword args])
This class parameterizes configuration of builders; see Builder Configuration for its arguments. The con-
structor checks for errors and applies defaults, and sets the properties described here. Most are simply
copied from the constructor argument of the same name.

Users may subclass this class to add defaults, for example.

name
The builder’s name.

factory
The builder’s factory.

workernames
The builder’s worker names (a list, regardless of whether the names were specified with workername
or workernames).

266 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.1

builddir
The builder’s builddir.

workerbuilddir
The builder’s worker-side builddir.

category
The builder’s category.

nextWorker
The builder’s nextWorker callable.

nextBuild
The builder’s nextBuild callable.

canStartBuild
The builder’s canStartBuild callable.

locks
The builder’s locks.

env
The builder’s environmnet variables.

properties
The builder’s properties, as a dictionary.

collapseRequests
The builder’s collapseRequests callable.

description
The builder’s description, displayed in the web status.

Error Handling

If any errors are encountered while loading the configuration buildbot.config.error should be called.
This can occur both in the configuration-loading code, and in the constructors of any objects that are instantiated
in the configuration - change sources, workers, schedulers, build steps, and so on.

buildbot.config.error(error)

Parameters error – error to report

Raises ConfigErrors if called at build-time

This function reports a configuration error. If a config file is being loaded, then the function merely records
the error, and allows the rest of the configuration to be loaded. At any other time, it raises ConfigErrors.
This is done so all config errors can be reported, rather than just the first.

exception buildbot.config.ConfigErrors([errors])
Parameters errors (list) – errors to report

This exception represents errors in the configuration. It supports reporting multiple errors to the user simul-
taneously, e.g., when several consistency checks fail.

errors
A list of detected errors, each given as a string.

addError(msg)

Parameters msg (string) – the message to add

Add another error message to the (presumably not-yet-raised) exception.

3.1. General Documents 267

Buildbot Documentation, Release 0.9.1

3.1.7 Configuration in AngularJS

The AngularJS frontend often needs access to the local master configuration. This is accomplished automatically
by converting various pieces of the master configuration to a dictionary.

The IConfigured interface represents a way to convert any object into a JSON-able dictionary.

class buildbot.interfaces.IConfigured

Providers of this interface provide a method to get their configuration as a dictionary:

getConfigDict()

returns object

Return the configuration of this object. Note that despite the name, the return value may not
be a dictionary.

Any object can be “cast” to an IConfigured provider. The getConfigDict method for basic
Python objects simply returns the value.

IConfigured(someObject).getConfigDict()

class buildbot.util.ConfiguredMixin
This class is a basic implementation of IConfigured. Its getConfigDict method simply returns the
instance’s name attribute.

name
Each object configured must have a name attribute.

getConfigDict(self)

Returns object

Return a config dictionary representing this object.

All of this is used by to serve /config.js to the JavaScript frontend.

Reconfiguration

When the buildmaster receives a signal to begin a reconfig, it re-reads the configuration file, generating a new
MasterConfig instance, and then notifies all of its child services via the reconfig mechanism described below.
The master ensures that at most one reconfiguration is taking place at any time.

See Master Organization for the structure of the Buildbot service tree.

To simplify initialization, a reconfiguration is performed immediately on master startup. As a result, services only
need to implement their configuration handling once, and can use startService for initialization.

See below for instructions on implementing configuration of common types of components in Buildbot.

Note: Because Buildbot uses a pure-Python configuration file, it is not possible to support all forms of reconfig-
uration. In particular, when the configuration includes custom subclasses or modules, reconfiguration can turn up
some surprising behaviors due to the dynamic nature of Python. The reconfig support in Buildbot is intended for
“intermediate” uses of the software, where there are fewer surprises.

Reconfigurable Services

Instances which need to be notified of a change in configuration should be implemented as
Twisted services, and mix in the ReconfigurableServiceMixin class, overriding the
reconfigServiceWithBuildbotConfig method.

268 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.1

class buildbot.config.ReconfigurableServiceMixin

reconfigServiceWithBuildbotConfig(new_config)

Parameters new_config (MasterConfig) – new master configuration

Returns Deferred

This method notifies the service that it should make any changes necessary to adapt to the new config-
uration values given.

This method will be called automatically after a service is started.

It is generally too late at this point to roll back the reconfiguration, so if possible any errors should be
detected in the MasterConfig implementation. Errors are handled as best as possible and commu-
nicated back to the top level invocation, but such errors may leave the master in an inconsistent state.
ConfigErrors exceptions will be displayed appropriately to the user on startup.

Subclasses should always call the parent class’s implementation. For MultiService instances,
this will call any child services’ reconfigService methods, as appropriate. This will be done
sequentially, such that the Deferred from one service must fire before the next service is reconfigured.

priority
Child services are reconfigured in order of decreasing priority. The default priority is 128, so a service
that must be reconfigured before others should be given a higher priority.

Change Sources

When reconfiguring, there is no method by which Buildbot can determine that a new ChangeSource represents
the same source as an existing ChangeSource, but with different configuration parameters. As a result, the
change source manager compares the lists of existing and new change sources using equality, stops any existing
sources that are not in the new list, and starts any new change sources that do not already exist.

ChangeSource inherits ComparableMixin, so change sources are compared based on the attributes de-
scribed in their compare_attrs.

If a change source does not make reference to any global configuration parameters, then there is no need to inherit
ReconfigurableServiceMixin, as a simple comparison and startService and stopService will
be sufficient.

If the change source does make reference to global values, e.g., as default values for its parameters, then it must
inherit ReconfigurableServiceMixin to support the case where the global values change.

Schedulers

Schedulers have names, so Buildbot can determine whether a scheduler has been added, removed, or changed
during a reconfig. Old schedulers will be stopped, new schedulers will be started, and both new and existing
schedulers will see a call to reconfigService, if such a method exists. For backward compatibility, sched-
ulers which do not support reconfiguration will be stopped, and the new scheduler started, when their configuration
changes.

If, during a reconfiguration, a new and old scheduler’s fully qualified class names differ, then the old class will
be stopped and the new class started. This supports the case when a user changes, for example, a Nightly
scheduler to a Periodic scheduler without changing the name.

Because Buildbot uses BaseScheduler instances directly in the configuration file, a reconfigured scheduler
must extract its new configuration information from another instance of itself.

3.1. General Documents 269

Buildbot Documentation, Release 0.9.1

Custom Subclasses

Custom subclasses are most often defined directly in the configuration file, or in a Python module that is reloaded
with reload every time the configuration is loaded. Because of the dynamic nature of Python, this creates a
new object representing the subclass every time the configuration is loaded – even if the class definition has not
changed.

Note that if a scheduler’s class changes in a reconfig, but the scheduler’s name does not, it will still be treated as a
reconfiguration of the existing scheduler. This means that implementation changes in custom scheduler subclasses
will not be activated with a reconfig. This behavior avoids stopping and starting such schedulers on every reconfig,
but can make development difficult.

One workaround for this is to change the name of the scheduler before each reconfig - this will cause the old
scheduler to be stopped, and the new scheduler (with the new name and class) to be started.

Workers

Similar to schedulers, workers are specified by name, so new and old configurations are first compared by name,
and any workers to be added or removed are noted. Workers for which the fully-qualified class name has changed
are also added and removed. All workers have their reconfigService method called.

This method takes care of the basic worker attributes, including changing the PB registration if necessary. Any
subclasses that add configuration parameters should override reconfigService and update those parameters.
As with Schedulers, because the AbstractWorker instance is given directly in the configuration, on reconfig
instances must extract the configuration from a new instance.

User Managers

Since user managers are rarely used, and their purpose is unclear, they are always stopped and re-started on every
reconfig. This may change in figure versions.

Status Receivers

At every reconfig, all status listeners are stopped and new versions started.

3.1.8 Writing Schedulers

Buildbot schedulers are the process objects responsible for requesting builds.

Schedulers are free to decide when to request builds, and to define the parameters of the builds. Many sched-
ulers (e.g., SingleBranchScheduler) request builds in response to changes from change sources. Others,
such as Nightly , request builds at specific times. Still others, like ForceScheduler, Try_Jobdir, or
Triggerable, respond to external inputs.

Each scheduler has a unique name, and within a Buildbot cluster, can be active on at most one master. If a
scheduler is configured on multiple masters, it will be inactive on all but one master. This provides a form of
non-revertive failover for schedulers: if an active scheduler’s master fails, an inactive instance of that scheduler on
another master will become active.

API Stability

Until Buildbot reaches version 1.0.0, API stability is not guaranteed. The instructions in this document may
change incompatibly until that time.

270 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.1

Implementing A Scheduler

A scheduler is a subclass of BaseScheduler.

The constructor’s arguments form the scheduler’s configuration. The first two arguments are name and
builderNames, and are positional. The remaining arguments are keyword arguments, and the subclass’s con-
structor should accept **kwargs to pass on to the parent class along with the positional arguments.

class MyScheduler(base.BaseScheduler):
def __init__(self, name, builderNames, arg1=None, arg2=None, **kwargs):

base.BaseScheduler.__init__(self, name, builderNames, **kwargs)
self.arg1 = arg1
self.arg2 = arg2

Schedulers are Twisted services, so they can implement startService and stopService. However, it is
more common for scheduler subclasses to override startActivity and stopActivity instead. See below.

Consuming Changes

A scheduler that needs to be notified of new changes should call startConsumingChanges when it becomes
active. Change consumption will automatically stop when the scheduler becomes inactive.

Once consumption has started, the gotChange method is invoked for each new change. The scheduler is free to
do whatever it likes in this method.

Adding Buildsets

To add a new buildset, subclasses should call one of the parent-class methods with the prefix addBuildsetFor.
These methods call addBuildset after applying behaviors common to all schedulers

Any of these methods can be called at any time.

Handling Reconfiguration

When the configuration for a scheduler changes, Buildbot deactivates, stops and removes the old scheduler, then
adds, starts, and maybe activates the new scheduler. Buildbot determines whether a scheduler has changed by
subclassing ComparableMixin. See the documentation for class for an explanation of the compare_attrs
attribute.

Note: In a future version, schedulers will be converted to handle reconfiguration as reconfigurable services, and
will no longer require compare_attrs to be set.

Becoming Active and Inactive

An inactive scheduler should not do anything that might interfere with an active scheduler of the same name.

Simple schedulers can consult the active attribute to determine whether the scheduler is active.

Most schedulers, however, will implement the activate method to begin any processing expected of an active
scheduler. That may involve calling startConsumingChanges, beginning a LoopingCall, or subscribing
to messages.

Any processing begun by the activate method, or by an active scheduler, should be stopped by the
deactivate method. The deactivate method’s Deferred should not fire until such processing has com-
pletely stopped. Schedulers must up-call the parent class’s activate and deactivate methods!

3.1. General Documents 271

Buildbot Documentation, Release 0.9.1

Keeping State

The BaseScheduler class provides getState and setState methods to get and set state values for the
scheduler. Active scheduler instances should use these functions to store persistent scheduler state, such that if
they fail or become inactive, other instances can pick up where they leave off. A scheduler can cache its state
locally, only calling getState when it first becomes active. However, it is best to keep the state as up-to-date as
possible, by calling setState any time the state changes. This prevents loss of state from an unexpected master
failure.

Note that the state-related methods do not use locks of any sort. It is up to the caller to ensure that no race
conditions exist between getting and setting state. Generally, it is sufficient to rely on there being only one
running instance of a scheduler, and cache state in memory.

3.1.9 Utilities

Several small utilities are available at the top-level buildbot.util package.

buildbot.util.naturalSort(list)

Parameters list – list of strings

Returns sorted strings

This function sorts strings “naturally”, with embedded numbers sorted numerically. This ordering is good
for objects which might have a numeric suffix, e.g., winworker1, winworker2

buildbot.util.formatInterval(interval)

Parameters interval – duration in seconds

Returns human-readable (English) equivalent

This function will return a human-readable string describing a length of time, given a number of seconds.

class buildbot.util.ComparableMixin
This mixin class adds comparability to a subclass. Use it like this:

class Widget(FactoryProduct, ComparableMixin):
compare_attrs = ('radius', 'thickness')
...

Any attributes not in compare_attrs will not be considered when comparing objects. This is used to
implement Buildbot’s reconfig logic, where a comparison between the new and existing objects is used to
determine whether the new object should replace the existing object. If the comparison shows the objects
to be equivalent, then the old object is left in place. If they differ, the old object is removed from the
buildmaster and the new object added.

For use in configuration objects (schedulers, changesources, etc.), include any attributes which are set in the
constructor based on the user’s configuration. Be sure to also include the superclass’s list, e.g.:

class MyScheduler(base.BaseScheduler):
compare_attrs = base.BaseScheduler.compare_attrs + ('arg1', 'arg2')

A point to note is that the compare_attrs list is cumulative; that is, when a subclass also has a compare_attrs
and the parent class has a compare_attrs, the subclass’ compare_attrs also includes the parent class’ com-
pare_attrs.

This class also implements the buildbot.interfaces.IConfigured interface. The configuration
is automatically generated, beeing the dict of all compare_attrs.

buildbot.util.safeTranslate(str)

Parameters str – input string

Returns safe version of the input

272 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.1

This function will filter out some inappropriate characters for filenames; it is suitable for adapting strings
from the configuration for use as filenames. It is not suitable for use with strings from untrusted sources.

buildbot.util.epoch2datetime(epoch)

Parameters epoch – an epoch time (integer)

Returns equivalent datetime object

Convert a UNIX epoch timestamp to a Python datetime object, in the UTC timezone. Note that timestamps
specify UTC time (modulo leap seconds and a few other minor details).

buildbot.util.datetime2epoch(datetime)

Parameters datetime – a datetime object

Returns equivalent epoch time (integer)

Convert an arbitrary Python datetime object into a UNIX epoch timestamp.

buildbot.util.UTC
A datetime.tzinfo subclass representing UTC time. A similar class has finally been added to Python
in version 3.2, but the implementation is simple enough to include here. This is mostly used in tests to create
timezone-aware datetime objects in UTC:

dt = datetime.datetime(1978, 6, 15, 12, 31, 15, tzinfo=UTC)

buildbot.util.diffSets(old, new)

Parameters

• old (set or iterable) – old set

• new (set or iterable) – new set

Returns a tuple, (removed, added)

This function compares two sets of objects, returning elements that were added and elements that were
removed. This is largely a convenience function for reconfiguring services.

buildbot.util.makeList(input)

Parameters input – a thing

Returns a list of zero or more things

This function is intended to support the many places in Buildbot where the user can specify either a string
or a list of strings, but the implementation wishes to always consider lists. It converts any string to a single-
element list, None to an empty list, and any iterable to a list. Input lists are copied, avoiding aliasing
issues.

buildbot.util.now()

Returns epoch time (integer)

Return the current time, using either reactor.seconds or time.time().

buildbot.util.flatten(list[, types])
Parameters

• list – potentially nested list

• types – An optional iterable of the types to flatten. By default, if unspecified, this
flattens both lists and tuples

Returns flat list

Flatten nested lists into a list containing no other lists. For example:

>>> flatten([[1, 2], 3, [[4], 5]])
[1, 2, 3, 4, 5]

3.1. General Documents 273

Buildbot Documentation, Release 0.9.1

Both lists and tuples are looked at by default.

buildbot.util.flattened_iterator(list[, types])
Parameters

• list – potentially nested list

• types – An optional iterable of the types to flatten. By default, if unspecified, this
flattens both lists and tuples.

Returns iterator over every element that isn’t in types

Returns a generator that doesn’t yield any lists/tuples. For example:

>>> for x in flattened_iterator([[1, 2], 3, [[4]]]):
>>> print x
1
2
3
4

Use this for extremely large lists to keep memory-usage down and improve
→˓performance when you only need to iterate once.

buildbot.util.none_or_str(obj)

Parameters obj – input value

Returns string or None

If obj is not None, return its string representation.

ascii2unicode(str):

Parameters str – string

Returns string as unicode, assuming ascii

This function is intended to implement automatic conversions for user convenience. If given a bytestring,
it returns the string decoded as ASCII (and will thus fail for any bytes 0x80 or higher). If given a unicode
string, it returns it directly.

string2boolean(str):

Parameters str – string

Raises KeyError –

Returns boolean

This function converts a string to a boolean. It is intended to be liberal in what it accepts: case-insensitive,
“true”, “on”, “yes”, “1”, etc. It raises KeyError if the value is not recognized.

toJson(obj):

Parameters obj – object

Returns UNIX epoch timestamp

This function is a helper for json.dump, that allows to convert non-json able objects to json. For now it
supports converting datetime.datetime objects to unix timestamp.

buildbot.util.NotABranch
This is a sentinel value used to indicate that no branch is specified. It is necessary since schedulers and
change sources consider None a valid name for a branch. This is generally used as a default value in a
method signature, and then tested against with is:

if branch is NotABranch:
pass # ...

274 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.1

buildbot.util.in_reactor(fn)
This decorator will cause the wrapped function to be run in the Twisted reactor, with the reactor stopped
when the function completes. It returns the result of the wrapped function. If the wrapped function fails, its
traceback will be printed, the reactor halted, and None returned.

buildbot.util.asyncSleep(secs)
Yield a deferred that will fire with no result after secs seconds. This is the asynchronous equivalent to
time.sleep, and can be useful in tests.

buildbot.util.stripUrlPassword(url)

Parameters url – a URL

Returns URL with any password component replaced with xxxx

Sanitize a URL; use this before logging or displaying a DB URL.

buildbot.util.join_list(maybe_list)

Parameters maybe_list – list, tuple, byte string, or unicode

Returns unicode

If maybe_list is a list or tuple, join it with spaces, casting any strings into unicode using
ascii2unicode. This is useful for configuration parameters that may be strings or lists of strings.

Notifier():
This is a helper for firing mulitple deferreds with the same result.

buildbot.util.wait()
Return a deferred that will fire when when the notifier is notified.

buildbot.util.notify(value)
Fire all the outstanding deferreds with the given value.

buildbot.util.lru

LRUCache(miss_fn, max_size=50):

Parameters

• miss_fn – function to call, with key as parameter, for cache misses. The function
should return the value associated with the key argument, or None if there is no value
associated with the key.

• max_size – maximum number of objects in the cache.

This is a simple least-recently-used cache. When the cache grows beyond the maximum size, the least-
recently used items will be automatically removed from the cache.

This cache is designed to control memory usage by minimizing duplication of objects, while avoiding
unnecessary re-fetching of the same rows from the database.

All values are also stored in a weak valued dictionary, even after they have expired from the cache. This
allows values that are used elsewhere in Buildbot to “stick” in the cache in case they are needed by another
component. Weak references cannot be used for some types, so these types are not compatible with this
class. Note that dictionaries can be weakly referenced if they are an instance of a subclass of dict.

If the result of the miss_fn is None, then the value is not cached; this is intended to avoid caching negative
results.

This is based on Raymond Hettinger’s implementation (http://code.activestate.com/recipes/498245-lru-and-
lfu-cache-decorators/), licensed under the PSF license, which is GPL-compatible.

buildbot.util.lru.hits
cache hits so far

3.1. General Documents 275

http://code.activestate.com/recipes/498245-lru-and-lfu-cache-decorators/

Buildbot Documentation, Release 0.9.1

buildbot.util.lru.refhits
cache misses found in the weak ref dictionary, so far

buildbot.util.lru.misses
cache misses leading to re-fetches, so far

buildbot.util.lru.max_size
maximum allowed size of the cache

buildbot.util.lru.get(key, **miss_fn_kwargs)

Parameters

• key – cache key

• miss_fn_kwargs – keyword arguments to the miss_fn

Returns value via Deferred

Fetch a value from the cache by key, invoking miss_fn(key,**miss_fn_kwargs) if the key
is not in the cache.

Any additional keyword arguments are passed to the miss_fn as keyword arguments; these can
supply additional information relating to the key. It is up to the caller to ensure that this information is
functionally identical for each key value: if the key is already in the cache, the miss_fn will not be
invoked, even if the keyword arguments differ.

buildbot.util.lru.put(key, value)

Parameters

• key – key at which to place the value

• value – value to place there

Add the given key and value into the cache. The purpose of this method is to insert a new value into
the cache without invoking the miss_fn (e.g., to avoid unnecessary overhead).

buildbot.util.lru.inv()
Check invariants on the cache. This is intended for debugging purposes.

AsyncLRUCache(miss_fn, max_size=50):

Parameters

• miss_fn – This is the same as the miss_fn for class LRUCache, with the difference
that this function must return a Deferred.

• max_size – maximum number of objects in the cache.

This class has the same functional interface as LRUCache, but asynchronous locking is used to ensure that
in the common case of multiple concurrent requests for the same key, only one fetch is performed.

buildbot.util.bbcollections

This package provides a few useful collection objects.

Note: This module used to be named collections, but without absolute imports (PEP 328
(https://www.python.org/dev/peps/pep-0328)), this precluded using the standard library’s collections mod-
ule.

class buildbot.util.bbcollections.defaultdict
This is a clone of the Python collections.defaultdict for use in Python-2.4. In later ver-
sions, this is simply a reference to the built-in defaultdict, so Buildbot code can simply use
buildbot.util.collections.defaultdict everywhere.

276 Chapter 3. Buildbot Development

https://www.python.org/dev/peps/pep-0328

Buildbot Documentation, Release 0.9.1

class buildbot.util.bbcollections.KeyedSets
This is a collection of named sets. In principal, it contains an empty set for every name, and you can add
things to sets, discard things from sets, and so on.

>>> ks = KeyedSets()
>>> ks['tim'] # get a named set
set([])
>>> ks.add('tim', 'friendly') # add an element to a set
>>> ks.add('tim', 'dexterous')
>>> ks['tim']
set(['friendly', 'dexterous'])
>>> 'tim' in ks # membership testing
True
>>> 'ron' in ks
False
>>> ks.discard('tim', 'friendly')# discard set element
>>> ks.pop('tim') # return set and reset to empty
set(['dexterous'])
>>> ks['tim']
set([])

This class is careful to conserve memory space - empty sets do not occupy any space.

buildbot.util.eventual

This function provides a simple way to say “please do this later”. For example

from buildbot.util.eventual import eventually
def do_what_I_say(what, where):

...
return d

eventually(do_what_I_say, "clean up", "your bedroom")

The package defines “later” as “next time the reactor has control”, so this is a good way to avoid long loops that
block other activity in the reactor.

buildbot.util.eventual.eventually(cb, *args, **kwargs)

Parameters

• cb – callable to invoke later

• args – args to pass to cb

• kwargs – kwargs to pass to cb

Invoke the callable cb in a later reactor turn.

Callables given to eventually are guaranteed to be called in the same order as the calls to eventually
– writing eventually(a); eventually(b) guarantees that a will be called before b.

Any exceptions that occur in the callable will be logged with log.err(). If you really want to ignore
them, provide a callable that catches those exceptions.

This function returns None. If you care to know when the callable was run, be sure to provide a callable
that notifies somebody.

buildbot.util.eventual.fireEventually(value=None)

Parameters value – value with which the Deferred should fire

Returns Deferred

This function returns a Deferred which will fire in a later reactor turn, after the current call stack has been
completed, and after all other Deferreds previously scheduled with eventually . The returned Deferred
will never fail.

3.1. General Documents 277

Buildbot Documentation, Release 0.9.1

buildbot.util.eventual.flushEventualQueue()

Returns Deferred

This returns a Deferred which fires when the eventual-send queue is finally empty. This is useful for tests
and other circumstances where it is useful to know that “later” has arrived.

buildbot.util.debounce

It’s often necessary to perform some action in response to a particular type of event. For example, steps need to
update their status after updates arrive from the worker. However, when many events arrive in quick succession,
it’s more efficient to only perform the action once, after the last event has occurred.

The debounce.method(wait) decorator is the tool for the job.

buildbot.util.debounce.method(wait)

Parameters

• wait – time to wait before invoking, in seconds

• get_reactor – A callable that takes the underlying instance and returns the reactor
to use. Defaults to instance.master.reactor.

Returns a decorator that debounces the underlying method. The underlying method must take no arguments
(except self).

For each call to the decorated method, the underlying method will be invoked at least once within wait
seconds (plus the time the method takes to execute). Calls are “debounced” during that time, meaning that
multiple calls to the decorated method will result in a single invocation.

Note: This functionality is similar to Underscore’s debounce, except that the Underscore method resets
its timer on every call.

The decorated method is an instance of Debouncer, allowing it to be started and stopped. This is useful
when the method is a part of a Buidbot service: call method.start() from startService and
method.stop() from stopService, handling its Deferred appropriately.

class buildbot.util.debounce.Debouncer

stop()

Returns Deferred

Stop the debouncer. While the debouncer is stopped, calls to the decorated method will be ignored. If
a call is pending when stop is called, that call will occur immediately. When the Deferred that stop
returns fires, the underlying method is not executing.

start()
Start the debouncer. This reverses the effects of stop. This method can be called on a started de-
bouncer without issues.

buildbot.util.poll

Many Buildbot services perform some periodic, asynchronous operation. Change sources, for example, contact
the repositories they monitor on a regular basis. The tricky bit is, the periodic operation must complete before the
service stops.

The @poll.method decorator makes this behavior easy and reliable.

buildbot.util.poll.method()
This decorator replaces the decorated method with a Poller instance configured to call the decorated

278 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.1

method periodically. The poller is initially stopped, so peroidic calls will not begin until its start method
is called. The start polling interval is specified when the poller is started.

If the decorated method fails or raises an exception, the Poller logs the error and re-schedules the call for
the next interval.

If a previous invocation of the method has not completed when the interval expires, then the next invocation
is skipped and the interval timer starts again.

A common idiom is to call start and stop from startService and stopService:

class WatchThings(object):

@poll.method
def watch(self):

d = self.beginCheckingSomething()
return d

def startService(self):
self.watch.start(interval=self.pollingInterval, now=False)

def stopService(self):
return self.watch.stop()

class buildbot.util.poll.Poller

start(interval=N, now=False)

Parameters

• interval – time, in seconds, between invocations

• now – if true, call the decorated method immediately on startup.

Start the poller.

stop()

Returns Deferred

Stop the poller. The returned Deferred fires when the decorated method is complete.

__call__()
Force a call to the decorated method now. If the decorated method is currently running, another call
will begin as soon as it completes.

buildbot.util.json

This package is just an import of the best available JSON module. Use it instead of a more complex conditional
import of simplejson or json:

from buildbot.util import json

buildbot.util.maildir

Several Buildbot components make use of maildirs (http://www.courier-mta.org/maildir.html) to hand off mes-
sages between components. On the receiving end, there’s a need to watch a maildir for incoming messages and
trigger some action when one arrives.

class buildbot.util.maildir.MaildirService(basedir)

param basedir (optional) base directory of the maildir

3.1. General Documents 279

http://www.courier-mta.org/maildir.html

Buildbot Documentation, Release 0.9.1

A MaildirService instance watches a maildir for new messages. It should be a child service of
some MultiService instance. When running, this class uses the linux dirwatcher API (if available)
or polls for new files in the ‘new’ maildir subdirectory. When it discovers a new message, it invokes its
messageReceived method.

To use this class, subclass it and implement a more interesting messageReceived function.

setBasedir(basedir)

Parameters basedir – base directory of the maildir

If no basedir is provided to the constructor, this method must be used to set the basedir before the
service starts.

messageReceived(filename)

Parameters filename – unqualified filename of the new message

This method is called with the short filename of the new message. The full name of the new file can be
obtained with os.path.join(maildir,'new',filename). The method is un-implemented
in the MaildirService class, and must be implemented in subclasses.

moveToCurDir(filename)

Parameters filename – unqualified filename of the new message

Returns open file object

Call this from messageReceived to start processing the message; this moves the message file to
the ‘cur’ directory and returns an open file handle for it.

buildbot.util.misc

buildbot.util.misc.deferredLocked(lock)

Parameters lock – a twisted.internet.defer.DeferredLock instance or a string
naming an instance attribute containing one

This is a decorator to wrap an event-driven method (one returning a Deferred) in an acquire/release pair
of a designated DeferredLock. For simple functions with a static lock, this is as easy as:

someLock = defer.DeferredLock()

@util.deferredLocked(someLock)
def someLockedFunction():

..
return d

For class methods which must access a lock that is an instance attribute, the lock can be specified by a string,
which will be dynamically resolved to the specific instance at runtime:

def __init__(self):
self.someLock = defer.DeferredLock()

@util.deferredLocked('someLock')
def someLockedFunction():

..
return d

buildbot.util.misc.cancelAfter(seconds, deferred)

Parameters

• seconds – timeout in seconds

• deferred – deferred to cancel after timeout expires

280 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.1

Returns the deferred passed to the function

Cancel the given deferred after the given time has elapsed, if it has not already been fired. Whent his occurs,
the deferred’s errback will be fired with a twisted.internet.defer.CancelledError failure.

buildbot.util.netstrings

Similar to maildirs, netstrings (http://cr.yp.to/proto/netstrings.txt) are used occasionally in Buildbot to encode data
for interchange. While Twisted supports a basic netstring receiver protocol, it does not have a simple way to apply
that to a non-network situation.

class buildbot.util.netstrings.NetstringParser
This class parses strings piece by piece, either collecting the accumulated strings or invoking a callback for
each one.

feed(data)

Parameters data – a portion of netstring-formatted data

Raises twisted.protocols.basic.NetstringParseError

Add arbitrarily-sized data to the incoming-data buffer. Any complete netstrings will trigger a call to
the stringReceived method.

Note that this method (like the Twisted class it is based on) cannot detect a trailing partial netstring at
EOF - the data will be silently ignored.

stringReceived(string):

Parameters string – the decoded string

This method is called for each decoded string as soon as it is read completely. The default implemen-
tation appends the string to the strings attribute, but subclasses can do anything.

strings
The strings decoded so far, if stringReceived is not overridden.

buildbot.util.sautils

This module contains a few utilities that are not included with SQLAlchemy.

class buildbot.util.sautils.InsertFromSelect(table, select)

Parameters

• table – table into which insert should be performed

• select – select query from which data should be drawn

This class is taken directly from SQLAlchemy’s compiler.html (http://www.sqlalchemy.org/docs/core/compiler.html#compiling-
sub-elements-of-a-custom-expression-construct), and allows a Pythonic representation of INSERT INTO
.. SELECT .. queries.

buildbot.util.sautils.sa_version()
Return a 3-tuple representing the SQLAlchemy version. Note that older versions that did not have a
__version__ attribute are represented by (0,0,0).

buildbot.util.pathmatch

class buildbot.util.pathmatch.Matcher
This class implements the path-matching algorithm used by the data API.

Patterns are tuples of strings, with strings beginning with a colon (:) denoting variables. A character can
precede the colon to indicate the variable type:

3.1. General Documents 281

http://cr.yp.to/proto/netstrings.txt
http://www.sqlalchemy.org/docs/core/compiler.html#compiling-sub-elements-of-a-custom-expression-construct

Buildbot Documentation, Release 0.9.1

•i specifies an identifier (identifier).

•n specifies a number (parseable by int).

A tuple of strings matches a pattern if the lengths are identical, every variable matches and has the correct
type, and every non-variable pattern element matches exactly.

A matcher object takes patterns using dictionary-assignment syntax:

ep = ChangeEndpoint()
matcher[('change', 'n:changeid')] = ep

and performs matching using the dictionary-lookup syntax:

changeEndpoint, kwargs = matcher[('change', '13')]
-> (ep, {'changeid': 13})

where the result is a tuple of the original assigned object (the Change instance in this case) and the values
of any variables in the path.

iterPatterns()
Returns an iterator which yields all patterns in the matcher as tuples of (pattern, endpoint).

buildbot.util.topicmatch

class buildbot.util.topicmatch.TopicMatcher(topics)

Parameters topics (list) – topics to match

This class implements the AMQP-defined syntax: routing keys are treated as dot-separated sequences of
words and matched against topics. A star (*) in the topic will match any single word, while an octothorpe
(#) will match zero or more words.

matches(routingKey)

Parameters routingKey (string) – routing key to examine

Returns True if the routing key matches a topic

buildbot.util.subscription

The classes in the buildbot.util.subscription module are used for master-local subscriptions. In the
near future, all uses of this module will be replaced with message-queueing implementations that allow subscrip-
tions and subscribers to span multiple masters.

buildbot.util.croniter

This module is a copy of https://github.com/taichino/croniter, and provides support for converting cron-like time
specifications into actual times.

buildbot.util.state

The classes in the buildbot.util.subscription module are used for dealing with object state stored in
the database.

class buildbot.util.state.StateMixin
This class provides helper methods for accessing the object state stored in the database.

name
This must be set to the name to be used to identify this object in the database.

282 Chapter 3. Buildbot Development

https://github.com/taichino/croniter

Buildbot Documentation, Release 0.9.1

master
This must point to the BuildMaster object.

getState(name, default)

Parameters

• name – name of the value to retrieve

• default – (optional) value to return if name is not present

Returns state value via a Deferred

Raises

• KeyError – if name is not present and no default is given

• TypeError – if JSON parsing fails

Get a named state value from the object’s state.

getState(name, value)

Parameters

• name – the name of the value to change

• value – the value to set - must be a JSONable object

• returns – Deferred

Raises TypeError – if JSONification fails

Set a named state value in the object’s persistent state. Note that value must be json-able.

buildbot.util.identifiers

This module makes it easy to manipulate identifiers.

buildbot.util.identifiers.isIdentifier(maxLength, object)

Parameters

• maxLength – maximum length of the identifier

• object – object to test for identifier-ness

Returns boolean

Is object a identifier?

buildbot.util.identifiers.forceIdentifier(maxLength, str)

Parameters

• maxLength – maximum length of the identifier

• str – string to coerce to an identifier

Returns identifer of maximum length maxLength

Coerce a string (assuming ASCII for bytestrings) into an identifier. This method will replace any invalid
characters with _ and truncate to the given length.

buildbot.util.identifiers.incrementIdentifier(maxLength, str)

Parameters

• maxLength – maximum length of the identifier

• str – identifier to increment

Returns identifer of maximum length maxLength

3.1. General Documents 283

Buildbot Documentation, Release 0.9.1

Raises ValueError if no suitable identifier can be constructed

“Increment” an identifier by adding a numeric suffix, while keeping the total length limited. This is useful
when selecting a unique identifier for an object. Maximum-length identifiers like _999999 cannot be
incremented and will raise ValueError.

buildbot.util.lineboundaries

class buildbot.util.lineboundaries.LineBoundaryFinder
This class accepts a sequence of arbitrary strings and invokes a callback only with complete (newline-
terminated) substrings. It buffers any partial lines until a subsequent newline is seen. It considers any of \r,
\n, and \r\n to be newlines. Because of the ambiguity of an append operation ending in the character \r
(it may be a bare \r or half of \r\n), the last line of such an append operation will be buffered until the
next append or flush.

Parameters callback – asynchronous function to call with newline-terminated strings

append(text)

Parameters text – text to append to the boundary finder

Returns Deferred

Add additional text to the boundary finder. If the addition of this text completes at least one line, the
callback will be invoked with as many complete lines as possible.

flush()

Returns Deferred

Flush any remaining partial line by adding a newline and invoking the callback.

buildbot.util.service

This module implements some useful subclasses of Twisted services.

The first two classes are more robust implementations of two Twisted classes, and should be used universally in
Buildbot code.

class buildbot.util.service.AsyncMultiService
This class is similar to twisted.application.service.MultiService, except that it handles
Deferreds returned from child services startService and stopService methods.

Twisted’s service implementation does not support asynchronous startService methods. The reason-
ing is that all services should start at process startup, with no need to coordinate between them. For Buildbot,
this is not sufficient. The framework needs to know when startup has completed, so it can begin scheduling
builds. This class implements the desired functionality, with a parent service’s startService returning
a Deferred which will only fire when all child services startService methods have completed.

This class also fixes a bug with Twisted’s implementation of stopService which ignores failures in the
stopService process. With AsyncMultiService, any errors in a child’s stopService will be
propagated to the parent’s stopService method.

class buildbot.util.service.AsyncService
This class is similar to twisted.application.service.Service, except that its
setServiceParent method will return a Deferred. That Deferred will fire after the startService
method has completed, if the service was started because the new parent was already running.

Some services in buildbot must have only one “active” instance at any given time. In a single-master configuration,
this requirement is trivial to maintain. In a multiple-master configuration, some arbitration is required to ensure
that the service is always active on exactly one master in the cluster.

For example, a particular daily scheduler could be configured on multiple masters, but only one of them should
actually trigger the required builds.

284 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.1

class buildbot.util.service.ClusteredService
A base class for a service that must have only one “active” instance in a buildbot configuration.

Each instance of the service is started and stopped via the usual twisted startService and
stopService methods. This utility class hooks into those methods in order to run an arbitration strategy
to pick the one instance that should actually be “active”.

The arbitration strategy is implemented via a polling loop. When each service instance starts, it immediately
offers to take over as the active instance (via _claimService).

If successful, the activate method is called. Once active, the instance remains active until it is explicitly
stopped (eg, via stopService) or otherwise fails. When this happens, the deactivate method is
invoked and the “active” status is given back to the cluster (via _unclaimService).

If another instance is already active, this offer fails, and the instance will poll periodically to try again.
The polling strategy helps guard against active instances that might silently disappear and leave the service
without any active instance running.

Subclasses should use these methods to hook into this activation scheme:

activate()
When a particular instance of the service is chosen to be the one “active” instance, this method is
invoked. It is the corollary to twisted’s startService.

deactivate()
When the one “active” instance must be deactivated, this method is invoked. It is the corollary to
twisted’s stopService.

isActive()
Returns whether this particular instance is the active one.

The arbitration strategy is implemented via the following required methods:

_getServiceId()
The “service id” uniquely represents this service in the cluster. Each instance of this service must have
this same id, which will be used in the arbitration to identify candidates for activation. This method
may return a Deferred.

_claimService()
An instance is attempting to become the one active instance in the cluster. This method must return
True or False (optionally via a Deferred) to represent whether this instance’s offer to be the active one
was accepted. If this returns True, the activate method will be called for this instance.

_unclaimService()
Surrender the “active” status back to the cluster and make it available for another instance. This will
only be called on an instance that successfully claimed the service and has been activated and after its
deactivate has been called. Therefore, in this method it is safe to reassign the “active” status to
another instance. This method may return a Deferred.

class buildbot.util.service.SharedService
This class implements a generic Service that needs to be instantiated only once according to its parameters.
It is a common use case to need this for accessing remote services. Having a shared service allows to limit
the number of simultaneous access to the same remote service. Thus, several completely independent Build-
bot services can use that SharedService to access the remote service, and automatically synchronize
themselves to not overwhelm it.

__init__(self, *args, **kwargs)
Constructor of the service.

Note that unlike BuildbotService, SharedService is not reconfigurable and uses the classical
constructor method.

Reconfigurability would mean to add some kind of reference counting of the users, which will make
the design much more complicated to use. This means that the SharedService will not be destroyed
when there is no more users, it will be destroyed at the master’s stopService It is important that those

3.1. General Documents 285

Buildbot Documentation, Release 0.9.1

SharedService life cycles are properly handled. Twisted will indeed wait for any thread pool to
finish at master stop, which will not happen if the thread pools are not properly closed.

The lifecycle of the SharedService is the same as a service, it must implement startService and stopSer-
vice in order to allocate and free its resources.

getName(cls, *args, **kwargs)
Class method. Takes same arguments as the constructor of the service. Get a unique name for that
instance of a service. This returned name is the key inside the parent’s service dictionary that is used
to decide if the instance has already been created before or if there is a need to create a new object.
Default implementation will hash args and kwargs and use <classname>_<hash> as the name.

getService(cls, parentService, *args, **kwargs)

Parameters parentService – an AsyncMultiServicewhere to lookup and register
the SharedService (usually the root service, the master)

Returns instance of the service via Deferred

Class method. Takes same arguments as the constructor of the service (plus the parentService at the
beginning of the list). Construct an instance of the service if needed, and place it at the beginning of
the parentService service list. Placing it at the beginning will guarantee that the SharedService
will be stopped after the other services.

class buildbot.util.service.BuildbotService
This class is the combinations of all Service classes implemented in buildbot. It is Async, MultiService, and
Reconfigurable, and designed to be eventually the base class for all buildbot services. This class makes it
easy to manage (re)configured services.

The design separate the check of the config and the actual configuration/start. A service sibling is a config-
ured object that has the same name of a previously started service. The sibling configuration will be used to
configure the running service.

Service lifecycle is as follow:

•Buildbot master start

•Buildbot is evaluating the configuration file. BuildbotServices are created, and checkConfig() are
called by the generic constructor.

•If everything is fine, all services are started. BuildbotServices startService() is called, and call recon-
figService() for the first time.

•User reconfigures buildbot.

•Buildbot is evaluating the configuration file. BuildbotServices siblings are created, and checkConfig()
are called by the generic constructor.

•BuildbotServiceManager is figuring out added services, removed services, unchanged services

•BuildbotServiceManager calls stopService() for services that disappeared from the configuration.

•BuildbotServiceManager calls startService() like in buildbot start phase for services that appeared
from the configuration.

•BuildbotServiceManager calls reconfigService() for the second time for services that have their con-
figuration changed.

__init__(self, *args, **kwargs)
Constructor of the service. The constructor initialize the service, and store the config arguments in
private attributes.

This should not be overriden by subclasses, as they should rather override checkConfig.

checkConfig(self, *args, **kwargs)
Please override this method to check the parameters of your config. Please use
buildbot.config.error for error reporting. You can replace them *args,**kwargs
by actual contructor like arguments with default args, and it have to match self.reconfigService This
method is synchronous, and executed in the context of the master.cfg. Please don’t block, or use

286 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.1

deferreds in this method. Remember that the object that runs checkConfig is not always the object that
is actually started. The checked configuration can be passed to another sibling service. Any actual
resource creation shall be handled in reconfigService() or startService()

reconfigService(self, *args, **kwargs)
This method is called at buildbot startup, and buildbot reconfig. *args and **kwargs are the configu-
ration arguments passed to the constructor in master.cfg. You can replace them *args,**kwargs
by actual contructor like arguments with default args, and it have to match self.checkConfig

Returns a deferred that should fire when the service is ready. Builds are not started until all services
are configured.

BuildbotServices must be aware that during reconfiguration, their methods can still be called by run-
ning builds. So they should atomically switch old configuration and new configuration, so that the
service is always available.

reconfigServiceWithSibling(self, sibling)
Internal method that finds the configuration bits in a sibling, an object with same class that is supposed
to replace it from a new configuration. We want to reuse the service started at master startup and just
reconfigure it. This method handles necessary steps to detect if the config has changed, and eventually
call self.reconfigService()

Advanced users can derive this class to make their own services that run inside buildbot, and follow the
application lifecycle of buildbot master.

Such services are singletons accessible in nearly every objects of buildbot (buildsteps, status, changesources,
etc) using self.master.namedServices[’<nameOfYourService’].

As such, they can be used to factorize access to external services, available e.g using a REST api. Having a
single service will help with caching, and rate-limiting access of those APIs.

Here is an example on how you would integrate and configure a simple service in your master.cfg:

class MyShellCommand(ShellCommand):

def getResultSummary(self):
access the service attribute
service = self.master.namedServices['myService']
return dict(step=u"arg value: %d" % (service.arg1,))

class MyService(BuildbotService):
name = "myService"

def checkConfig(self, arg1):
if not isinstance(arg1, int):

config.error("arg1 must be an integer while it is %r" % (arg1,))
return

if arg1 < 0:
config.error("arg1 must be positive while it is %d" % (arg1,))

def reconfigService(self, arg1):
self.arg1 = arg1
return defer.succeed(None)

c['schedulers'] = [
ForceScheduler(

name="force",
builderNames=["testy"])]

f = BuildFactory()
f.addStep(MyShellCommand(command='echo hei'))
c['builders'] = [

BuilderConfig(name="testy",
workernames=["local1"],
factory=f)]

3.1. General Documents 287

Buildbot Documentation, Release 0.9.1

c['services'] = [
MyService(arg1=1)

]

buildbot.util.httpclientservice

class buildbot.util.service.HTTPClientService
This class implements a SharedService for doing http client access. The module automatically chooses
from txrequests (https://pypi.python.org/pypi/txrequests) and treq (https://pypi.python.org/pypi/treq) and
uses whichever is installed. It provides minimalistic API similar to the one from txrequests
(https://pypi.python.org/pypi/txrequests) and treq (https://pypi.python.org/pypi/treq). Having a Shared-
Service for this allows to limits the number of simultaneous connection for the same host. While
twisted application can managed thousands of connections at the same time, this is often not the case
for the services buildbot controls. Both txrequests (https://pypi.python.org/pypi/txrequests) and treq
(https://pypi.python.org/pypi/treq) use keep-alive connection polling. Lots of HTTP REST API will how-
ever force a connection close in the end of a transaction.

Note: The API described here is voluntary minimalistic, and reflects what is tested. As most of this module
is implemented as a pass-through to the underlying libraries, other options can work but have not been tested
to work in both backends. If there is a need for more functionality, please add new tests before using them.

static getService(master, base_url, auth=None)

Parameters

• master – the instance of the master service (available in self.master for all the
BuildbotService instances)

• base_url – The base http url of the service to access. e.g.
http://github.com/

• auth – Authentication information. If auth is a tuple then BasicAuth will be used.
e.g ('user','passwd') It can also be a requests.auth authentication plu-
gin. In this case txrequests (https://pypi.python.org/pypi/txrequests) will be forced,
and treq (https://pypi.python.org/pypi/treq) cannot be used.

Returns instance of :HTTPClientService

Get an instance of the SharedService. There is one instance per base_url and auth.

The constructor initialize the service, and store the config arguments in private attributes.

This should not be overriden by subclasses, as they should rather override checkConfig.

get(endpoint, params=None)

Parameters

• endpoint – endpoint relative to the base_url (starts with /)

• params – optional dictionary that will be encoded in the query part of the url (e.g.
?param1=foo)

Returns implementation of :IHTTPResponse via deferred

Performs a HTTP GET

delete(endpoint, params=None)

Parameters

• endpoint – endpoint relative to the base_url (starts with /)

288 Chapter 3. Buildbot Development

https://pypi.python.org/pypi/txrequests
https://pypi.python.org/pypi/treq
https://pypi.python.org/pypi/txrequests
https://pypi.python.org/pypi/treq
https://pypi.python.org/pypi/txrequests
https://pypi.python.org/pypi/treq
https://pypi.python.org/pypi/txrequests
https://pypi.python.org/pypi/treq

Buildbot Documentation, Release 0.9.1

• params – optional dictionary that will be encoded in the query part of the url (e.g.
?param1=foo)

Returns implementation of :IHTTPResponse via deferred

Performs a HTTP DELETE

post(endpoint, data=None, json=None, params=None)

Parameters

• endpoint – endpoint relative to the base_url (starts with /)

• data – optional dictionary that will be encoded in the body of the http requests as
application/x-www-form-urlencoded

• json – optional dictionary that will be encoded in the body of the http requests as
application/json

• params – optional dictionary that will be encoded in the query part of the url (e.g.
?param1=foo)

Returns implementation of :IHTTPResponse via deferred

Performs a HTTP POST

Note: json and data cannot be used at the same time.

put(endpoint, data=None, json=None, params=None)

Parameters

• endpoint – endpoint relative to the base_url (starts with /)

• data – optional dictionary that will be encoded in the body of the http requests as
application/x-www-form-urlencoded

• json – optional dictionary that will be encoded in the body of the http requests as
application/json

• params – optional dictionary that will be encoded in the query part of the url (e.g.
?param1=foo)

Returns implementation of :IHTTPResponse via deferred

Performs a HTTP PUT

Note: json and data cannot be used at the same time.

class buildbot.util.service.IHTTPResponse

Note: IHTTPResponse is a subset of treq (https://pypi.python.org/pypi/treq) Response API described
here (https://treq.readthedocs.io/en/latest/api.html#module-treq.response) The API it is voluntarily mini-
malistic and reflects what is tested and reliable to use with the three backends (including fake). The
api is a subset of the treq (https://pypi.python.org/pypi/treq) API, which is itself a superset of twisted
IResponse API (https://twistedmatrix.com/documents/current/api/twisted.web.iweb.IResponse.html). treq
(https://pypi.python.org/pypi/treq) is thus implemented as passthrough.

Notably:

•There is no api to automatically decode content, as this is not implemented the same in both backends.

•There is no api to stream content as the two libraries have very different way for doing it, and we do
not see use-case where buildbot would need to transfer large content to the master.

3.1. General Documents 289

https://pypi.python.org/pypi/treq
https://treq.readthedocs.io/en/latest/api.html#module-treq.response
https://pypi.python.org/pypi/treq
https://twistedmatrix.com/documents/current/api/twisted.web.iweb.IResponse.html
https://twistedmatrix.com/documents/current/api/twisted.web.iweb.IResponse.html
https://pypi.python.org/pypi/treq

Buildbot Documentation, Release 0.9.1

content()

Returns raw (bytes) content of the response via deferred

json()

Returns json decoded content of the response via deferred

code

Returns http status code of the request’s response (e.g 200)

buildbot.test.fake.httpclientservice

class buildbot.util.service.HTTPClientService
This class implements a fake version of the buildbot.util.httpclientservice.HTTPClientService
that needs to be used for testing services which needs http client access. It implements the same APIs as
buildbot.util.httpclientservice.HTTPClientService, plus one that should be used to
register the expectations. It should be registered by the test case before the tested service actually requests
an HTTPClientService instance, with the same parameters. It will then replace the original implementation
automatically (no need to patch anything). The testing methodology is based on AngularJS ngMock
(https://docs.angularjs.org/api/ngMock/service/$httpBackend).

getFakeService(cls, master, case, *args, **kwargs):

Parameters

• master – the instance of a fake master service

• case – a twisted.python.unittest.TestCase instance

getFakeService returns a fake HTTPClientService, and should be used in place of
getService.

on top of getService it will make sure the original HTTPClientService is not called, and
assert that all expected http requests have been described in the test case.

expect(self, method, ep, params=None, data=None, json=None, code=200,
content=None, content_json=None):

Parameters

• method – expected HTTP method

• ep – expected endpoint

• params – optional expected query parameters

• data – optional expected non-json data (bytes)

• json – optional expected json data (dictionary or list or string)

• code – optional http code that will be received

• content – optional content that will be received

• content_json – optional content encoded in json that will be received

Records an expectation of HTTP requests that will happen during the test. The order of the requests is
important. All the request expectation must be defined in the test.

example:

from twisted.internet import defer
from twisted.trial import unittest

from buildbot.test.fake import httpclientservice as fakehttpclientservice
from buildbot.util import httpclientservice
from buildbot.util import service

290 Chapter 3. Buildbot Development

https://docs.angularjs.org/api/ngMock/service/\protect \T1\textdollar httpBackend

Buildbot Documentation, Release 0.9.1

class myTestedService(service.BuildbotService):
name = 'myTestedService'

@defer.inlineCallbacks
def reconfigService(self, baseurl):

self._http = yield httpclientservice.HTTPClientService.
→˓getService(self.master, baseurl)

@defer.inlineCallbacks
def doGetRoot(self):

res = yield self._http.get("/")
note that at this point, only the http response headers are

→˓received
if res.code != 200:

raise Exception("%d: server did not succeed" % (res.code))
res_json = yield res.json()
res.json() returns a deferred to account for the time needed to

→˓fetch the entire body
defer.returnValue(res_json)

class Test(unittest.SynchronousTestCase):

def setUp(self):
baseurl = 'http://127.0.0.1:8080'
self.parent = service.MasterService()
self._http = self.successResultOf(fakehttpclientservice.

→˓HTTPClientService.getFakeService(
self.parent, self, baseurl))

self.tested = myTestedService(baseurl)

self.successResultOf(self.tested.setServiceParent(self.parent))
self.successResultOf(self.parent.startService())

def test_root(self):
self._http.expect("get", "/", content_json={'foo': 'bar'})

response = self.successResultOf(self.tested.doGetRoot())
self.assertEqual(response, {'foo': 'bar'})

def test_root_error(self):
self._http.expect("get", "/", content_json={'foo': 'bar'},

→˓code=404)

response = self.failureResultOf(self.tested.doGetRoot())
self.assertEqual(response.getErrorMessage(), '404: server did not

→˓succeed')

3.1.10 Build Result Codes

Buildbot represents the status of a step, build, or buildset using a set of numeric constants. From Python, these con-
stants are available in the module buildbot.process.results, but the values also appear in the database
and in external tools, so the values are fixed.

buildbot.process.results.SUCCESS
Value: 0; color: green; a successful run.

buildbot.process.results.WARNINGS
Value: 1; color: orange; a successful run, with some warnings.

3.1. General Documents 291

Buildbot Documentation, Release 0.9.1

buildbot.process.results.FAILURE
Value: 2; color: red; a failed run, due to problems in the build itself, as opposed to a Buildbot misconfigu-
ration or bug.

buildbot.process.results.SKIPPED
Value: 3; color: white; a run that was skipped – usually a step skipped by doStepIf (see Common
Parameters)

buildbot.process.results.EXCEPTION
Value: 4; color: purple; a run that failed due to a problem in Buildbot itself.

buildbot.process.results.RETRY
Value: 4; color: purple; a run that should be retried, usually due to a worker disconnection.

buildbot.process.results.CANCELLED
Value: 5; color: pink; a run that was cancelled by the user.

buildbot.process.results.Results
A dictionary mapping result codes to their lowercase names.

buildbot.process.results.worst_status(a, b)
This function takes two status values, and returns the “worst” status of the two. This is used to aggregate
step statuses into build statuses, and build statuses into buildset statuses.

computeResultAndTermination(obj, result, previousResult):

Parameters

• obj – an object with the attributes of ResultComputingConfigMixin

• result – the new result

• previousResult – the previous aggregated result

Building on worst_status, this function determines what the aggreagated overall status is, as well as
whether the attempt should be terminated, based on the configuration in obj.

class buildbot.process.results.ResultComputingConfigMixin
This simple mixin is intended to help implement classes that will use
computeResultAndTermination. The class has, as class attributes, the result computing con-
figuration parameters with default values:

haltOnFailure

flunkOnWarnings

flunkOnFailure

warnOnWarnings

warnOnFailure

The names of these attributes are available in the following attribute:

resultConfig

3.1.11 WWW Server

History and Motivation

One of the goals of the ‘nine’ project is to rework Buildbot’s web services to use a more modern, consistent design
and implement UI features in client-side JavaScript instead of server-side Python.

The rationale behind this is that a client side UI relieves pressure on the server while being more responsive for
the user. The web server only concentrates on serving data via a REST interface wrapping the Data API. This
removes a lot of sources of latency where, in previous versions, long synchronous calculations were made on the
server to generate complex pages.

292 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.1

Another big advantage is live updates of status pages, without having to poll or reload. The new system uses
Comet techniques in order to relay Data API events to connected clients.

Finally, making web services an integral part of Buildbot, rather than a status plugin, allows tighter integration
with the rest of the application.

Design Overview

The www service exposes three pieces via HTTP:

• A REST interface wrapping Data API;

• HTTP-based messaging protocols wrapping the Messaging and Queues interface; and

• Static resources implementing the client-side UI.

The REST interface is a very thin wrapper: URLs are translated directly into Data API paths, and results are
returned directly, in JSON format. It is based on JSON API (http://jsonapi.org/). Control calls are handled with a
simplified form of JSONRPC 2.0 (http://www.jsonrpc.org/specification).

The message interface is also a thin wrapper around Buildbot’s MQ mechanism. Clients can subscribe to messages,
and receive copies of the messages, in JSON, as they are received by the buildmaster.

The client-side UI is an AngularJS application. Buildbot uses the Python setuptools entry-point mechanism to
allow multiple packages to be combined into a single client-side experience. This allows frontend developers and
users to build custom components for the web UI without hacking Buildbot itself.

Python development and AngularJS development are very different processes, requiring different environment re-
quirements and skillsets. To maximize hackability, Buildbot separates the two cleanly. An experienced AngularJS
hacker should be quite comfortable in the https://github.com/buildbot/buildbot/blob/master/www/ directory, with
a few exceptions described below. Similarly, an experienced Python hacker can simply download the pre-built
web UI (from pypi!) and never venture near the https://github.com/buildbot/buildbot/blob/master/www/ directory.

URLs

The Buildbot web interface is rooted at its base URL, as configured by the user. It is entirely possible for this
base URL to contain path components, e.g., http://build.example.org/buildbot/, if hosted behind
an HTTP proxy. To accomplish this, all URLs are generated relative to the base URL.

Overall, the space under the base URL looks like this:

• / – The HTML document that loads the UI

• /api/v{version} – The root of the REST APIs, each versioned numerically. Users should, in general,
use the latest version.

• /ws – The WebSocket endpoint to subscribe to messages from the mq system.

• /sse – The server sent event (http://en.wikipedia.org/wiki/Server-sent_events) endpoint where clients can
subscribe to messages from the mq system.

REST API

Rest API is described in its own section.

Server-Side Session

The web server keeps a session state for each user, keyed on a session cookie. This session is available from
request.getSession(), and data is stored as attributes. The following attributes may be available:

user_info A dictionary maintained by the authentication subsystem. It may have the following information
about the logged-in user:

3.1. General Documents 293

http://jsonapi.org/
http://www.jsonrpc.org/specification
https://github.com/buildbot/buildbot/blob/master/www/
https://github.com/buildbot/buildbot/blob/master/www/
http://en.wikipedia.org/wiki/Server-sent_events

Buildbot Documentation, Release 0.9.1

• username

• email

• full_name

• groups (a list of group names)

As well as additional fields specific to the user info implementation.

The contents of the user_info dictionary are made available to the UI as config.user.

Message API

Currently messages are implemented with two protocols: WebSockets and server sent event
(http://en.wikipedia.org/wiki/Server-sent_events). This may be supplemented with other mechanisms be-
fore release.

WebSocket

WebSocket is a protocol for arbitrary messaging to and from browser. As an HTTP extension, the protocol is not
yet well supported by all HTTP proxy technologies. Although, it has been reported to work well used behind the
https protocol. Only one WebSocket connection is needed per browser.

Client can connect using url ws[s]://<BB_BASE_URL>/ws

The protocol used is a simple in-house protocol based on json. Structure of a command from client is as following:

{ "cmd": "<command name>", '_id': <id of the command>, "arg1": arg1, "arg2": arg2 }

• cmd is use to reference a command name

• _id is used to track the response, can be any unique number or string. Generated by the client. Needs to be
unique per websocket session.

Response is sent asynchronously, reusing _id to track which command is responded.

Success answer example would be:

{ "msg": "OK", '_id': 1, code=200 }

Error answer example would be:

{"_id":1,"code":404,"error":"no such command \'poing\'"}

Client can send several command without waiting response.

Responses are not guaranteed to be sent in order.

Several command are implemented:

ping

{"_id":1,"cmd":"ping"}

server will respond with a “pong” message:

{"_id":1,"msg":"pong","code":200}

startConsuming start consuming events that match path. path are described in the Messaging and Queues
section. For size optimization reasons, path are encoded joined with “/”, and with None wildcard replaced
by ‘*’.

{"_id":1,"cmd":"startConsuming", "path": "change/*/*"}

Success answer example will be:

294 Chapter 3. Buildbot Development

http://en.wikipedia.org/wiki/Server-sent_events

Buildbot Documentation, Release 0.9.1

{ "msg": "OK", '_id': 1, code=200 }

stopConsuming stop consuming events that was previously registered with path.

{"_id":1,"cmd":"stopConsuming", "path": "change/*/*"}

Success answer example will be:

{ "msg": "OK", '_id': 1, code=200 }

Client will receive events as websocket frames encoded in json with following format:

{"k":key,"m":message}

Server Sent Events

SSE is a simpler protocol than WebSockets and is more REST compliant. It uses the chunk-encoding HTTP
feature to stream the events. SSE also does not works well behind enterprise proxy, unless you use the https
protocol

Client can connect using following endpoints

• http[s]://<BB_BASE_URL>/sse/listen/<path>: Start listening to events on the http connec-
tion. Optionally setup a first event filter on <path>. The first message send is a handshake, giving a uuid
that can be used to add or remove event filters.

• http[s]://<BB_BASE_URL>/sse/add/<uuid>/<path>: Configure a sse session to add an event
filter

• http[s]://<BB_BASE_URL>/sse/remove/<uuid>/<path>: Configure a sse session to remove
an event filter

Note that if a load balancer is setup as a front end to buildbot web masters, the load balancer must be configured
to always use the same master given a client ip address for /sse endpoint.

Client will receive events as sse events, encoded with following format:

event: event
data: {'key': <key>, 'message': <message>}

The first event received is a handshake, and is used to inform the client about uuid to use for configuring additional
event filters

event: handshake
data: <uuid>

3.1.12 Javascript Data Module

Data_module is a reusable angularJS module used to access buildbot’s data api from the browser. Its main purpose
is to handle the 3 way binding.

2 way binding is the angular MVVM concept, which seemlessly synchronise the view and the model. Here we
introduce an additional way of synchronisation, which is from the server to the model.

3.1. General Documents 295

Buildbot Documentation, Release 0.9.1

We use the message queue and the websocket interfaces to maintain synchronisation between the server and the
client.

The client application just needs to query needed data using a highlevel API, and the data module is using the best
approach to make the data always up to date.

Once the binding is setup by the controller, everything is automatically up-to-date.

Base Concepts

Collections

All the data you can get are Collections. Even a query to a single resource returns a collection. A collection is an
Array subclass which has extra capabilities:

• It listen to the event stream and is able to maintain itself up-to-date

• It implements client side query in order to garantee up-to-date filtering, ordering and limiting queries.

• It has a fast access to each item it contains via its id.

• It has its own event handlers so that client code can react when the Collection is changing

Wrappers

Each data type contain in a collection is wrapped in a javascript object. This allows to create some custom
enhancements to the data model. For example the Change wrapper decodes the author name and email from the
“author” field.

Each wrapper class also has specific access method, which allow to access more data from the REST hierachy.

Installation

The Data module is available as a standalone AngularJS module. Installation via bower:

bower install buildbot-data --save

It is recommended however for coherency to use the installation method via guanlecoja, in the bower section of
guanlecoja/config.coffee:

296 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.1

'bower':
'deps':

'buildbot-data':
version: '~1.0.14'
files: 'dist/buildbot-data.js'

Inject the bbData module to your application:

angular.module('myApp', ['bbData'])

Service API

DataService

DataService is the service used for accessing the Buildbot data API. It has a modern interface for accessing data
in such a way that the updating of the data via web socket is transparent.

Methods:

.open(): returns a DataAccessor, which handles 3 way data binding

• open a new accessor every time you need updating data in a controller

• it registers on $destroy event on the scope, and thus automatically unsubscribes from updates
when the data is not used anymore.

open a new accessor every time you need updating data in a controller
class DemoController extends Controller

constructor: ($scope, dataService) ->
automatically closes all the bindings when the $scope is

→˓destroyed
data = dataService.open().closeOnDestroy($scope)

request new data, it updates automatically
@builders = data.getBuilders(limit: 10, order: '-started_at')

.getXs([id],[query]): returns Collection which will eventually contain all the requested data

• it’s highly advised to use these instead of the lower level .get('string') function

• Xs can be the following: Builds, Builders, Buildrequests, Buildsets,
Workers, Changes, Changesources, Forceschedulers, Masters, Schedulers,
Sourcestamps

• The collections returns without using an accessor are not automatically updated. So use those
methods only when you know the data are not changing

assign builds to $scope.builds and then load the steps when the builds
→˓are discovered
onNew is called at initial load
$scope.builds = dataService.getBuilds(builderid: 1)
$scope.builds.onNew = (build) ->

build.loadSteps()

.get(endpoint,[id],[query]): returns a <Collection>, when the promise is resolved, the Collection
contains all the requested data

assign builds to $scope.builds once the Collection is filled
builderid = 1
$scope.builds = dataService.get("builders/#{builderid}/builds", limit: 1)
$scope.builds.onNew = (build) ->

build.loadSteps()

3.1. General Documents 297

Buildbot Documentation, Release 0.9.1

assign builds to $scope.builds before the Collection is filled using
→˓the .getArray() function
$scope.builds = dataService.get('builds', builderid: 1)

.control(url,method,[params]): returns a promise, sends a JSON RPC2 POST request to the server

open a new accessor every time you need updating data in a controller
dataService.control('forceschedulers/force', 'force').then (response) ->

$log.debug(response)
, (reason) ->

$log.error(reason)

DataAccessor

DataAccessor object is returned by the dataService.open() method.

Methods:

.closeOnDestroy($scope): registers scope destruction as waterfall destruction for all collection accessed
via this accessor.

.close(): Destruct all collections previously accessed via this accessor. Destroying a collection means it
will unsubscribe to any events necessary to maintain it up-to-date.

.getXs([id],[query]): returns Collection which will eventually contain all the requested data Same
methods as in the dataService, except here the data will be maintained up-to-date.

Collections

.get(id): returns one element of the collection by id, or undefined, if this id is unknown to the collection.
This method does not do any network access, and thus only know about data already fetched.

.hasOwnProperty(id): returns true if this id is known by this collection.

.close(): forcefully unsubscribe this connection from auto-update. Normally, this is done automatically
on scope destruction, but sometimes, when you got enough data, you want to save bandwith and disconnect
the collection.

.put(object): insert one plain object to the collection. As an external API, this method is only useful for
the unit tests to simulate new data coming asynchronously.

.from(object_list): insert several plain objects to the collection. This method is only useful for the
unit tests to simulate new data coming asynchronously.

.onNew = (object) ->: Callback method which is called when a new object arrives in the collection.
This can be called either when initial data is coming via REST api, or when data is coming via the event
stream. The affected object is given in parameter. this context is the collection.

.onUpdate = (object) ->: Callback method which is called when an object is modified. This is
called when data is coming via the event stream. The affected object is given in parameter. this context is
the collection.

.onChange = (collection) ->: Callback method which is called when an object is modified. This
is called when data is coming via the event stream. this context is the collection. The full collection is given
in parameter (in case you override this via fat arrow).

Wrapper

Wrapper objects are objects stored in the collection. Those objects have specific methods, depending on their
types. methods:

298 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.1

.getXs([id],[query]): returns a Collection, when the promise is resolved, the Collection contains all the
requested data

• same as dataService.getXs, but with relative endpoint

assign builds to $scope.builds once the Collection is filled
$scope.builds = dataService.getBuilds(builderid: 1)
$scope.builds.onNew = (b) ->

b.complete_steps = b.getSteps(complete:true)
b.running_steps = b.getSteps(complete:false)

.loadXs([id],[query]): returns a Collection, the Collection contains all the requested data, which is also
assigned to o.Xs

• o.loadXs() is equivalent to o.xs = o.getXs()

get builder with id = 1
dataService.getBuilders(1).onNew = (builder) ->

load all builds in builder.builds
builder.loadBuilds().onNew (build) ->

load all buildsteps in build.steps
build.loadSteps()

.control(method,params): returns a promise, sends a JSON RPC2 POST request to the server

3.1.13 Base web application

JavaScript Application

The client side of the web UI is written in JavaScript and based on the AngularJS framework and concepts.

This is a Single Page Application” (http://en.wikipedia.org/wiki/Single-page_application) All Buildbot pages are
loaded from the same path, at the master’s base URL. The actual content of the page is dictated by the fragment in
the URL (the portion following the # character). Using the fragment is a common JS techique to avoid reloading
the whole page over HTTP when the user changes the URI or clicks a link.

AngularJS

The best place to learn about AngularJS is its own documentation (http://docs.angularjs.org/guide/),

AngularJS strong points are:

• A very powerful MVC system (http://docs.angularjs.org/guide/concepts) allowing automatic update of the
UI, when data changes

• A Testing Framework and philosophy (http://docs.angularjs.org/guide/dev_guide.e2e-testing)

• A deferred system (http://docs.angularjs.org/api/ng.$q) similar to the one from Twisted.

• A fast growing community and ecosystem (http://builtwith.angularjs.org/)

On top of Angular we use nodeJS tools to ease development

• gulp buildsystem, seemlessly build the app, can watch files for modification, rebuild and reload browser in
dev mode. In production mode, the buildsystem minifies html, css and js, so that the final app is only 3 files
to download (+img).

• coffeescript (http://coffeescript.org/), a very expressive langage, preventing some of the major traps of JS.

• jade template langage (http://jade-lang.com/), adds syntax sugar and readbility to angular html templates.

• Bootstrap (http://getbootstrap.com/) is a css library providing know good basis for our styles.

• Font Awesome (http://fortawesome.github.com/Font-Awesome/) is a coherent and large icon library

3.1. General Documents 299

http://en.wikipedia.org/wiki/Single-page_application
http://docs.angularjs.org/guide/
http://docs.angularjs.org/guide/concepts
http://docs.angularjs.org/guide/dev_guide.e2e-testing
http://docs.angularjs.org/api/ng.\protect \T1\textdollar q
http://builtwith.angularjs.org/
http://coffeescript.org/
http://jade-lang.com/
http://getbootstrap.com/
http://fortawesome.github.com/Font-Awesome/

Buildbot Documentation, Release 0.9.1

modules we may or may not want to include:

• momentjs (http://momentjs.com/) is a library implementing human readable relative timings (e.g. “one hour
ago”)

• ngGrid (https://angular-ui.github.io/ui-grid/) is a grid system for full featured searcheable/sortable/csv ex-
portable grids

• angular-UI (http://angular-ui.github.com/) is a collection of jquery based directives and filters. Probably not
very useful for us

• JQuery (http://jquery.com/) the well known JS framework, allows all sort of dom manipulation. Having it
inside allows for all kind of hacks we may want to avoid.

Extensibility

Buildbot UI is designed for extensibility. The base application should be pretty minimal, and only include very
basic status pages. Base application cannot be disabled so any page not absolutely necessary should be put in
plugins. You can also completly replace the default application by another application more suitable to your
needs. The md_base application is an example rewrite of the app using material design libraries.

Some Web plugins are maintained inside buildbot’s git repository, but this is absolutely not necessary. Unofficial
plugins are encouraged, please be creative!

Please look at official plugins for working samples.

Typical plugin source code layout is:

setup.py # standard setup script. Most plugins should use the
→˓same boilerplate, which helps building guanlecoja app as part of the setup.
→˓Minimal adaptation is needed
<pluginname>/__init__.py # python entrypoint. Must contain an "ep" variable of
→˓type buildbot.www.plugin.Application. Minimal adaptation is needed
guanlecoja/config.coffee # Configuration for guanlecoja. Few changes are
→˓needed here. Please see guanlecoja docs for details.
src/.. # source code for the angularjs application. See
→˓guanlecoja doc for more info of how it is working.
package.json # declares npm dependency. normallly, only guanlecoja
→˓is needed. Typically, no change needed
gulpfile.js # entrypoint for gulp, should be a one line call to
→˓guanlecoja. Typically, no change needed
MANIFEST.in # needed by setup.py for sdist generation. You need
→˓to adapt this file to match the name of your plugin

Plugins are packaged as python entry-points for the buildbot.www namespace. The python part is defined in
the buildbot.www.plugin module. The entrypoint must contain a twisted.web Resource, that is populated in the
web server in /<pluginname>/.

The front-end part of the plugin system automatically loads /<pluginname>/scripts.js and /<plugin-
name>/styles.css into the angular.js application. The scripts.js files can register itself as a dependency to the
main “app” module, register some new states to $stateProvider, or new menu items via glMenuProvider.

The entrypoint containing a Resource, nothing forbids plugin writers to add more REST apis in /<plugin-
name>/api. For that, a reference to the master singleton is provided in master attribute of the Application
entrypoint. You are even not restricted to twisted, and could even load a wsgi application using flask, django, etc
(http://twistedmatrix.com/documents/13.1.0/web/howto/web-in-60/wsgi.html).

Routing

AngularJS uses router to match URL and choose which page to display. The router we use is ui.router. Menu
is managed by guanlecoja-ui’s glMenuProvider. Please look at ui.router, and guanlecoja-ui documentation for
details.

300 Chapter 3. Buildbot Development

http://momentjs.com/
https://angular-ui.github.io/ui-grid/
http://angular-ui.github.com/
http://jquery.com/
http://twistedmatrix.com/documents/13.1.0/web/howto/web-in-60/wsgi.html

Buildbot Documentation, Release 0.9.1

Typically, a route regitration will look like following example.

ng-classify declaration. Declares a config class
class State extends Config

Dependancy injection: we inject $stateProvider and glMenuServiceProvider
constructor: ($stateProvider, glMenuServiceProvider) ->

Name of the state
name = 'console'

Menu configuration.
glMenuServiceProvider.addGroup

name: name
caption: 'Console View' # text of the menu
icon: 'exclamation-circle' # icon, from Font-Awesome
order: 5 # order in the menu, as menu are declared

→˓in several places, we need this to control menu order

Configuration for the menu-item, here we only have one menu item per
→˓menu, glMenuProvider won't create submenus

cfg =
group: name
caption: 'Console View'

Register new state
state =

controller: "#{name}Controller"
controllerAs: "c"
templateUrl: "console_view/views/#{name}.html"
name: name
url: "/#{name}"
data: cfg

$stateProvider.state(state)

Directives

We use angular directives as much as possible to implement reusable UI components.

Linking with Buildbot

A running buildmaster needs to be able to find the JavaScript source code it needs to serve the UI. This needs
to work in a variety of contexts - Python development, JavaScript development, and end-user installations. To
accomplish this, the gulp build process finishes by bundling all of the static data into a Python distribution tarball,
along with a little bit of Python glue. The Python glue implements the interface described below, with some care
taken to handle multiple contexts.

Hacking Quick-Start

This section describes how to get set up quickly to hack on the JavaScript UI. It does not assume familiarity with
Python, although a Python installation is required, as well as virtualenv. You will also need NodeJS, and
npm installed.

Prerequisites

3.1. General Documents 301

Buildbot Documentation, Release 0.9.1

Note: Buildbot UI is only tested to build on node 4.x.x.

• Install LTS release of node.js.

http://nodejs.org/ is a good start for windows and osx

For Linux, as node.js is evolving very fast, distros versions are often too old, and sometimes distro main-
tainers make incompatible changes (i.e naming node binary nodejs instead of node) For Ubuntu and other
Debian based distros, you want to use following method:

curl -sL https://deb.nodesource.com/setup_4.x | sudo bash -

Please feel free to update this documentation for other distros. Know good source for Linux binary distri-
bution is: https://github.com/nodesource/distributions

• Install gulp globally. Gulp is the build system used for coffeescript development.

sudo npm install -g gulp

Hacking the Buildbot JavaScript

To effectively hack on the Buildbot JavaScript, you’ll need a running Buildmaster, configured to operate out of
the source directory (unless you like editing minified JS). Start by cloning the project and its git submodules:

git clone git://github.com/buildbot/buildbot.git

In the root of the source tree, create and activate a virtualenv to install everything in:

virtualenv sandbox
source sandbox/bin/activate

This creates an isolated Python environment in which you can install packages without affecting other parts of the
system. You should see (sandbox) in your shell prompt, indicating the sandbox is activated.

Next, install the Buildbot-WWW and Buildbot packages using --editable, which means that they should
execute from the source directory.

pip install --editable pkg
pip install --editable master/
make frontend

This will fetch a number of dependencies from pypi, the Python package repository. This will also fetch a bunch a
bunch of node.js dependencies used for building the web application, and a bunch of client side js dependencies,
with bower

Now you’ll need to create a master instance. For a bit more detail, see the Buildbot tutorial (First Run).

buildbot create-master sandbox/testmaster
mv sandbox/testmaster/master.cfg.sample sandbox/testmaster/master.cfg
buildbot start sandbox/testmaster

If all goes well, the master will start up and begin running in the background. As you just installed www in
editable mode (aka ‘develop’ mode), setup.py did build the web site in prod mode, so the everything is minified,
making it hard to debug.

When doing web development, you usually run:

cd www/base
gulp dev

This will compile the base webapp in development mode, and automatically rebuild when files change.

302 Chapter 3. Buildbot Development

http://nodejs.org/
https://github.com/nodesource/distributions

Buildbot Documentation, Release 0.9.1

Testing with real data

Front-end only hackers might want to just skip the master and worker setup, and just focus on the UI. It can also
be very useful to just try the UI with real data from your production. For those use-cases, gulp dev proxy
can be used.

This tool is a small nodejs app integrated in the gulp build that can proxy the data and websocket api from a
production server to your development environment. Having a proxy is slightly slower, but this can be very useful
for testing with real complex data.

You still need to have python virtualenv configured with master package installed, like we described in previous
paragraph.

Provided you run it in a buildbot master virtualenv, the following command will start the UI and redirect the api
calls to the nine demo server:

gulp dev proxy --host nine.buildbot.net

You can then just point your browser to localhost:8010, and you will access http://nine.buildbot.net, with your
own version of the UI.

Guanlecoja

Buildbot’s build environment has been factorized for reuse in other projects and plugins, and is callsed Guanlecoja.

The documentation and meaning of this name is maintained in Guanlecoja’s own site. https://github.com/buildbot/
guanlecoja/

Testing Setup

buildbot_www uses Karma (http://karma-runner.github.io) to run the coffeescript test suite. This is the official test
framework made for angular.js. We don’t run the front-end testsuite inside the python ‘trial’ test suite, because
testing python and JS is technically very different.

Karma needs a browser to run the unit test in. It supports all the major browsers. Given our current experience,
we did not see any bugs yet that would only happen on a particular browser this is the reason that at the moment,
only headless browser “PhantomJS” is used for testing.

We enforce that the tests are run all the time after build. This does not impact the build time by a great factor, and
simplify the workflow.

In some case, this might not be desirable, for example if you run the build on headless system, without X. Phan-
tomJS, even if it is headless needs a X server like xvfb. In the case where you are having difficulties to run
Phantomjs, you can build without the tests using the command:

gulp prod --notests

Debug with karma

console.log is available via karma. In order to debug the unit tests, you can also use the global variable dump,
which dumps any object for inspection in the console. This can be handy to be sure that you dont let debug logs
in your code to always use dump

3.1.14 Material design Base application

md_base is a complete replacement for the bootstrap based base application. It’s UI is based on google’s
Material Design libraries.

3.1. General Documents 303

http://nine.buildbot.net
https://github.com/buildbot/guanlecoja/
https://github.com/buildbot/guanlecoja/
http://karma-runner.github.io

Buildbot Documentation, Release 0.9.1

Status

md-base is currently not really usable as the default UI, see the list of issues bug #3397
(http://trac.buildbot.net/ticket/3397).

3.1.15 Authentication

Buildbot’s HTTP authentication subsystem supports a rich set of information about users:

• User credentials: Username and proof of ownership of that username.

• User information: Additional information about the user, including

– email address

– full name

– group membership

• Avatar information: a small image to represent the user.

Buildbot’s authentication subsystem is designed to support several authentication modes:

• Simple username/password authentication. The Buildbot UI prompts for a username and password and
the backend verifies them.

• External authentication by an HTTP Proxy. An HTTP proxy in front of Buildbot performs the authenti-
cation and passes the verified username to Buildbot in an HTTP Header.

• Authentication by a third-party website. Buildbot sends the user to another site such as GitHub to au-
thenticate and receives a trustworty assertion of the user’s identity from that site.

Implementation

Authentication is implemented by an instance of AuthBase. This instance is supplied directly by the user in the
configuration file. A reference to the instance is available at self.master.www.auth.

Username / Password Authentication

In this mode, the Buildbot UI displays a form allowing the user to specify a username and password. When this
form is submitted, the UI makes an AJAX call to /auth/login including HTTP Basic Authentication headers.
The master verifies the contents of the header and updates the server-side session to indicate a successful login or
to contain a failure message. Once the AJAX call is complete, the UI reloads the page, re-fetching /config.js,
which will include the username or failure message from the session.

Subsequent access is authorized based on the information in the session; the authentication credentials are not sent
again.

External Authentication

Buildbot’s web service can be run behind an HTTP proxy. Many such proxies can be configured to perform
authentication on HTTP connections before forwarding the request to Buildbot. In these cases, the results of the
authentication are passed to Buildbot in an HTTP header.

In this mode, authentication proceeds as follows:

• The web browser connects to the proxy, requesting the Buildbot home page

• The proxy negotiates authentication with the browser, as configured

• Once the user is authenticated, the proxy forwards the request goes to the Buildbot web service. The request
includes a header, typically Remote-User, containing the authenticated username.

304 Chapter 3. Buildbot Development

http://trac.buildbot.net/ticket/3397

Buildbot Documentation, Release 0.9.1

• Buildbot reads the header and optionally connects to another service to fetch additional user information
about the user.

• Buildbot stores all of the collected information in the server-side session.

• The UI fetches /config.js, which includes the user information from the server-side session.

Note that in this mode, the HTTP proxy will send the header with every request, although it is only interpreted
during the fetch of /config.js.

Kerberos Example

Kerberos is an authentication system which allows passwordless authentication on corporate networks. Users
authenticate once on their desktop environment, and the OS, browser, webserver, and corporate directory coop-
erate in a secure manner to share the authentication to a webserver. This mechanism only takes care about the
authentication problem, and no user information is shared other than the username. The kerberos authentication
is supported by a Apache front-end in mod_kerberos.

Third-Party Authentication

Third-party authentication involves Buildbot redirecting a user’s browser to another site to establish the user’s
identity. Once that is complete, that site redirects the user back to Buildbot, including a cryptographically signed
assertion about the user’s identity.

The most common implementation of this sort of authentication is oAuth2. Many big internet service companies
are providing oAuth2 services to identify their users. Most oAuth2 services provide authentication and user
information in the same api.

The following process is used for third-party authentication:

• The web browser connects to buildbot ui

• A session cookie is created, but user is not yet authenticated. The UI adds a widget entitled Login via
GitHub (or whatever third party is configured)

• When the user clicks on the widget, the UI fetches /auth/login, which returns a bare URL on
github.com. The UI loads that URL in the browser, with an effect similar to a redirect.

• GitHub authenticates the user, if necessary, and requests permission for Buildbot to access the user’s infor-
mation.

• On success, the GitHub web page redirects back to Buildbot’s /auth/login?code=.., with an authen-
tication code.

• Buildbot uses this code to request more information from GitHub, and stores the results in the server-side
session. Finally, Buildbot returns a redirect response, sending the user’s browser to the root of the Buildbot
UI. The UI code will fetch /config.js, which contains the login data from the session.

Logout

A “logout” button is available in the simple and third-party modes. Such a button doesn’t make sense for external
authentication, since the proxy will immediately re-authenticate the user.

This button fetches /auth/logout, which destroys the server-side session. After this point, any stored authen-
tication information is gone and the user is logged out.

Future Additions

• Browserid/Persona: This method is very similar to oauth2, and should be implemented in a similar way (i.e.
two stage redirect + token-verify)

3.1. General Documents 305

Buildbot Documentation, Release 0.9.1

• Use the User table in db: This is a very similar to the UserPasswordAuth use cases (form + local db
verification). Eventually, this method will require some work on the UI in order to populate the db, add a
“register” button, verification email, etc. This has to be done in a ui plugin.

3.1.16 Authorization

Buildbot authorization is designed to address the following requirements

• Most of the configuration is only data: We avoid to require user to write callbacks for most of the use cases.
This to allow to load the config from yaml or json and eventually do a UI for authorization config.

• Separation of concerns:

– Mapping users to roles

– Mapping roles to REST endpoints.

• Configuration should not need hardcoding endpoint paths.

• Easy to extend

Use cases

• Members of admin group should have access to all resources and actions

• developers can run the “try” builders

• Integrators can run the “merge” builders

• Release team can run the “release” builders

• There are separate teams for different branches or projects, but the roles are identic

• Owners of builds can stop builds or buildrequests

• Secret branch’s builds are hidden from people except explicitly authorized

3.1.17 Master-Worker API

This section describes the master-worker interface. It covers communication protocol of “classic” remote Worker,
notice that there is other types of workers which behave a bit different, such as Local Worker and Latent Workers.

Connection

The interface is based on Twisted’s Perspective Broker, which operates over TCP connections.

The worker connects to the master, using the parameters supplied to buildbot-worker create-worker.
It uses a reconnecting process with an exponential backoff, and will automatically reconnect on disconnection.

Once connected, the worker authenticates with the Twisted Cred (newcred) mechanism, using the username and
password supplied to buildbot-worker create-worker. The mind is the worker bot instance (class
buildbot_worker.pb.BotPb).

On the master side, the realm is implemented by buildbot.pbmanager.Dispatcher, which examines
the username of incoming avatar requests. There are special cases for change, debug, and statusClient,
which are not discussed here. For all other usernames, the botmaster is consulted, and if a worker with that name
is configured, its buildbot.worker.Worker instance is returned as the perspective.

306 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.1

Workers

At this point, the master-side Worker object has a pointer to the remote, worker-side Bot object in its
self.worker, and the worker-side Bot object has a reference to the master-side Worker object in its
self.perspective.

Bot methods

The worker-side Bot object has the following remote methods:

remote_getCommands Returns a dictionary for all commands the worker recognizes: the key of the dictio-
nary is command name and command version is the value.

remote_setBuilderList Given a list of builders and their build directories, ensures that those builders, and
only those builders, are running. This can be called after the initial connection is established, with a new
list, to add or remove builders.

This method returns a dictionary of WorkerForBuilder objects - see below.

remote_print Adds a message to the worker logfile.

remote_getWorkerInfo Returns dictionary with the contents of the worker’s info/ directory (i.e. file
name is used as key and file contents as the value). This dictionary also contains the keys

environ copy of the workers environment

system OS the worker is running (extracted from Python’s os.name)

basedir base directory where worker is running

numcpus number of CPUs on the worker, either as configured or as detected (since buildbot-worker
version 0.9.0)

version worker’s version (same as the result of remote_getVersion call)

worker_commands worker supported commands (same as the result of remote_getCommands call)

remote_getVersion Returns the worker’s version.

remote_shutdown Shuts down the worker cleanly.

Worker methods

The master-side object has the following method:

perspective_keepalive Does nothing - used to keep traffic flowing over the TCP connection

Setup

After the initial connection and trading of a mind (buildbot_worker.pb.BotPb) for an avatar (Worker), the
master calls the Bot’s setBuilderList method to set up the proper builders on the worker side. This method
returns a reference to each of the new worker-side WorkerForBuilderPb objects, described below. Each of
these is handed to the corresponding master-side WorkerForBuilder object.

This immediately calls the remote setMaster method, then the print method.

Pinging

To ping a remote Worker, the master calls its print method.

3.1. General Documents 307

Buildbot Documentation, Release 0.9.1

Building

When a build starts, the master calls the worker’s startBuild method. Each BuildStep instance will sub-
sequently call the startCommand method, passing a reference to itself as the stepRef parameter. The
startCommand method returns immediately, and the end of the command is signalled with a call to a method
on the master-side BuildStep object.

Worker For Builders

Each worker has a set of builders which can run on it. These are represented by distinct classes on the master and
worker, just like the Worker and Bot objects described above.

On the worker side, builders are represented as instances of the buildbot_worker.pb.WorkerForBuilderPb
class. On the master side, they are represented by the buildbot.process.workerforbuilder.WorkerForBuilder
class. The identical names are a source of confusion. The following will refer to these as the worker-side and
master-side Worker For Builder classes. Each object keeps a reference to its opposite in self.remote.

Worker-Side WorkerForBuilderPb Methods

remote_setMaster Provides a reference to the master-side Worker For Builder

remote_print Adds a message to the worker logfile; used to check round-trip connectivity

remote_startBuild Indicates that a build is about to start, and that any subsequent commands are part of
that build

remote_startCommand Invokes a command on the worker side

remote_interruptCommand Interrupts the currently-running command

Master-side WorkerForBuilder Methods

The master side does not have any remotely-callable methods.

Commands

Actual work done by the worker is represented on the master side by a
buildbot.process.remotecommand.RemoteCommand instance.

The command instance keeps a reference to the worker-side buildbot_worker.pb.WorkerForBuilderPb,
and calls methods like remote_startCommand to start new commands. Once that method is called, the
WorkerForBuilderPb instance keeps a reference to the command, and calls the following methods on it:

Master-Side RemoteCommand Methods

remote_update Update information about the running command. See below for the format.

remote_complete Signal that the command is complete, either successfully or with a Twisted failure.

Updates

Updates from the worker, sent via remote_update, are a list of individual update elements. Each update
element is, in turn, a list of the form [data,0] where the 0 is present for historical reasons. The data is a
dictionary, with keys describing the contents. The updates are handled by remote_update.

Updates with different keys can be combined into a single dictionary or delivered sequentially as list elements, at
the worker’s option.

308 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.1

To summarize, an updates parameter to remote_update might look like this:

[
[{ 'header' : 'running command..' }, 0],
[{ 'stdout' : 'abcd', 'stderr' : 'local modifications' }, 0],
[{ 'log' : ('cmd.log', 'cmd invoked at 12:33 pm\n') }, 0],
[{ 'rc' : 0 }, 0],

]

Defined Commands

The following commands are defined on the workers.

shell

Runs a shell command on the worker. This command takes the following arguments:

command

The command to run. If this is a string, will be passed to the system shell as a string. Otherwise, it
must be a list, which will be executed directly.

workdir

Directory in which to run the command, relative to the builder dir.

env

A dictionary of environment variables to augment or replace the existing environment on the worker.
In this dictionary, PYTHONPATH is treated specially: it should be a list of path components, rather
than a string, and will be prepended to the existing Python path.

initial_stdin

A string which will be written to the command’s standard input before it is closed.

want_stdout

If false, then no updates will be sent for stdout.

want_stderr

If false, then no updates will be sent for stderr.

usePTY

If true, the command should be run with a PTY (POSIX only). This defaults to False.

not_really

If true, skip execution and return an update with rc=0.

timeout

Maximum time without output before the command is killed.

maxTime

Maximum overall time from the start before the command is killed.

logfiles

A dictionary specifying logfiles other than stdio. Keys are the logfile names, and values give the
workdir-relative filename of the logfile. Alternately, a value can be a dictionary; in this case, the
dictionary must have a filename key specifying the filename, and can also have the following
keys:

follow

3.1. General Documents 309

Buildbot Documentation, Release 0.9.1

Only follow the file from its current end-of-file, rather that starting from the beginning.

logEnviron

If false, the command’s environment will not be logged.

The shell command sends the following updates:

stdout The data is a bytestring which represents a continuation of the stdout stream. Note that the bytestring
boundaries are not necessarily aligned with newlines.

stderr Similar to stdout, but for the error stream.

header Similar to stdout, but containing data for a stream of Buildbot-specific metadata.

rc The exit status of the command, where – in keeping with UNIX tradition – 0 indicates success and any nonzero
value is considered a failure. No further updates should be sent after an rc.

log This update contains data for a logfile other than stdio. The data associated with the update is a tuple of
the log name and the data for that log. Note that non-stdio logs do not distinguish output, error, and header
streams.

uploadFile

Upload a file from the worker to the master. The arguments are

workdir

The base directory for the filename, relative to the builder’s basedir.

workersrc

Name of the filename to read from., relative to the workdir.

writer

A remote reference to a writer object, described below.

maxsize

Maximum size, in bytes, of the file to write. The operation will fail if the file exceeds this size.

blocksize

The block size with which to transfer the file.

keepstamp

If true, preserve the file modified and accessed times.

The worker calls a few remote methods on the writer object. First, the write method is called with a bytestring
containing data, until all of the data has been transmitted. Then, the worker calls the writer’s close, followed (if
keepstamp is true) by a call to upload(atime,mtime).

This command sends rc and stderr updates, as defined for the shell command.

uploadDirectory

Similar to uploadFile, this command will upload an entire directory to the master, in the form of a tarball. It
takes the following arguments:

workdir workersrc writer maxsize blocksize

See uploadFile

compress

Compression algorithm to use – one of None, 'bz2', or 'gz'.

310 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.1

The writer object is treated similarly to the uploadFile command, but after the file is closed, the worker calls
the master’s unpack method with no arguments to extract the tarball.

This command sends rc and stderr updates, as defined for the shell command.

downloadFile

This command will download a file from the master to the worker. It takes the following arguments:

workdir

Base directory for the destination filename, relative to the builder basedir.

workerdest

Filename to write to, relative to the workdir.

reader

A remote reference to a reader object, described below.

maxsize

Maximum size of the file.

blocksize

The block size with which to transfer the file.

mode

Access mode for the new file.

The reader object’s read(maxsize) method will be called with a maximum size, which will return no more
than that number of bytes as a bytestring. At EOF, it will return an empty string. Once EOF is received, the worker
will call the remote close method.

This command sends rc and stderr updates, as defined for the shell command.

mkdir

This command will create a directory on the worker. It will also create any intervening directories required. It
takes the following argument:

dir

Directory to create.

The mkdir command produces the same updates as shell.

rmdir

This command will remove a directory or file on the worker. It takes the following arguments:

dir

Directory to remove.

timeout maxTime

See shell, above.

The rmdir command produces the same updates as shell.

3.1. General Documents 311

Buildbot Documentation, Release 0.9.1

cpdir

This command will copy a directory from place to place on the worker. It takes the following arguments:

fromdir

Source directory for the copy operation, relative to the builder’s basedir.

todir

Destination directory for the copy operation, relative to the builder’s basedir.

timeout maxTime

See shell, above.

The cpdir command produces the same updates as shell.

stat

This command returns status information about a file or directory. It takes a single parameter, file, specifying
the filename relative to the builder’s basedir.

It produces two status updates:

stat

The return value from Python’s os.stat.

rc

0 if the file is found, otherwise 1.

glob

This command finds all pathnames matching a specified pattern that uses shell-style wildcards. It takes a single
parameter, path, specifying the pattern to pass to Python’s glob.glob function.

It produces two status updates:

files

The list of matching files returned from glob.glob

rc

0 if the glob.glob does not raise exception, otherwise 1.

listdir

This command reads the directory and returns the list with directory contents. It takes a single parameter, dir,
specifying the directory relative to builder’s basedir.

It produces two status updates:

files

The list of files in the directory returned from os.listdir

rc

0 if the os.listdir does not raise exception, otherwise 1.

312 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.1

3.1.18 Claiming Build Requests

At Buildbot’s core, it is a distributed job (build) scheduling engine. Future builds are represented by build requests,
which are created by schedulers.

When a new build request is created, it is added to the buildrequests table and an appropriate message is
sent.

Distributing

Each master distributes build requests among its builders by examining the list of available build requests, avail-
able workers, and accounting for user configuration for build request priority, worker priority, and so on. This
distribution process is re-run whenever an event occurs that may allow a new build to start.

Such events can be signalled to master with

• maybeStartBuildsForBuilder when a single builder is affected;

• maybeStartBuildsForWorker when a single worker is affected; or

• maybeStartBuildsForAllBuilders when all builders may be affected.

In particular, when a master receives a new-build-request message, it performs the equivalent of
maybeStartBuildsForBuilder for the affected builder.

Claiming

If circumstances are right for a master to begin a build, then it attempts to “claim” the build request. In fact, if
several build requests were merged, it attempts to claim them as a group, using the claimBuildRequests
DB method. This method uses transactions and an insert into the buildrequest_claims table to ensure that
exactly one master succeeds in claiming any particular build request.

If the claim fails, then another master has claimed the affected build requests, and the attempt is abandoned.

If the claim succeeds, then the master sends a message indicating that it has claimed the request. This message
can be used by other masters to abandon their attempts to claim this request, although this is not yet implemented.

If the build request is later abandoned (as can happen if, for example, the worker has disappeared), then master
will send a message indicating that the request is again unclaimed; like a new-buildrequest message, this message
indicates that other masters should try to distribute it once again.

The One That Got Away

The claiming process is complex, and things can go wrong at just about any point. Through master failures or
message/database race conditions, it’s quite possible for a build request to be “missed”, even when resources are
available to process it.

To account for this possibility, masters periodically poll the buildrequests table for unclaimed requests and
try to distribute them. This resiliency avoids “lost” build requests, at the small cost of a polling delay before the
requests are scheduled.

3.1.19 String Encodings

Buildbot expects all strings used internally to be valid Unicode strings - not bytestrings.

Note that Buildbot rarely feeds strings back into external tools in such a way that those strings must match. For
example, Buildbot does not attempt to access the filenames specified in a Change. So it is more important to store
strings in a manner that will be most useful to a human reader (e.g., in logfiles, web status, etc.) than to store them
in a lossless format.

3.1. General Documents 313

Buildbot Documentation, Release 0.9.1

Inputs

On input, strings should be decoded, if their encoding is known. Where necessary, the assumed input encoding
should be configurable. In some cases, such as filenames, this encoding is not known or not well-defined (e.g., a
utf-8 encoded filename in a latin-1 directory). In these cases, the input mechanisms should make a best effort at
decoding, and use e.g., the errors='replace' option to fail gracefully on un-decodable characters.

Outputs

At most points where Buildbot outputs a string, the target encoding is known. For example, the web status
can encode to utf-8. In cases where it is not known, it should be configurable, with a safe fallback (e.g., ascii
with errors='replace'. For HTML/XML outputs, consider using errors='xmlcharrefreplace'
instead.

3.1.20 Metrics

New in buildbot 0.8.4 is support for tracking various performance metrics inside the buildbot master process.
Currently these are logged periodically according to the log_interval configuration setting of the metrics
configuration.

The metrics subsystem is implemented in buildbot.process.metrics. It makes use of twisted’s logging
system to pass metrics data from all over buildbot’s code to a central MetricsLogObserver object, which is
available at BuildMaster.metrics or via Status.getMetrics().

Metric Events

MetricEvent objects represent individual items to monitor. There are three sub-classes implemented:

MetricCountEvent Records incremental increase or decrease of some value, or an absolute measure of some
value.

from buildbot.process.metrics import MetricCountEvent

We got a new widget!
MetricCountEvent.log('num_widgets', 1)

We have exactly 10 widgets
MetricCountEvent.log('num_widgets', 10, absolute=True)

MetricTimeEvent Measures how long things take. By default the average of the last 10 times will be reported.

from buildbot.process.metrics import MetricTimeEvent

function took 0.001s
MetricTimeEvent.log('time_function', 0.001)

MetricAlarmEvent Indicates the health of various metrics.

from buildbot.process.metrics import MetricAlarmEvent, ALARM_OK

num_workers looks ok
MetricAlarmEvent.log('num_workers', level=ALARM_OK)

Metric Handlers

MetricsHandler objects are responsible for collecting MetricEvents of a specific type and keeping
track of their values for future reporting. There are MetricsHandler classes corresponding to each of the
MetricEvent types.

314 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.1

Metric Watchers

Watcher objects can be added to MetricsHandlers to be called when metric events of a certain type are
received. Watchers are generally used to record alarm events in response to count or time events.

Metric Helpers

countMethod(name) A function decorator that counts how many times the function is called.

from buildbot.process.metrics import countMethod

@countMethod('foo_called')
def foo():

return "foo!"

Timer(name) Timer objects can be used to make timing events easier. When Timer.stop() is called, a
MetricTimeEvent is logged with the elapsed time since timer.start() was called.

from buildbot.process.metrics import Timer

def foo():
t = Timer('time_foo')
t.start()
try:

for i in range(1000):
calc(i)

return "foo!"
finally:

t.stop()

Timer objects also provide a pair of decorators, startTimer/stopTimer to decorate other functions.

from buildbot.process.metrics import Timer

t = Timer('time_thing')

@t.startTimer
def foo():

return "foo!"

@t.stopTimer
def bar():

return "bar!"

foo()
bar()

timeMethod(name) A function decorator that measures how long a function takes to execute. Note that many
functions in buildbot return deferreds, so may return before all the work they set up has completed. Using
an explicit Timer is better in this case.

from buildbot.process.metrics import timeMethod

@timeMethod('time_foo')
def foo():

for i in range(1000):
calc(i)

return "foo!"

3.1. General Documents 315

Buildbot Documentation, Release 0.9.1

3.1.21 Statistics Service

The statistic service (or stats service) is implemented in buildbot.statistics.stats_service. Please
see stats-service for more information.

Here is a diagram demonstrating the working of the stats service:

Stats Service

class buildbot.statistics.stats_service.StatsService
An instance of this class functions as a BuildbotService. The instance of the running service
is initialized in the master configuration file (see stats-service for more information). The run-
ning service is accessible everywhere in Buildbot via the BuildMaster. The service is available at
self.master.namedServices['<service-name>']. It takes the following intialization argu-
ments:

storage_backends A list of storage backends. These are instance of subclasses of
StatsStorageBase.

name (str) The name of this service. This name can be used to access the running instance of this service
using self.master.namedServices[name].

Please see stats-service for examples.

checkConfig(self, storage_backends)

storage_backends A list of storage backends.

This method is called automatically to verify that the list of storage backends contains instances of
subclasses of StatsStorageBase.

reconfigService(self, storage_backends)

storage_backends A list of storage backends.

This mehtod is called automatically to reconfigure the running service.

registerConsumers(self)
Internal method for this class called to register all consumers (methods from Capture classes) to the
MQ layer.

316 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.1

stopService(self)
Internal method for this class to stop the stats service and clean up.

removeConsumers(self)
Internal method for this class to stop and remove consumers from the MQ layer.

yieldMetricsValue(self, data_name, post_data, buildid)

data_name (str) The name of the data being sent or storage.

post_data A dictionary of key value pair that is sent for storage.

buildid The integer build id of the current build. Obtainable in all BuildSteps.

This method should be called to post data that is not generated and stored as build-data in the database.
This method generates the stats-yield-data event to the mq layer which is then consumed in
postData.

Storage backends

Storage backends are responsible for storing any statistics/data sent to them. A storage backend will generally
be some sort of a database-server running on a machine. .. note:: This machine may be different from the one
running BuildMaster

Data is captured according to the master config file and then, is sent to each of the storage backends provided by
the master configuration (see stats-service).

Each storage backend has a Python client defined as part of buildbot.statistics.storage_backends
to aid in posting data by StatsService.

Currently, only InfluxDB (https://influxdata.com/time-series-platform/influxdb/) is supported as a storage back-
end.

class buildbot.statistis.storage_backends.base.StatsStorageBase
A abstract class for all storage services. It cannot be directly initialized - it would raise a TypeError
otherwise.

thd_postStatsValue(self, post_data, series_name, context)

post_data A dict of key-value pairs that is sent for storage. The keys of this dict can be thought of
as columns in a database and the value is the data stored for that column.

series_name (str) The name of the time-series for this statistic.

context (Optional) Any other contextual information about the data. It is a dict of key-value pairs.

An abstract method that needs to be implemented by every child class of this class. Not doing so will
result result in a TypeError when starting Buildbot.

class buildbot.statistics.storage_backends.influxdb_client.InfluxStorageService
InfluxDB (https://influxdata.com/time-series-platform/influxdb/) is a distributed, time series database that
employs a key-value pair storage system.

This class is a Buildbot client to the InfluxDB storage backend. It is available in the configuration as
statistics.InfluxStorageService. It takes the following initialization arguments:

url (str) The URL where the service is running.

port (int) The port on which the service is listening.

user (str) Username of a InfluxDB user.

password (str) Password for user.

db (str) The name of database to be used.

captures A list of instances of subclasses of Capture. This tells which stats are to be stored in this
storage backend.

3.1. General Documents 317

https://influxdata.com/time-series-platform/influxdb/
https://influxdata.com/time-series-platform/influxdb/

Buildbot Documentation, Release 0.9.1

name=None (Optional) (str) The name of this storage backend.

thd_postStatsValue(self, post_data, series_name, context={})

post_data A dict of key-value pairs that is sent for storage. The keys of this dict can be thought of
as columns in a database and the value is the data stored for that column.

series_name (str) The name of the time-series for this statistic.

context (Optional) Any other contextual information about the data. It is a dict of key-value pairs.

This method constructs a dictionary of data to be sent to InfluxDB in the proper format and sends the
data to the influxDB instance.

Capture Classes

Capture classes are used for declaring which data needs to captured and sent to storage backends for storage.

class buildbot.statistics.capture.Capture
This is the abstract base class for all capture classes. Not to be used directly. Initlized with the following
parameters:

routingKey (tuple) The routing key to be used by StatsService to register consumers to the MQ
layer for the subclass of this class.

callback The callback registered with the MQ layer for the consumer of a subclass of this class. Each
subclass must provide a default callback for this purpose.

_defaultContext(self, msg):
A method for providing default context to the storage backends.

consume(self, routingKey, msg):
This is an abstract method - each subclass of this class should implement its own consume method. If
not, then the subclass can’t be instantiated. The consume method, when called (from the mq layer),
receives the following arguments:

routingKey The routing key which was registered to the MQ layer. Same as the routingKey
provided to instantiate this class.

msg The message that was sent by the producer.

_store(self, post_data, series_name, context):
This is an abstract method of this class. It must be implemented by all subclasses of this class. It takes
the following arguments:

post_data (dict) The key-value pair being sent to the storage backend.

series_name (str) The name of the series to which this data is stored.

context (dict) Any additional information pertaining to data being sent.

class buildbot.statistics.capture.CapturePropertyBase
This is a base class for both CaptureProperty and CapturePropertyAllBuilders and abstracts
away much of the common functionaltiy between the two classes. Cannot be initialzed directly as it contains
an abstract method and raises TypeError if tried. It is intialized with the following arguments:

property_name (str) The name of property needed to be recorded as a statistic. This can be a regular
expression if regex=True (see below).

callback=None The callback function that is used by CaptureProperty.consumer to post-
process data before formatting it and sending it to the appropriate storage backends. A default callback
needs to be prois provided for this.

The default callback:

default_callback(props, property_name)

It returns property value for property_name. It receives the following arguments:

318 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.1

props A dictionary of all build properties.

property_name (str) Name of the build property to return.

regex=False If this is set to True, then the property name can be a regular expression. All properties
matching this regular expression will be sent for storage.

consume(self, routingKey, msg)
The consumer for all CaptureProperty classes described below. This method filters out the correct
properties as per the configuration file and sends those properties for storage. The subclasses of this
method do not need to implement this method as it takes care of all the functionaltiy itself. See
Capture for more information.

_builder_name_matches(self, builder_info):
This is an abstract method and needs to be implemented by all subclasses of this class. This is a helper
method to the consume method metioned above. It checks whether a builder is allowed to send
properties to the storage backend according to the configuration file. It takes one argument:

builder_info (dict) The dictionary returned by the data API containing the builder information.

class buildbot.statistics.capture.CaptureProperty
The capture class for capturing build properties. It is available in the configuration as
statistics.CaptureProperty

It takes the following arguments:

builder_name (str) The name of builder in which the property is recorded.

property_name (str) The name of property needed to be recorded as a statistic.

callback=None The callback function that is used by CaptureProperty.consumer to post-
process data before formatting it and sending it to the appropriate storage backends. A default callback
is provided for this (see CapturePropertyBase for more information).

regex=False If this is set to True, then the property name can be a regular expression. All properties
matching this regular expression will be sent for storage.

_builder_name_matches(self, builder_info)
See CapturePropertyBase for more information on this method.

class buildbot.statistics.capture.CapturePropertyAllBuilders
The capture class to use for capturing build properties on all builders. It is available in the configuration as
statistics.CaptureProperty

It takes the following arguments:

property_name (str) The name of property needed to be recorded as a statistic.

callback=None The callback function that is used by CaptureProperty.consumer to post-
process data before formatting it and sending it to the appropriate storage backends. A default callback
is provided for this (see CapturePropertyBase for more information).

regex=False If this is set to True, then the property name can be a regular expression. All properties
matching this regular expression will be sent for storage.

_builder_name_matches(self, builder_info)
See CapturePropertyBase for more information on this method.

class buildbot.statistics.capture.CaptureBuildTimes
A base class for all Capture classes that deal with build times (start/end/duration). Not to be used directly.
Initialized with:

builder_name (str) The name of builder whose times are to be recorded.

callback The callback function that is used by subclass of this class to post-process data before format-
ting it and sending it to the appropriate storage backends. A default callback is provided for this. Each
subclass must provide a deafault callback that is used in initialization of this class should the user not
provide a callback.

3.1. General Documents 319

Buildbot Documentation, Release 0.9.1

consume(self, routingKey, msg)
The consumer for all subclasses of this class. See Capture for more information. .. note:: This
consumer requires all subclasses to implement:

self._time_type (property) A string used as a key in post_data sent to sotrage services.

self._retValParams(msg) (method) A method that takes in the msg this consumer gets and
returns a list of arguments for the capture callback.

_retValParams(self, msg)
This is an abstract method which needs to be implemented by subclassses. This method needs to
return a list of parameters that will be passed to the callback function. See individual build
CaptureBuild* classes for more information.

_err_msg(self, build_data, builder_name)
A helper method that returns an error message for the consume method.

_builder_name_matches(self, builder_info)
This is an abstract method and needs to be implemented by all subclasses of this class. This is a helper
method to the consume method metioned above. It checks whether a builder is allowed to send build
times to the storage backend according to the configuration file. It takes one argument:

builder_info (dict) The dictionary returned by the data API containing the builder information.

class buildbot.statistics.capture.CaptureBuildStartTime
A capture class for capturing build start times. It takes the following arguments:

builder_name (str) The name of builder whose times are to be recorded.

callback=None The callback function for this class. See CaptureBuildTimes for more informa-
tion.

The default callback:

default_callback(start_time)

It returns the start time in ISO format. It takes one argument:

start_time A python datetime object that denotes the build start time.

_retValParams(self, msg)
Returns a list containing one Python datetime object (start time) from msg dictionary.

_builder_name_matches(self, builder_info)
See CaptureBuildTimes for more information on this method.

class buildbot.statistics.capture.CaptureBuildStartTimeAllBuilders
A capture class for capturing build start times from all builders. It is a subclass of
CaptureBuildStartTime. It takes the following arguments:

callback=None The callback function for this class. See CaptureBuildTimes for more informa-
tion.

The default callback:

See CaptureBuildStartTime.__init__ for the definition.

_builder_name_matches(self, builder_info)
See CaptureBuildTimes for more information on this method.

class buildbot.statistics.capture.CaptureBuildEndTime
A capture class for capturing build end times. Takes the following arguments:

builder_name (str) The name of builder whose times are to be recorded.

callback=None The callback function for this class. See CaptureBuildTimes for more informa-
tion.

The default callback:

320 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.1

default_callback(end_time)

It returns the end time in ISO format. It takes one argument:

end_time A python datetime object that denotes the build end time.

_retValParams(self, msg)

Returns a list containing two Python datetime object (start time and end time) from msg dictionary.

_builder_name_matches(self, builder_info)
See CaptureBuildTimes for more information on this method.

class buildbot.statistics.capture.CaptureBuildEndTimeAllBuilders
A capture class for capturing build end times from all builders. It is a subclass of
CaptureBuildEndTime. It takes the following arguments:

callback=None The callback function for this class. See CaptureBuildTimes for more informa-
tion.

The default callback:

See CaptureBuildEndTime.__init__ for the definition.

_builder_name_matches(self, builder_info)
See CaptureBuildTimes for more information on this method.

class buildbot.statistics.capture.CaptureBuildDuration
A capture class for capturing build duration. Takes the following arguments:

builder_name (str) The name of builder whose times are to be recorded.

report_in='seconds' Can be one of three: 'seconds', 'minutes', or 'hours'. This is the
units in which the build time will be reported.

callback=None The callback function for this class. See CaptureBuildTimes for more informa-
tion.

The default callback:

default_callback(start_time, end_time)

It returns the duration of the build as per the report_in argument. It receives the following
arguments:

start_time A python datetime object that denotes the build start time.

end_time A python datetime object that denotes the build end time.

_retValParams(self, msg)

Returns a list containing one Python datetime object (end time) from msg dictionary.

_builder_name_matches(self, builder_info)
See CaptureBuildTimes for more information on this method.

class buildbot.statistics.capture.CaptureBuildDurationAllBuilders
A capture class for capturing build durations from all builders. It is a subclass of
CaptureBuildDuration. It takes the following arguments:

callback=None The callback function for this class. See CaptureBuildTimes for more.

The default callback:

See CaptureBuildDuration.__init__ for the definition.

_builder_name_matches(self, builder_info)
See CaptureBuildTimes for more information on this method.

class buildbot.statistics.capture.CaptureDataBase
This is a base class for both CaptureData and CaptureDataAllBuilders and abstracts away much

3.1. General Documents 321

Buildbot Documentation, Release 0.9.1

of the common functionaltiy between the two classes. Cannot be initialzed directly as it contains an abstract
method and raises TypeError if tried. It is intialized with the following arguments:

data_name (str) The name of data to be captured. Same as in yieldMetricsValue.

callback=None The callback function for this class.

The default callback:

The default callback takes a value x and return it without changing. As such, x itself acts as
the post_data sent to the storage backends.

consume(self, routingKey, msg)
The consumer for this class. See Capture for more.

_builder_name_matches(self, builder_info)
This is an abstract method and needs to be implemented by all subclasses of this class. This is a helper
method to the consume method metioned above. It checks whether a builder is allowed to send
properties to the storage backend according to the configuration file. It takes one argument:

builder_info (dict) The dictionary returned by the data API containing the builder information.

class buildbot.statistics.capture.CaptureData
A capture class for capturing arbitrary data that is not stored as build-data. See yieldMetricsValue
for more. Takes the following arguments for initliazation:

data_name (str) The name of data to be captured. Same as in yieldMetricsValue.

builder_name (str) The name of the builder on which the data is captured.

callback=None The callback function for this class.

The default callback:

See CaptureDataBase of definition.

_builder_name_matches(self, builder_info)
See CaptureDataBase for more information on this method.

class buildbot.statistics.capture.CaptureDataAllBuilders
A capture class to capture arbitrary data on all builders. See yieldMetricsValue for more. It takes the
following arguments:

data_name (str) The name of data to be captured. Same as in yieldMetricsValue.

callback=None The callback function for this class.

_builder_name_matches(self, builder_info)
See CaptureDataBase for more information on this method.

3.1.22 How to package Buildbot plugins

If you customized an existing component (see Customization) or created a new component that you believe might
be useful for others, you have two options:

• submit the change to the Buildbot main tree, however you need to adhere to certain requirements (see
Buildbot Coding Style)

• prepare a Python package that contains the functionality you created

Here we cover the second option.

Package the source

To begin with, you must package your changes. If you do not know what a Python package is, these two tutorials
will get you going:

• Python Packaging User Guide (https://packaging.python.org/en/latest/)

322 Chapter 3. Buildbot Development

https://packaging.python.org/en/latest/

Buildbot Documentation, Release 0.9.1

• The Hitchhiker’s Guide to Packaging (https://the-hitchhikers-guide-to-
packaging.readthedocs.org/en/latest/)

The former is more recent and, while it addresses everything that you need to know about Python packages, is still
work in progress. The latter is a bit dated, though it was the most complete guide for quite some time available for
Python developers looking to package their software.

You may also want to check the sample project (https://github.com/pypa/sampleproject), which exemplifies the
best Python packaging practices.

Making the plugin package

Buildbot supports several kinds of pluggable components:

• worker

• changes

• schedulers

• steps

• status

• util

(these are described in Plugin Infrastructure in Buildbot), and

• www

which is described in web server configuration.

Once you have your component packaged, it’s quite straightforward: you just need to add a few lines to the
entry_points parameter of your call of setup function in setup.py file:

setup(
...
entry_points = {

...,
'buildbot.kind': [

'PluginName = PluginModule:PluginClass'
]

},
...

)

(You might have seen different ways to specify the value for entry_points, however they all
do the same thing. Full description of possible ways is available in setuptools documentation
(https://setuptools.readthedocs.io/en/latest/setuptools.html#dynamic-discovery-of-services-and-plugins).)

After the setup.py file is updated, you can build and install it:

$ python setup.py build
$ sudo python setup.py install

(depending on your particular setup, you might not need to use sudo).

After that the plugin should be available for Buildbot and you can use it in your master.cfg as:

from buildbot.kind import PluginName

... PluginName ...

3.1. General Documents 323

https://the-hitchhikers-guide-to-packaging.readthedocs.org/en/latest/
https://github.com/pypa/sampleproject
https://setuptools.readthedocs.io/en/latest/setuptools.html#dynamic-discovery-of-services-and-plugins

Buildbot Documentation, Release 0.9.1

Publish the package

This is the last step before the plugin is available to others.

Once again, there is a number of options available for you:

• just put a link to your version control system

• prepare a source tarball with the plugin (python setup.py sdist)

• or publish it on PyPI (https://pypi.python.org)

The last option is probably the best one since it will make your plugin available pretty much to all Python devel-
opers.

Once you have published the package, please send a link to buildbot-devel (buildbot-devel@lists.sourceforge.net)
mailing list, so we can include a link to your plugin to Plugin Infrastructure in Buildbot.

3.2 APIs

This section documents Buildbot’s APIs. These are the interfaces against which externally-maintained code should
be written.

3.2.1 REST API

The REST API is a thin wrapper around the data API’s “Getter” and “Control” sections. It is also designed,
in keeping with REST principles, to be discoverable. As such, the details of the paths and resources are not
documented here. Begin at the root URL, and see the Data API documentation for more information.

• Versions

• Getting

• Collections

– Field Selection

– Filtering

– Sorting

– Pagination

• Controlling

• Raml Specs

– Build

* Update Methods

* Endpoints

– builder

* Update Methods

* Endpoints

– buildrequest

* Update Methods

* Endpoints

– buildset

324 Chapter 3. Buildbot Development

https://pypi.python.org
mailto:buildbot-devel@lists.sourceforge.net

Buildbot Documentation, Release 0.9.1

* Update Methods

* Endpoints

– change

* Update Methods

* Endpoints

– changesource

* Update Methods

* Endpoints

– forcescheduler

* Endpoints

– identifier

– Logs

* Update Methods

* Endpoints

– logchunk

* Update Methods

* Endpoints

– master

* Update Methods

* Endpoints

– patch

* Update Methods

– rootlink

* Endpoints

– scheduler

* Update Methods

* Endpoints

– sourcedproperties

* Update Methods

* Endpoints

– sourcestamp

* Endpoints

– spec

* Endpoints

– step

* Update Methods

* Endpoints

– worker

3.2. APIs 325

Buildbot Documentation, Release 0.9.1

* Endpoints

– Raw endpoints

– Raml spec verbatim

Versions

The API described here is version 2. The ad-hoc API from Buildbot-0.8.x, version 1, is no longer supported.

The policy for incrementing the version is when there is incompatible change added. Removing a field or endpoint
is considered incompatible change. Adding a field or endpoint is not considered incompatible, and thus will only
be described as a change in release note. The policy is that we will avoid as much as possible incrementing version.

Getting

To get data, issue a GET request to the appropriate path. For example, with a base URL
of http://build.example.org/buildbot, the list of masters for builder 9 is available at
http://build.example.org/buildbot/api/v2/builder/9/master.

resource type: collection

Collections

Results are formatted in keeping with the JSON API (http://jsonapi.org/) specification. The top level of every
response is an object. Its keys are the plural names of the resource types, and the values are lists of objects, even
for a single-resource request. For example:

{
"meta": {
"total": 2

},
"schedulers": [
{

"master": null,
"name": "smoketest",
"schedulerid": 1

},
{

"master": {
"active": true,
"last_active": 1369604067,
"link": "http://build.example.org/api/v2/master/1",
"masterid": 1,
"name": "master3:/BB/master"

},
"name": "goaheadtryme",
"schedulerid": 2

}
]

}

A response may optionally contain extra, related resources beyond those requested. The meta key contains
metadata about the response, including the total count of resources in a collection.

Several query parameters may be used to affect the results of a request. These parameters are applied in the order
described (so, it is not possible to sort on a field that is not selected, for example).

326 Chapter 3. Buildbot Development

http://jsonapi.org/

Buildbot Documentation, Release 0.9.1

Field Selection

If only certain fields of each resource are required, the field query parameter can be used to select them. For
example, the following will select just the names and id’s of all schedulers:

• http://build.example.org/api/v2/scheduler?field=name&field=schedulerid

Field selection can be used for either detail (single-entity) or collection (multi-entity) requests. The remaining
options only apply to collection requests.

Filtering

Collection responses may be filtered on any simple top-level field.

To select records with a specific value use the query parameter {field}={value}. For example,
http://build.example.org/api/v2/scheduler?name=smoketest selects the scheduler named
“smoketest”.

Filters can use any of the operators listed below, with query parameters of the form
{field}__{operator}={value}.

eq equality, or with the same parameter appearing multiple times, equality with one of the given values (so
foo__eq=x&foo__eq=y would match resources where foo is x or y)

ne inequality, or set exclusion

lt select resources where the field’s value is less than {value}

le select resources where the field’s value is less than or equal to {value}

gt select resources where the field’s value is greater than {value}

ge select resources where the field’s value is greater than or equal to {value}

contains select resources where the field’s value contains {value}

For example:

• http://build.example.org/api/v2/builder?name__lt=cccc

• http://build.example.org/api/v2/buildsets?complete__eq=false

Boolean values can be given as on/off, true/false, yes/no, or 1/0.

Sorting

Collection responses may be ordered with the order query parameter. This parameter takes a field name to sort
on, optionally prefixed with - to reverse the sort. The parameter can appear multiple times, and will be sorted
lexically with the fields arranged in the given order. For example:

• http://build.example.org/api/v2/buildrequest?order=builderid&order=buildrequestid

Pagination

Collection responses may be paginated with the offset and limit query parameters. The offset is the 0-based
index of the first result to included, after filtering and sorting. The limit is the maximum number of results to
return. Some resource types may impose a maximum on the limit parameter; be sure to check the resulting links
to determine whether further data is available. For example:

• http://build.example.org/api/v2/buildrequest?order=builderid&limit=10

• http://build.example.org/api/v2/buildrequest?order=builderid&offset=20&limit=10

3.2. APIs 327

Buildbot Documentation, Release 0.9.1

Controlling

Data API control operations are handled by POST requests using a simplified form of JSONRPC 2.0
(http://www.jsonrpc.org/specification). The JSONRPC “method” is mapped to the data API “action”, and the
parameters are passed to that application.

The following parts of the protocol are not supported:

• positional parameters

• batch requests

Requests are sent as an HTTP POST, containing the request JSON in the body. The content-type header must be
application/json.

A simple example:

POST http://build.example.org/api/v2/scheduler/4
--> {"jsonrpc": "2.0", "method": "force", "params": {"revision": "abcd", "branch":
→˓"dev"}, "id": 843}
<-- {"jsonrpc": "2.0", "result": {"buildsetid": 44}, "id": 843}

Raml Specs

The Data API is documented in RAML 1.0 format (https://github.com/raml-org/raml-
spec/blob/master/versions/raml-10/raml-10.md). RAML describes and documents all our data, rest, and
javascript APIs in a format that can be easily manipulated by human and machines.

Build

resource type: build

Attributes

• buildid (integer) – the unique ID of this build

• number (integer) – the number of this build (sequential for a given builder)

• builderid (integer) – id of the builder for this build

• buildrequestid (integer) – build request for which this build was performed,
or None if no such request exists

• workerid (integer) – the worker this build ran on

• masterid (integer) – the master this build ran on

• started_at (date) – time at which this build started

• complete (boolean) – true if this build is complete Note that this is a calculated
field (from complete_at != None). Ordering by this field is not optimized by the database
layer.

• complete_at? (date) – time at which this build was complete, or None if it’s still
running

• properties? (sourcedproperties) – a dictionary of properties attached to
build.

• results? (integer) – the results of the build (see Build Result Codes), or None if
not complete

• state_string (string) – a string giving detail on the state of the build.

example

328 Chapter 3. Buildbot Development

http://www.jsonrpc.org/specification
https://github.com/raml-org/raml-spec/blob/master/versions/raml-10/raml-10.md

Buildbot Documentation, Release 0.9.1

{
"builderid": 10,
"buildid": 100,
"buildrequestid": 13,
"workerid": 20,
"complete": false,
"complete_at": null,
"masterid": 824,
"number": 1,
"results": null,
"started_at": 1451001600,
"state_string": "created",
"properties": {}

}

This resource type describes completed and in-progress builds. Much of the contextual data for a build is associ-
ated with the build request, and through it the buildset.

Note: properties

This properties dict is only filled out if the properties filterspec is set.

Meaning that, property filter allows one to request the Builds DATA API like so:

• api/v2/builds?property=propKey1&property=propKey2 (returns Build’s properties which match given keys)

• api/v2/builds?property=* (returns all Build’s properties)

• api/v2/builds?propKey1&property=propKey2&limit=30 (filters combination)

Important: When combined with field filter, to get properties, one should ensure properties field is set.

• api/v2/builds?field=buildid&field=properties&property=workername&property=user

Update Methods

All update methods are available as attributes of master.data.updates.

class buildbot.data.builds.Build

newBuild(builderid, buildrequestid, workerid)

Parameters

• builderid (integer) – builder performing this build

• buildrequstid (integer) – build request being built

• workerid (integer) – worker on which this build is performed

Returns (buildid, number) via Deferred

Create a new build resource and return its ID. The state strings for the new build will be set to ‘starting’.

setBuildStateString(buildid, state_string)

Parameters

• buildid (integer) – the build to modify

• state_string (unicode) – new state string for this build

Replace the existing state strings for a build with a new list.

3.2. APIs 329

Buildbot Documentation, Release 0.9.1

finishBuild(buildid, results)

Parameters

• buildid (integer) – the build to modify

• results (integer) – the build’s results

Mark the build as finished at the current time, with the given results.

Endpoints

path: /builders/{builderid}/builds

Path Keys builderid (number) – the ID of the builder

This path selects all builds for a builder (can return lots of data!)

GET

returns collection of build

path: /builders/{builderid}/builds/{build_number}

Path Keys

• builderid (number) – the ID of the builder

• build_number (number) – the number of the build within the builder

This path selects a specific build by builderid, buildnumber

GET

returns collection of build

POST with method: /builders/{builderid}/builds/{build_number}:stop

Body keys

• method (string) – must be stop

• reason (string) – The reason why the build was stopped

• results (integer) – optionally results value override (default CANCELLED)

POST with method: /builders/{builderid}/builds/{build_number}:rebuild

Body keys method (string) – must be rebuild

path: /buildrequests/{buildrequestid}/builds

Path Keys buildrequestid (number) – the id of the buildrequest

GET

returns collection of build

path: /builds

GET

returns collection of build

path: /builds/{buildid}

Path Keys buildid (number) – the id of the build

This path selects a build by id

GET

returns collection of build

POST with method: /builds/{buildid}:stop

330 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.1

Body keys

• method (string) – must be stop

• reason (string) – The reason why the build was stopped

POST with method: /builds/{buildid}:rebuild

Body keys method (string) – must be rebuild

builder

resource type: builder

Attributes

• builderid (integer) – the ID of this builder

• description? (string) – The description for that builder

• masterids[] (integer) – the ID of the masters this builder is running on

• name (identifier) – builder name

• tags[] (string) – list of tags for this builder

This resource type describes a builder.

Update Methods

All update methods are available as attributes of master.data.updates.

class buildbot.data.builders.Builder

updateBuilderList(masterid, builderNames)

Parameters

• masterid (integer) – this master’s master ID

• builderNames (list) – list of names of currently-configured builders (unicode
strings)

Returns Deferred

Record the given builders as the currently-configured set of builders on this master. Masters should
call this every time the list of configured builders changes.

Endpoints

path: /builders

This path selects all builders

GET

returns collection of builder

path: /builders/{builderid}

Path Keys builderid (number) – the ID of the builder

This path selects a builder by builderid

GET

returns collection of builder

3.2. APIs 331

Buildbot Documentation, Release 0.9.1

path: /masters/{masterid}/builders

Path Keys masterid (number) – the id of the master

This path selects all builders of a given master

GET

returns collection of builder

path: /masters/{masterid}/builders/{builderid}

Path Keys

• masterid (number) – the id of the master

• builderid (number) – the id of the builder

This path selects one builder by id of a given master

GET

returns collection of builder

buildrequest

resource type: buildrequest

Attributes

• buildrequestid (integer) – the unique ID of this buildrequest

• builderid (integer) – the id of the builder linked to this buildrequest

• buildsetid (integer) – the id of the buildset that contains this buildrequest

• claimed (boolean) – True if this buildrequest has been claimed. Note that this is a
calculated field (from claimed_at != None). Ordering by this field is not optimized by
the database layer.

• claimed_at? (date) – time at which this build has last been claimed. None if this
buildrequest has never been claimed or has been unclaimed

• claimed_by_masterid? (integer) – the id of the master that claimed this buil-
drequest. None if this buildrequest has never been claimed or has been unclaimed

• complete (boolean) – true if this buildrequest is complete

• complete_at? (date) – time at which this buildrequest was completed, or None if
it’s still running

• priority (integer) – the priority of this buildrequest

• results? (integer) – the results of this buildrequest (see Build Result Codes), or
None if not complete

• submitted_at (date) – time at which this buildrequest were submitted

• waited_for (boolean) – True if the entity that triggered this buildrequest is waiting
for it to complete. Should be used by an (unimplemented so far) clean shutdown to only
start br that are waited_for.

This resource type describes completed and in-progress buildrequests. Much of the contextual data for a buil-
drequest is associated with the buildset that contains this buildrequest.

332 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.1

Update Methods

All update methods are available as attributes of master.data.updates.

class buildbot.data.buildrequests.BuildRequest

claimBuildRequests(brids, claimed_at=None, _reactor=twisted.internet.reactor)

Parameters

• brids (list(integer)) – list of buildrequest id to claim

• claimed_at (datetime) – date and time when the buildrequest is claimed

• _reactor (twisted.internet.interfaces.IReactorTime) – reactor
used to get current time if claimed_at is None

Returns (boolean) whether claim succeeded or not

Claim a list of buildrequests

reclaimBuildRequests(brids, _reactor=twisted.internet.reactor)

Parameters

• brids (list(integer)) – list of buildrequest id to reclaim

• _reactor (twisted.internet.interfaces.IReactorTime) – reactor
used to get current time

Returns (boolean) whether reclaim succeeded or not

Reclaim a list of buildrequests

unclaimBuildRequests(brids)

Parameters brids (list(integer)) – list of buildrequest id to unclaim

Unclaim a list of buildrequests

completeBuildRequests(brids, results, complete_at=None, _reac-
tor=twisted.internet.reactor)

Parameters

• brids (list(integer)) – list of buildrequest id to complete

• results (integer) – the results of the buildrequest (see Build Result Codes)

• complete_at (datetime) – date and time when the buildrequest is completed

• _reactor (twisted.internet.interfaces.IReactorTime) – reactor
used to get current time, if complete_at is None

Complete a list of buildrequest with the results status

unclaimExpiredRequests(old, _reactor=twisted.internet.reactor)

Parameters

• old (integer) – time in seconds considered for getting unclaimed buildrequests

• _reactor (twisted.internet.interfaces.IReactorTime) – reactor
used to get current time

Unclaim the previously claimed buildrequests that are older than old seconds and that were never
completed

3.2. APIs 333

Buildbot Documentation, Release 0.9.1

Endpoints

path: /builders/{builderid}/buildrequests

Path Keys builderid (number) – the ID of the builder

This path selects all buildrequests for a given builder (can return lots of data!)

GET

returns collection of buildrequest

path: /buildrequests

GET

returns collection of buildrequest

path: /buildrequests/{buildrequestid}

Path Keys buildrequestid (number) – the id of the buildrequest

GET

returns collection of buildrequest

POST with method: /buildrequests/{buildrequestid}:cancel

Body keys

• method (string) – must be cancel

• reason (string) – The reason why the buildrequest was cancelled

buildset

resource type: buildset

Attributes

• bsid (integer) – the ID of this buildset

• complete (boolean) – true if all of the build requests in this buildset are complete

• complete_at? (integer) – the time this buildset was completed, or None if not
complete

• external_idstring? (string) – an identifier that external applications can use
to identify a submitted buildset; can be None

• parent_buildid? (integer) – optional build id that is the parent for this buildset

• parent_relationship? (string) – relationship identifier for the parent, this is
is configured relationship between the parent build, and the childs buildsets

• reason (string) – the reason this buildset was scheduled

• results? (integer) – the results of the buildset (see Build Result Codes), or None
if not complete

• sourcestamps[] (sourcestamp) – the sourcestamps for this buildset; each ele-
ment is a valid sourcestamp entity

• submitted_at (integer) – the time this buildset was submitted

A buildset gathers build requests that were scheduled at the same time, and which share a source stamp, properties,
and so on.

334 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.1

Update Methods

All update methods are available as attributes of master.data.updates.

class buildbot.data.buildsets.Buildset

addBuildset(scheduler=None, sourcestamps=[], reason=’‘, properties={}, builderids=[], exter-
nal_idstring=None, parent_buildid=None, parent_relationship=None)

Parameters

• scheduler (string) – the name of the scheduler creating this buildset

• sourcestamps (list) – sourcestamps for the new buildset; see below

• reason (unicode) – the reason for this build

• properties (dictionary with unicode keys and (source,
property value) values) – properties to set on this buildset

• builderids (list) – names of the builderids for which build requests should be
created

• external_idstring (unicode) – arbitrary identifier to recognize this buildset
later

• parent_buildid (int) – optional build id that is the parent for this buildset

• parent_relationship (unicode) – relationship identifier for the parent, this
is is configured relationship between the parent build, and the childs buildsets

Returns (buildset id, dictionary mapping builder ids to build request ids) via Deferred

Create a new buildset and corresponding buildrequests based on the given parameters. This is the
low-level interface for scheduling builds.

Each sourcestamp in the list of sourcestamps can be given either as an integer, assumed to be a sources-
tamp ID, or a dictionary of keyword arguments to be passed to findSourceStampId.

maybeBuildsetComplete(bsid)

Parameters bsid (integer) – buildset that may be complete

Returns Deferred

This method should be called when a build request is finished. It checks the given buildset to see if
all of its buildrequests are finished. If so, it updates the status of the buildset and send the appropriate
messages.

Endpoints

path: /buildsets

this path selects all buildsets

GET

returns collection of buildset

path: /buildsets/{bsid}

Path Keys bsid (identifier) – the id of the buildset

this path selects a buildset by id

GET

returns collection of buildset

3.2. APIs 335

Buildbot Documentation, Release 0.9.1

change

resource type: change

Attributes

• changeid (integer) – the ID of this change

• author (string) – the author of the change in “name”, “name <email>” or just
“email” (with @) format

• branch? (string) – branch on which the change took place, or none for the “default
branch”, whatever that might mean

• category? (string) – user-defined category of this change, or none

• codebase (string) – codebase in this repository

• comments (string) – user comments for this change (aka commit)

• files[] (string) – list of source-code filenames changed

• parent_changeids[] (integer) – The ID of the parents. The data api allow for
several parents, but the core buildbot does not yet support

• project (string) – user-defined project to which this change corresponds

• properties (sourcedproperties) – user-specified properties for this change,
represented as an object mapping keys to tuple (value, source)

• repository (string) – repository where this change occurred

• revision? (string) – revision for this change, or none if unknown

• revlink? (string) – link to a web view of this change

• sourcestamp (sourcestamp) – the sourcestamp resouce for this change

• when_timestamp (integer) – time of the change

A change resource represents a change to the source code monitored by Buildbot.

Update Methods

All update methods are available as attributes of master.data.updates.

class buildbot.data.changes.Change

addChange(files=None, comments=None, author=None, revision=None, when_timestamp=None,
branch=None, category=None, revlink=’‘, properties={}, repository=’‘, code-
base=None, project=’‘, src=None)

Parameters

• files (list of unicode strings) – a list of filenames that were changed

• comments (unicode) – user comments on the change

• author (unicode) – the author of this change

• revision (unicode) – the revision identifier for this change

• when_timestamp (integer) – when this change occurred (seconds since the
epoch), or the current time if None

• branch (unicode) – the branch on which this change took place

• category (unicode) – category for this change

• revlink (string) – link to a web view of this revision

336 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.1

• properties (dictionary with unicode keys and simple values
(JSON-able).) – properties to set on this change. Note that the property source is
not included in this dictionary.

• repository (unicode) – the repository in which this change took place

• project (unicode) – the project this change is a part of

• src (unicode) – source of the change (vcs or other)

Returns the ID of the new change, via Deferred

Add a new change to Buildbot. This method is the interface between change sources and the rest of
Buildbot.

All parameters should be passed as keyword arguments.

All parameters labeled ‘unicode’ must be unicode strings and not bytestrings. Filenames in files,
and property names, must also be unicode strings. This is tested by the fake implementation.

Endpoints

path: /builds/{buildid}/changes

Path Keys buildid (number) – the id of the build

This path selects all changes tested by a build

GET

returns collection of change

path: /changes

This path selects all changes. On a reasonabily loaded master, this can quickly return a very large result, tak-
ing minutes to process. A specific query configuration is optimized which allows to get the recent changes:
order:-changeid&limit=<n>

GET

returns collection of change

path: /changes/{changeid}

Path Keys changeid (number) – the id of a change

this path selects one change by id

GET

returns collection of change

path: /sourcestamps/{ssid}/changes

Path Keys ssid (number) – the id of the sourcestamp

This path selects all changes associated to one sourcestamp

GET

returns collection of change

changesource

resource type: changesource

Attributes

• changesourceid (integer) – the ID of this changesource

3.2. APIs 337

Buildbot Documentation, Release 0.9.1

• master? (master) – the master on which this worker is running, or None if it is
inactive

• name (string) – name of this changesource

A changesource generates change objects, for example in response to an update in some repository. A particular
changesource (by name) runs on at most one master at a time.

Update Methods

All update methods are available as attributes of master.data.updates.

class buildbot.data.changesources.ChangeSource

findChangeSourceId(name)

Parameters name (string) – changesource name

Returns changesource ID via Deferred

Get the ID for the given changesource name, inventing one if necessary.

trySetChangeSourceMaster(changesourceid, masterid)

Parameters

• changesourceid (integer) – changesource ID to try to claim

• masterid (integer) – this master’s master ID

Returns True or False, via Deferred

Try to claim the given scheduler for the given master and return True if the scheduler is to be activated
on that master.

Endpoints

path: /changesources

This path selects all changesource.

GET

returns collection of changesource

path: /changesources/{changesourceid}

Path Keys changesourceid (number) – the id of a changesource

This path selects one changesource given its id.

GET

returns collection of changesource

path: /masters/{masterid}/changesources

Path Keys masterid (number) – the id of the master

This path selects all changesources for a given master

GET

returns collection of changesource

path: /masters/{masterid}/changesources/{changesourceid}

Path Keys masterid (number) – the id of the master

This path selects one changesource by id for a given master

338 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.1

GET

returns collection of changesource

forcescheduler

resource type: forcescheduler

Attributes

• all_fields[] (object) –

• builder_names[] (identifier) – names of the builders that this scheduler can
trigger

• button_name (string) – label of the button to use in the UI

• label (string) – label of this scheduler to be displayed in the ui

• name (identifier) – name of this scheduler

A forcescheduler initiates builds, via a formular in the web UI. At the moment, forceschedulers must be defined
on all the masters where a web ui is configured. A particular forcescheduler runs on the master where the web
request was sent.

Note: This datatype and associated enpoints will be deprecated when bug #2673
(http://trac.buildbot.net/ticket/2673) will be resolved.

Endpoints

path: /builders/{builderid}/forceschedulers

Path Keys builderid (number) – the ID of the builder

This path selects all force-schedulers for a given builder

GET

returns collection of forcescheduler

path: /forceschedulers

This path selects all forceschedulers.

GET

returns collection of forcescheduler

path: /forceschedulers/{schedulername}

Path Keys schedulername (identifier) – the name of a scheduler

This path selects all changesource.

GET

returns collection of forcescheduler

POST with method: /forceschedulers/{schedulername}:force

Body keys

• method (string) – must be force

• owner (string) – The user who wants to create the buildrequest

• [] – content of the forcescheduler parameter is dependent on the configuration of the
forcescheduler

3.2. APIs 339

http://trac.buildbot.net/ticket/2673

Buildbot Documentation, Release 0.9.1

identifier

resource type: identifier

Logs

resource type: log

Attributes

• complete (boolean) – true if this log is complete and will not generate additional
logchunks

• logid (integer) – the unique ID of this log

• name (string) – the name of this log (e.g., err.html)

• num_lines (integer) – total number of line of this log

• slug (identifier) – the “slug”, suitable for use in a URL, of this log (e.g.,
err_html)

• stepid (integer) – id of the step containing this log

• type (identifier) – log type, identified by a single ASCII letter; see logchunk
for details.

example

{
"logid": 60,
"name": "stdio",
"slug": "stdio",
"stepid": 50,
"complete": false,
"num_lines": 0,
"type": "s"

}

A log represents a stream of textual output from a step. The actual output is encoded as a sequence of logchunk
resources. In-progress logs append logchunks as new data is added to the end, and event subscription allows a
client to “follow” the log.

Each log has a “slug” which is unique within the step, and which can be used in paths. The slug is generated by
addLog based on the name, using forceIdentifier and incrementIdentifier to guarantee unique-
ness.

Todo

event: build.$buildid.step.$number.log.$logid.newlog
The log has just started. Logs are started when they are created, so this also indicates the creation of a new
log.

event: build.$buildid.step.$number.log.$logid.complete
The log is complete.

Update Methods

All update methods are available as attributes of master.data.updates.

class buildbot.data.logs.Log

340 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.1

addLog(stepid, name, type)

Parameters

• stepid (integer) – stepid containing this log

• name (string) – name for the log

Raises KeyError – if a log by the given name already exists

Returns logid via Deferred

Create a new log and return its ID. The name need not be unique. This method will generate a unique
slug based on the name.

appendLog(logid, content):

Parameters

• logid (integer) – the log to which content should be appended

• content (unicode) – the content to append

Append the given content to the given log. The content must end with a newline. All newlines in the
content should be UNIX-style (\n).

finishLog(logid)

Parameters logid (integer) – the log to finish

Mark the log as complete.

compressLog(logid)

Parameters logid (integer) – the log to compress

Compress the given log, after it is finished. This operation may take some time.

Endpoints

path: /builders/{builderid}/builds/{build_number}/steps/{step_name}/logs

Path Keys

• builderid (number) – the ID of the builder

• build_number (number) – the number of the build within the builder

• step_name (identifier) – the slug name of the step

This path selects all logs for the given step.

GET

returns collection of log

path: /builders/{builderid}/builds/{build_number}/steps/{step_name}/logs/{log_slug}

Path Keys

• builderid (number) – the ID of the builder

• build_number (number) – the number of the build within the builder

• step_name (identifier) – the slug name of the step

• log_slug (identifier) – the slug name of the log

GET

returns collection of log

path: /builders/{builderid}/builds/{build_number}/steps/{step_number}/logs

3.2. APIs 341

Buildbot Documentation, Release 0.9.1

Path Keys

• builderid (number) – the ID of the builder

• build_number (number) – the number of the build within the builder

• step_number (number) – the number of the step

This path selects all log of a a specific step

GET

returns collection of log

path: /builders/{builderid}/builds/{build_number}/steps/{step_number}/logs/{log_slug}

Path Keys

• builderid (number) – the ID of the builder

• build_number (number) – the number of the build within the builder

• step_number (number) – the number of the step

• log_slug (identifier) – the slug name of the log

This path selects one log of a a specific step

GET

returns collection of log

path: /builds/{buildid}/steps/{step_number_or_name}/logs

Path Keys

• buildid (number) – the id of the build

• | number step_number_or_name (identifier) – the name or number of
the step

This path selects all logs of a step of a build

GET

returns collection of log

path: /builds/{buildid}/steps/{step_number_or_name}/logs/{log_slug}

Path Keys

• buildid (number) – the id of the build

• | number step_number_or_name (identifier) – the name or number of
the step

• log_slug (identifier) – the slug name of the log

This path selects one log of a a specific step

GET

returns collection of log

path: /logs/{logid}

Path Keys logid (number) – the id of the log

This path selects one log

GET

returns collection of log

path: /steps/{stepid}/logs

Path Keys stepid (number) – the id of the step

342 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.1

This path selects all logs for the given step.

GET

returns collection of log

path: /steps/{stepid}/logs/{log_slug}

Path Keys

• stepid (number) – the id of the step

• log_slug (identifier) – the slug name of the log

GET

returns collection of log

logchunk

resource type: logchunk

Attributes

• content (string) – content of the chunk

• firstline (integer) – zero-based line number of the first line in this chunk

• logid (integer) – the ID of log containing this chunk

A logchunk represents a contiguous sequence of lines in a logfile. Logs are not individually addressable in the
data API; instead, they must be requested by line number range. In a strict REST sense, many logchunk resources
will contain the same line.

The chunk contents is represented as a single unicode string. This string is the concatenation of each newline
terminated-line.

Each log has a type, as identified by the “type” field of the corresponding log. While all logs are sequences of
unicode lines, the type gives additional information fo interpreting the contents. The defined types are:

• t – text, a simple sequence of lines of text

• s – stdio, like text but with each line tagged with a stream

• h – HTML, represented as plain text

In the stream type, each line is prefixed by a character giving the stream type for that line. The types are i for
input, o for stdout, e for stderr, and h for header. The first three correspond to normal UNIX standard streams,
while the header stream contains metadata produced by Buildbot itself.

The offset and limit parameters can be used to select the desired lines. These are specified as query pa-
rameters via the REST interface, or as arguments to the get method in Python. The result will begin with line
offset (so the resulting firstline will be equal to the given offset), and will contain up to limit lines.

Following example will get the first 100 lines of a log:

from buildbot.data import resultspec
first_100_lines = yield self.master.data.get(("logs", log['logid'], "contents"),

resultSpec=resultspec.ResultSpec(limit=100))

Following example will get the last 100 lines of a log:

from buildbot.data import resultspec
last_100_lines = yield self.master.data.get(("logs", log['logid'], "contents"),

resultSpec=resultspec.ResultSpec(offset=log['num_lines']-100))

3.2. APIs 343

Buildbot Documentation, Release 0.9.1

Note: There is no event for a new chunk. Instead, the log resource is updated when new chunks are added, with
the new number of lines. Consumers can then request those lines, if desired.

Update Methods

Log chunks are updated via log.

Endpoints

path: /builders/{builderid}/builds/{build_number}/steps/{step_name}/logs/{log_slug}/contents

Path Keys

• builderid (number) – the ID of the builder

• build_number (number) – the number of the build within the builder

• step_name (identifier) – the slug name of the step

• log_slug (identifier) – the slug name of the log

GET

returns collection of logchunk

path: /builders/{builderid}/builds/{build_number}/steps/{step_number}/logs/{log_slug}/contents

Path Keys

• builderid (number) – the ID of the builder

• build_number (number) – the number of the build within the builder

• step_number (number) – the number of the step

• log_slug (identifier) – the slug name of the log

GET

returns collection of logchunk

path: /builds/{buildid}/steps/{step_number_or_name}/logs/{log_slug}/contents

Path Keys

• buildid (number) – the id of the build

• | number step_number_or_name (identifier) – the name or number of
the step

• log_slug (identifier) – the slug name of the log

GET

returns collection of logchunk

path: /logs/{logid}/contents

Path Keys logid (number) – the id of the log

GET

returns collection of logchunk

path: /steps/{stepid}/logs/{log_slug}/contents

Path Keys

• stepid (number) – the id of the step

344 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.1

• log_slug (identifier) – the slug name of the log

GET

returns collection of logchunk

master

resource type: master

Attributes

• active (boolean) – true if the master is active

• last_active (date) – time this master was last marked active

• masterid (integer) – the ID of this master

• name (string) – master name (in the form “hostname:basedir”)

This resource type describes buildmasters in the buildmaster cluster.

Update Methods

All update methods are available as attributes of master.data.updates.

class buildbot.data.masters.Master

masterActive(name, masterid)

Parameters

• name (unicode) – the name of this master (generally hostname:basedir)

• masterid (integer) – this master’s master ID

Returns Deferred

Mark this master as still active. This method should be called at startup and at least once per minute.
The master ID is acquired directly from the database early in the master startup process.

expireMasters()

Returns Deferred

Scan the database for masters that have not checked in for ten minutes. This method should be called
about once per minute.

masterStopped(name, masterid)

Parameters

• name (unicode) – the name of this master

• masterid (integer) – this master’s master ID

Returns Deferred

Mark this master as inactive. Masters should call this method before completing an expected shut-
down, and on startup. This method will take care of deactivating or removing configuration resources
like builders and schedulers as well as marking lost builds and build requests for retry.

3.2. APIs 345

Buildbot Documentation, Release 0.9.1

Endpoints

path: /builders/{builderid}/masters

Path Keys builderid (number) – the ID of the builder

This path selects all masters supporting a given builder

GET

returns collection of master

path: /builders/{builderid}/{masterid}

Path Keys

• builderid (number) – the ID of the builder

• masterid (number) – the id of the master

This path selects a master by id filtered by given builderid

GET

returns collection of master

path: /masters

This path selects all masters

GET

returns collection of master

path: /masters/{masterid}

Path Keys masterid (number) – the id of the master

This path selects one master given its id

GET

returns collection of master

patch

resource type: patch

Attributes

• patchid (integer) – the unique ID of this patch

• body (string) – patch body as a binary string

• level (integer) – patch level - the number of directory names to strip from file-
names in the patch

• subdir (string) – subdirectory in which patch should be applied

• author? (string) – patch author, or None

• comment? (string) – patch comment, or None

This resource type describes a patch. Patches have unique IDs, but only appear embedded in sourcestamps, so
those IDs are not especially useful.

346 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.1

Update Methods

All update methods are available as attributes of master.data.updates.

class buildbot.data.patches.Patch
(no update methods)

rootlink

resource type: rootlink

Attributes name (string) –

Endpoints

path: /

GET

returns collection of rootlink

scheduler

resource type: scheduler

Attributes

• master? (master) – the master on which this scheduler is running, or None if it is
inactive

• name (string) – name of this scheduler

• schedulerid (integer) – the ID of this scheduler

A scheduler initiates builds, often in response to changes from change sources. A particular scheduler (by name)
runs on at most one master at a time.

Note: This data type and associated enpoints is planned to be merged with forcescheduler data type when bug
#2673 (http://trac.buildbot.net/ticket/2673) will be resolved.

Update Methods

All update methods are available as attributes of master.data.updates.

class buildbot.data.schedulers.Scheduler

findSchedulerId(name)

Parameters name (string) – scheduler name

Returns scheduler ID via Deferred

Get the ID for the given scheduler name, inventing one if necessary.

trySetSchedulerMaster(schedulerid, masterid)

Parameters

• schedulerid (integer) – scheduler ID to try to claim

• masterid (integer) – this master’s master ID

3.2. APIs 347

http://trac.buildbot.net/ticket/2673
http://trac.buildbot.net/ticket/2673

Buildbot Documentation, Release 0.9.1

Returns True or False, via Deferred

Try to claim the given scheduler for the given master and return True if the scheduler is to be activated on
that master.

Endpoints

path: /masters/{masterid}/schedulers

Path Keys masterid (number) – the id of the master

This path selects all schedulers for a given master

GET

returns collection of scheduler

path: /masters/{masterid}/schedulers/{schedulerid}

Path Keys

• masterid (number) – the id of the master

• schedulerid (number) – the id of the scheduler

This path selects one scheduler by id for a given master

GET

returns collection of scheduler

path: /schedulers

This path selects all schedulers

GET

returns collection of scheduler

path: /schedulers/{schedulerid}

Path Keys schedulerid (number) – the id of the scheduler

This path selects one scheduler by id

GET

returns collection of scheduler

sourcedproperties

resource type: sourcedproperties

Attributes [] (object) – Each key of this map is the name of a defined property The value
consist on a couple (source, value)

user-specified properties for this change, represented as an object mapping keys to tuple (value, source)

Properties are present in several data resources, but have a separate endpoints, because they can represent a large
dataset.

Update Methods

All update methods are available as attributes of master.data.updates.

class buildbot.data.properties.Properties

348 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.1

setBuildProperty(buildid, name, value, source)

Parameters

• buildid (integer) – build ID

• name (unicode) – Name of the property to set

• value (Any JSON-able type is accepted (lists, dicts,
strings and numbers)) – Value of the property

• source (unicode) – Source of the property to set

Set a build property. If no property with that name exists in that build, a new property will be created.

setBuildProperties(buildid, props)

Parameters

• buildid (integer) – build ID

• props (IProperties) – Name of the property to set

Synchronise build properties with the db. This sends only one event in the end of the sync, and only if
properties changed. The event contains only the updated properties, for network efficiency reasons.

Endpoints

path: /builds/{buildid}/properties

Path Keys buildid (number) – the id of the build

This path selects all properties of a build

GET

returns collection of sourcedproperties

path: /buildsets/{bsid}/properties

Path Keys bsid (identifier) – the id of the buildset

This path selects all properties of a buildset. Buildset properties is part of the initial properties of a build.

GET

returns collection of sourcedproperties

sourcestamp

resource type: sourcestamp

Attributes

• ssid (integer) – the ID of this sourcestamp

Note: For legacy reasons, the abbreviated name ssid is used instead of
canonical sourcestampid. This might change in the future (bug #3509
(http://trac.buildbot.net/ticket/3509)).

• branch? (string) – code branch, or none for the “default branch”, whatever that
might mean

• codebase (string) – revision for this sourcestamp, or none if unknown

• created_at (date) – the timestamp when this sourcestamp was created

• patch? (patch) – the patch for this sourcestamp, or none

3.2. APIs 349

http://trac.buildbot.net/ticket/3509

Buildbot Documentation, Release 0.9.1

• project (string) – user-defined project to which this sourcestamp corresponds

• repository (string) – repository where this sourcestamp occurred

• revision? (string) – revision for this sourcestamp, or none if unknown

A source stamp represents a particular version of the source code. Absolute sourcestamps specify this completely,
while relative sourcestamps (with revision = None) specify the latest source at the current time. Source stamps
can also have patches; such stamps describe the underlying revision with the given patch applied.

Note that, depending on the underlying version-control system, the same revision may describe different code in
different branches (e.g., SVN) or may be independent of the branch (e.g., Git).

The created_at timestamp can be used to indicate the first time a sourcestamp was seen by Buildbot. This
provides a reasonable default ordering for sourcestamps when more reliable information is not available.

Endpoints

path: /sourcestamps

This path selects all sourcestamps (can return lots of data!)

GET

returns collection of sourcestamp

path: /sourcestamps/{ssid}

Path Keys ssid (number) – the id of the sourcestamp

This path selects one sourcestamp by id

GET

returns collection of sourcestamp

spec

resource type: spec

Attributes

• path (string) –

• plural (string) –

• type (string) –

• type_spec (object) –

Endpoints

path: /application.spec

GET

returns collection of spec

step

resource type: step

Attributes

• stepid (integer) – the unique ID of this step

350 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.1

• buildid (integer) – id of the build containing this step

• complete (boolean) – true if this step is complete

• complete_at? (date) – time at which this step was complete, or None if it’s still
running

• hidden (boolean) – true if the step should not be displayed

• name (identifier) – the step name, unique within the build

• number (integer) – the number of this step (sequential within the build)

• results? (integer) – the results of the step (see Build Result Codes), or None if
not complete

• started_at? (date) – time at which this step started, or None if it hasn’t started
yet

• state_string (string) – a string giving detail on the state of the build. The first
is usually one word or phrase; the remainder are sized for one-line display.

• urls[] – a list of URLs associated with this step.

This resource type describes a step in a build. Steps have unique IDs, but are most commonly accessed by name
in the context of their containing builds.

Update Methods

All update methods are available as attributes of master.data.updates.

class buildbot.data.steps.Step

newStep(buildid, name)

Parameters

• buildid (integer) – buildid containing this step

• name (50-character identifier) – name for the step

Returns (stepid, number, name) via Deferred

Create a new step and return its ID, number, and name. Note that the name may be different from
the requested name, if that name was already in use. The state strings for the new step will be set to
‘pending’.

startStep(stepid)

Parameters stepid (integer) – the step to modify

Start the step.

setStepStateString(stepid, state_string)

Parameters

• stepid (integer) – the step to modify

• state_string (unicode) – new state strings for this step

Replace the existing state string for a step with a new list.

addStepURL(stepid, name, url):

Parameters

• stepid (integer) – the step to modify

• name (string) – the url name

3.2. APIs 351

Buildbot Documentation, Release 0.9.1

• url (string) – the actual url

Returns None via deferred

Add a new url to a step. The new url is added to the list of urls.

finishStep(stepid, results, hidden)

Parameters

• stepid (integer) – the step to modify

• results (integer) – the step’s results

• hidden (boolean) – true if the step should not be displayed

Mark the step as finished at the current time, with the given results.

Endpoints

path: /builders/{builderid}/builds/{build_number}/steps

Path Keys

• builderid (number) – the ID of the builder

• build_number (number) – the number of the build within the builder

This path selects all steps for the given build.

GET

returns collection of step

path: /builders/{builderid}/builds/{build_number}/steps/{step_name}

Path Keys

• builderid (number) – the ID of the builder

• build_number (number) – the number of the build within the builder

• step_name (identifier) – the slug name of the step

This path selects a specific step for the given build.

GET

returns collection of step

path: /builders/{builderid}/builds/{build_number}/steps/{step_number}

Path Keys

• builderid (number) – the ID of the builder

• build_number (number) – the number of the build within the builder

• step_number (number) – the number of the step

This path selects a specific step given its step number

GET

returns collection of step

path: /builds/{buildid}/steps

Path Keys buildid (number) – the id of the build

This path selects all steps of a build

GET

returns collection of step

352 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.1

path: /builds/{buildid}/steps/{step_number_or_name}

Path Keys

• buildid (number) – the id of the build

• | number step_number_or_name (identifier) – the name or number of
the step

This path selects one step of a build

GET

returns collection of step

worker

resource type: worker

Attributes

• workerid (integer) – the ID of this worker

• configured_on[] – list of builders on masters this worker is configured on

• connected_to[] – list of masters this worker is attached to

• name (string) – the name of the worker

• workerinfo (object) – information about the worker.

The worker information can be any JSON-able object. In practice, it contains the fol-
lowing keys, based on information provided by the worker:

– admin (the admin information)

– host (the name of the host)

– access_uri (the access URI)

– version (the version on the worker)

A worker resource represents a worker to the source code monitored by Buildbot.

The contents of the connected_to and configured_on attributes are sensitive to the context of the request.
If a builder or master is specified in the path, then only the corresponding connections and configurations are
included in the result.

Endpoints

path: /builders/{builderid}/workers

Path Keys builderid (number) – the ID of the builder

This path selects all workers configured for a given builder

GET

returns collection of worker

path: /builders/{builderid}/workers/{name}

Path Keys

• builderid (number) – the ID of the builder

• name (identifier) – the name of the worker

This path selects a worker by name filtered by given builderid

GET

3.2. APIs 353

Buildbot Documentation, Release 0.9.1

returns collection of worker

path: /builders/{builderid}/workers/{workerid}

Path Keys

• builderid (number) – the ID of the builder

• workerid (number) – the id of the worker

This path selects a worker by id filtered by given builderid

GET

returns collection of worker

path: /masters/{masterid}/builders/{builderid}/workers

Path Keys

• masterid (number) – the id of the master

• builderid (number) – the id of the builder

This path selects all workers for a given builder and a given master

GET

returns collection of worker

path: /masters/{masterid}/builders/{builderid}/workers/{name}

Path Keys

• masterid (number) – the id of the master

• builderid (number) – the id of the builder

• name (identifier) – the name of the worker

This path selects one workers by name for a given builder and a given master

GET

returns collection of worker

path: /masters/{masterid}/builders/{builderid}/workers/{workerid}

Path Keys

• masterid (number) – the id of the master

• builderid (number) – the id of the builder

• workerid (number) – the id of the worker

This path selects one workers by name for a given builder and a given master

GET

returns collection of worker

path: /masters/{masterid}/workers

Path Keys masterid (number) – the id of the master

This path selects all workers for a given master

GET

returns collection of worker

path: /masters/{masterid}/workers/{name}

Path Keys

• masterid (number) – the id of the master

354 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.1

• name (identifier) – the name of the worker

This path selects one worker by name for a given master

GET

returns collection of worker

path: /masters/{masterid}/workers/{workerid}

Path Keys

• masterid (number) – the id of the master

• workerid (number) – the id of the worker

This path selects one worker by id for a given master

GET

returns collection of worker

path: /workers

this path selects all workers

GET

returns collection of worker

path: /workers/{name_or_id}

Path Keys | number name_or_id (identifier) – the name or id of a worker

this path selects worker by name or id

GET

returns collection of worker

Raw endpoints

Raw endpoints allow to download content in their raw format (i.e. not within a json glue). The
content-disposition http header is set, so that the browser knows which file to store the content to.

path: /builders/{builderid}/builds/{build_number}/steps/{step_name}/logs/{log_slug}/raw

Path Keys

• builderid (number) – the ID of the builder

• build_number (number) – the number of the build within the builder

• step_name (identifier) – the slug name of the step

• log_slug (identifier) – the slug name of the log

This endpoint allows to get the raw logs for downloading into a file. This endpoint does not provide paging
capabilities. For stream log types, the type line header characters are dropped. ‘text/plain’ is used as the mime
type except for html logs, where ‘text/html’ is used. The ‘slug’ is used as the filename for the resulting download.
Some browsers are appending ".txt" or ".html" to this filename according to the mime-type.

path: /builders/{builderid}/builds/{build_number}/steps/{step_number}/logs/{log_slug}/raw

Path Keys

• builderid (number) – the ID of the builder

• build_number (number) – the number of the build within the builder

• step_number (number) – the number of the step

• log_slug (identifier) – the slug name of the log

3.2. APIs 355

Buildbot Documentation, Release 0.9.1

This path downloads the whole log

path: /builds/{buildid}/steps/{step_number_or_name}/logs/{log_slug}/raw

Path Keys

• buildid (number) – the id of the build

• | number step_number_or_name (identifier) – the name or number of
the step

• log_slug (identifier) – the slug name of the log

This path downloads the whole log

path: /logs/{logid}/raw

Path Keys logid (number) – the id of the log

This path downloads the whole log

path: /steps/{stepid}/logs/{log_slug}/raw

Path Keys

• stepid (number) – the id of the step

• log_slug (identifier) – the slug name of the log

This path downloads the whole log

Raml spec verbatim

Sometimes Raml is just clearer than formatted text.

#%RAML 1.0
title: Buildbot Web API
version: v2
mediaType: application/json
traits:

bbget:
responses:

200:
body:

application/json:
type: responseObjects.libraries.types.<<bbtype>>

404:
body:

text/plain:
example: "not found"

bbpost:
body:

type: <<reqtype>>
responses:

200:
body:

application/json:
type: <<resptype>>

404:
body:

text/plain:
example: "not found"

bbgetraw:
responses:

200:
headers:

content-disposition:

356 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.1

description: content disposition header allows browser to
→˓save log file with proper filename

example: attachment; filename=stdio
body:

text/html:
description: "html data if the object is html"

text/plain:
description: "plain text data if the object is text"

types:
build: !include types/build.raml
builder: !include types/builder.raml
buildrequest: !include types/buildrequest.raml
buildset: !include types/buildset.raml
worker: !include types/worker.raml
change: !include types/change.raml
changesource: !include types/changesource.raml
forcescheduler: !include types/forcescheduler.raml
identifier: !include types/identifier.raml
log: !include types/log.raml
logchunk: !include types/logchunk.raml
master: !include types/master.raml
rootlink: !include types/rootlink.raml
scheduler: !include types/scheduler.raml
sourcedproperties: !include types/sourcedproperties.raml
sourcestamp: !include types/sourcestamp.raml
patch: !include types/patch.raml
spec: !include types/spec.raml
step: !include types/step.raml

/:
get:

is:
- bbget: {bbtype: rootlink}

/application.spec:
get:

is:
- bbget: {bbtype: spec}

/builders:
description: This path selects all builders
get:

is:
- bbget: {bbtype: builder}

/{builderid}:
uriParameters:

builderid:
type: number
description: the ID of the builder

description: This path selects a builder by builderid
get:

is:
- bbget: {bbtype: builder}

/forceschedulers:
description: This path selects all force-schedulers for a given builder
get:

is:
- bbget: {bbtype: forcescheduler}

/buildrequests:
description: This path selects all buildrequests for a given builder

→˓(can return lots of data!)
get:

is:
- bbget: {bbtype: buildrequest}

/builds:

3.2. APIs 357

Buildbot Documentation, Release 0.9.1

description: This path selects all builds for a builder (can return
→˓lots of data!)

get:
is:
- bbget: {bbtype: build}

/{build_number}:
uriParameters:

build_number:
type: number
description: the number of the build within the builder

description: This path selects a specific build by builderid,
→˓buildnumber

get:
is:
- bbget: {bbtype: build}

/actions/stop:
post:

description: |
stops one build.

body:
application/json:

properties:
reason:

type: string
required: false
description: The reason why the build was

→˓stopped
results:

type: integer
required: false
description: optionally results value

→˓override (default CANCELLED)
/actions/rebuild:

post:
description: |

rebuilds one build.
body:

application/json:
description: no parameter are needed

/steps:
description: This path selects all steps for the given build.
get:

is:
- bbget: {bbtype: step}

/{step_name}:
uriParameters:

step_name:
type: identifier
description: the slug name of the step

description: This path selects a specific step for the
→˓given build.

get:
is:
- bbget: {bbtype: step}

/logs:
description: This path selects all logs for the given

→˓step.
get:

is:
- bbget: {bbtype: log}

/{log_slug}:
uriParameters:

log_slug:

358 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.1

type: identifier
description: the slug name of the log

get:
description: |

This path selects a specific log in the
→˓given step.

is:
- bbget: {bbtype: log}

/contents:
get:

description: |
This path selects chunks from a

→˓specific log in the given step.
is:
- bbget: {bbtype: logchunk}

/raw:
get:

description: |
This endpoint allows to get the raw

→˓logs for downloading into a file.
This endpoint does not provide paging

→˓capabilities.
For stream log types, the type line

→˓header characters are dropped.
'text/plain' is used as the mime type

→˓except for html logs, where 'text/html' is used.
The 'slug' is used as the filename for

→˓the resulting download. Some browsers are appending ``".txt"`` or ``".html"`` to
→˓this filename according to the mime-type.

is:
- bbgetraw:

/{step_number}:
uriParameters:

step_number:
type: number
description: the number of the step

description: This path selects a specific step given its
→˓step number

get:
is:
- bbget: {bbtype: step}

/logs:
description: This path selects all log of a a specific

→˓step
get:

is:
- bbget: {bbtype: log}

/{log_slug}:
uriParameters:

log_slug:
type: identifier
description: the slug name of the log

description: This path selects one log of a a
→˓specific step

get:
is:
- bbget: {bbtype: log}

/contents:
get:

description: |
This path selects chunks from a

→˓specific log in the given step.

3.2. APIs 359

Buildbot Documentation, Release 0.9.1

is:
- bbget: {bbtype: logchunk}

/raw:
get:

description: |
This path downloads the whole log

is:
- bbgetraw:

/workers:
description: |

This path selects all workers configured for a given builder
get:

is:
- bbget: {bbtype: worker}

/{name}:
description: |

This path selects a worker by name filtered by given builderid
uriParameters:

name:
type: identifier
description: the name of the worker

get:
is:
- bbget: {bbtype: worker}

/{workerid}:
description: |

This path selects a worker by id filtered by given builderid
uriParameters:

workerid:
type: number
description: the id of the worker

get:
is:
- bbget: {bbtype: worker}

/masters:
description: |

This path selects all masters supporting a given builder
get:

is:
- bbget: {bbtype: master}

/{masterid}:
uriParameters:

masterid:
type: number
description: the id of the master

description: |
This path selects a master by id filtered by given builderid

get:
is:
- bbget: {bbtype: master}

/buildrequests:
/{buildrequestid}:

uriParameters:
buildrequestid:

type: number
description: the id of the buildrequest

get:
is:
- bbget: {bbtype: buildrequest}

/builds:
get:

360 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.1

is:
- bbget: {bbtype: build}

/actions/cancel:
post:

description: |
Cancel one buildrequest.
If necessary, this will stop the builds generated by the

→˓buildrequest, including triggered builds.
body:

application/json:
properties:

reason:
type: string
required: false
description: The reason why the buildrequest was

→˓cancelled
get:

is:
- bbget: {bbtype: buildrequest}

/builds:
get:

is:
- bbget: {bbtype: build}

/{buildid}:
description: |

This path selects a build by id
uriParameters:

buildid:
type: number
description: the id of the build

get:
is:
- bbget: {bbtype: build}

/actions/stop:
post:

description: |
stops one build.

body:
application/json:

properties:
reason:

type: string
required: false
description: The reason why the build was stopped

/actions/rebuild:
post:

description: |
rebuilds one build.

body:
application/json:

description: no parameter are needed
/changes:

description: |
This path selects all changes tested by a build

get:
is:
- bbget: {bbtype: change}

/properties:
description: |

This path selects all properties of a build
get:

is:
- bbget: {bbtype: sourcedproperties}

3.2. APIs 361

Buildbot Documentation, Release 0.9.1

/steps:
description: |

This path selects all steps of a build
get:

is:
- bbget: {bbtype: step}

/{step_number_or_name}:
uriParameters:

step_number_or_name:
type: identifier | number
description: the name or number of the step

description: |
This path selects one step of a build

get:
is:
- bbget: {bbtype: step}

/logs:
description: |

This path selects all logs of a step of a build
get:

is:
- bbget: {bbtype: log}

/{log_slug}:
uriParameters:

log_slug:
type: identifier
description: the slug name of the log

description: This path selects one log of a a specific step
get:

is:
- bbget: {bbtype: log}

/contents:
get:

description: |
This path selects chunks from a specific log

→˓in the given step.
is:
- bbget: {bbtype: logchunk}

/raw:
get:

description: |
This path downloads the whole log

is:
- bbgetraw:

/buildsets:
description: this path selects all buildsets
get:

is:
- bbget: {bbtype: buildset}

/{bsid}:
description: this path selects a buildset by id
uriParameters:

bsid:
type: identifier
description: the id of the buildset

get:
is:
- bbget: {bbtype: buildset}

/properties:
description: |

This path selects all properties of a buildset.
Buildset properties is part of the initial properties of a build.

get:

362 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.1

is:
- bbget: {bbtype: sourcedproperties}

/workers:
description: this path selects all workers
get:

is:
- bbget: {bbtype: worker}

/{name_or_id}:
description: this path selects worker by name or id
uriParameters:

name_or_id:
type: identifier | number
description: the name or id of a worker

get:
is:
- bbget: {bbtype: worker}

/changes:
description: |

This path selects **all** changes.
On a reasonabily loaded master, this can quickly return a very large

→˓result, taking minutes to process.
A specific query configuration is optimized which allows to get the recent

→˓changes: ``order:-changeid&limit=<n>``
get:

is:
- bbget: {bbtype: change}

/{changeid}:
description: this path selects one change by id
uriParameters:

changeid:
type: number
description: the id of a change

get:
is:
- bbget: {bbtype: change}

/changesources:
description: |

This path selects all changesource.
get:

is:
- bbget: {bbtype: changesource}

/{changesourceid}:
uriParameters:

changesourceid:
type: number
description: the id of a changesource

description: |
This path selects one changesource given its id.

get:
is:
- bbget: {bbtype: changesource}

/forceschedulers:
description: |

This path selects all forceschedulers.
get:

is:
- bbget: {bbtype: forcescheduler}

/{schedulername}:
description: |

This path selects all changesource.

3.2. APIs 363

Buildbot Documentation, Release 0.9.1

uriParameters:
schedulername:

type: identifier
description: the name of a scheduler

get:
is:
- bbget: {bbtype: forcescheduler}

/actions/force:
post:

description: |
Triggers the forcescheduler

body:
application/json:

properties:
owner:

type: string
required: false
description: The user who wants to create the

→˓buildrequest
'[]':

description: content of the forcescheduler
→˓parameter is dependent on the configuration of the forcescheduler
/logs/{logid}:

uriParameters:
logid:

type: number
description: the id of the log

description: This path selects one log
get:

is:
- bbget: {bbtype: log}

/contents:
get:

description: |
This path selects chunks from a specific log

is:
- bbget: {bbtype: logchunk}

/raw:
get:

description: |
This path downloads the whole log

is:
- bbgetraw:

/masters:
description: This path selects all masters
get:

is:
- bbget: {bbtype: master}

/{masterid}:
description: This path selects one master given its id
uriParameters:

masterid:
type: number
description: the id of the master

get:
is:
- bbget: {bbtype: master}

/builders:
description: This path selects all builders of a given master
get:

is:
- bbget: {bbtype: builder}

364 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.1

/{builderid}:
description: This path selects one builder by id of a given master
uriParameters:

builderid:
type: number
description: the id of the builder

get:
is:
- bbget: {bbtype: builder}

/workers:
description: This path selects all workers for a given builder

→˓and a given master
get:

is:
- bbget: {bbtype: worker}

/{name}:
description: This path selects one workers by name for a

→˓given builder and a given master
uriParameters:

name:
type: identifier
description: the name of the worker

get:
is:
- bbget: {bbtype: worker}

/{workerid}:
description: This path selects one workers by name for a

→˓given builder and a given master
uriParameters:

workerid:
type: number
description: the id of the worker

get:
is:
- bbget: {bbtype: worker}

/workers:
description: This path selects all workers for a given master
get:

is:
- bbget: {bbtype: worker}

/{name}:
description: This path selects one worker by name for a given

→˓master
uriParameters:

name:
type: identifier
description: the name of the worker

get:
is:
- bbget: {bbtype: worker}

/{workerid}:
description: This path selects one worker by id for a given master
uriParameters:

workerid:
type: number
description: the id of the worker

get:
is:
- bbget: {bbtype: worker}

/changesources:
description: This path selects all changesources for a given master
get:

is:

3.2. APIs 365

Buildbot Documentation, Release 0.9.1

- bbget: {bbtype: changesource}
/{changesourceid}:

description: This path selects one changesource by id for a given
→˓master

get:
is:
- bbget: {bbtype: changesource}

/schedulers:
description: This path selects all schedulers for a given master
get:

is:
- bbget: {bbtype: scheduler}

/{schedulerid}:
description: This path selects one scheduler by id for a given

→˓master
uriParameters:

schedulerid:
type: number
description: the id of the scheduler

get:
is:
- bbget: {bbtype: scheduler}

/schedulers:
description: This path selects all schedulers
get:

is:
- bbget: {bbtype: scheduler}

/{schedulerid}:
uriParameters:

schedulerid:
type: number
description: the id of the scheduler

description: This path selects one scheduler by id
get:

is:
- bbget: {bbtype: scheduler}

/sourcestamps:
description: This path selects all sourcestamps (can return lots of data!)
get:

is:
- bbget: {bbtype: sourcestamp}

/{ssid}:
description: This path selects one sourcestamp by id
uriParameters:

ssid:
type: number
description: the id of the sourcestamp

get:
is:
- bbget: {bbtype: sourcestamp}

/changes:
description: This path selects all changes associated to one

→˓sourcestamp
get:

is:
- bbget: {bbtype: change}

/steps:
/{stepid}:

description: This path selects one step by id
uriParameters:

stepid:
type: number
description: the id of the step

366 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.1

/logs:
description: This path selects all logs for the given step.
get:

is:
- bbget: {bbtype: log}

/{log_slug}:
uriParameters:

log_slug:
type: identifier
description: the slug name of the log

get:
description: |

This path selects a specific log in the given step.
is:
- bbget: {bbtype: log}

/contents:
get:

description: |
This path selects chunks from a specific log in the

→˓given step.
is:
- bbget: {bbtype: logchunk}

/raw:
get:

description: |
This path downloads the whole log

is:
- bbgetraw:

3.2.2 Data API

The data layer combines access to stored state and messages, ensuring consistency between them, and exposing
a well-defined API that can be used both internally and externally. Using caching and the clock information
provided by the db and mq layers, this layer ensures that its callers can easily receive a dump of current state plus
changes to that state, without missing or duplicating messages.

Sections

The data api is divided into four sections:

• getters - fetching data from the db API, and

• subscriptions - subscribing to messages from the mq layer;

• control - allows state to be changed in specific ways by sending appropriate messages (e.g., stopping a
build); and

• updates - direct updates to state appropriate messages.

The getters and subscriptions are exposed everywhere. Access to the control section should be authenticated at
higher levels, as the data layer does no authentication. The updates section is for use only by the process layer.

The interfaces for all sections but the updates sections are intended to be language-agnostic. That is, they should
be callable from JavaScript via HTTP, or via some other interface added to Buildbot after the fact.

Getter

The getter section can get either a single resource, or a list of resources. Getting a single resource requires
a resource identifier (a tuple of strings) and a set of options to support automatic expansion of links to other
resources (thus saving round-trips). Lists are requested with a partial resource identifier (a tuple of strings) and an

3.2. APIs 367

Buildbot Documentation, Release 0.9.1

optional set of filter options. In some cases, certain filters are implicit in the path, e.g., the list of buildsteps for a
particular build.

Subscriptions

Message subscriptions can be made to anything that can be listed or gotten from the getter sections, using the
same resource identifiers. Options and explicit filters are not supported - a message contains only the most basic
information about a resource, and a list subscription results in a message for every new resource of the desired
type. Implicit filters are supported.

Control

The control sections defines a set of actions that cause Buildbot to behave in a certain way, e.g., rebuilding a build
or shutting down a worker. Actions correspond to a particular resource, although sometimes that resource is the
root resource (an empty tuple).

Updates

The updates section defines a free-form set of methods that Buildbot’s process implementation calls to update
data. Most update methods both modify state via the db API and send a message via the mq API. Some are
simple wrappers for these APIs, while others contain more complex logic, e.g., building a source stamp set for
a collection of changes. This section is the proper place to put common functionality, e.g., rebuilding builds or
assembling buildsets.

Concrete Interfaces

Python Interface

Within the buildmaster process, the root of the data API is available at self.master.data, which is a
DataConnector instance.

class buildbot.data.connector.DataConnector
This class implements the root of the data API. Within the buildmaster process, the data connector is avail-
able at self.master.data. The first three sections are implemented with the get and control methods,
respectively, while the updates section is implemented using the updates attribute. The path arguments
to these methods should always be tuples. Integer arguments can be presented as either integers or strings
that can be parsed by int; all other arguments must be strings.

get(path, filters=None, fields=None, order=None, limit=None, offset=None):

Parameters

• path (tuple) – A tuple of path elements representing the API path to fetch. Num-
bers can be passed as strings or integers.

• filters – result spec filters

• fields – result spec fields

• order – result spec order

• limit – result spec limit

• offset – result spec offset

Raises InvalidPathError

Returns a resource or list via Deferred, or None

368 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.1

This method implements the getter section. Depending on the path, it will return a single resource or
a list of resources. If a single resource is not specified, it returns None.

The filters, fields, order, limit, and offset are passed to the ResultSpec constructor.

The return value is composed of simple Python objects - lists, dicts, strings, numbers, and None.

getEndpoint(path)

Parameters path (tuple) – A tuple of path elements representing the API path. Numbers
can be passed as strings or integers.

Raises InvalidPathError

Returns tuple of endpoint and a dictionary of keyword arguments from the path

Get the endpoint responsible for the given path, along with any arguments extracted from the path.
This can be used by callers that need access to information from the endpoint beyond that returned
from get.

produceEvent(rtype, msg, event)

Parameters

• rtype – the name identifying a resource type

• msg – a dictionary describing the msg to send

• event – the event to produce

This method implements the production of an event, for the rtype identified by its name string. Usually,
this is the role of the data layer to produce the events inside the update methods. For the potential
use cases where it would make sense to solely produce an event, and not update data, please use
this API, rather than directly call mq. It ensures the event is sent to all the routingkeys specified by
eventPathPatterns.

control(action, args, path)

Parameters

• action – a short string naming the action to perform

• args – dictionary containing arguments for the action

• path (tuple) – A tuple of path elements representing the API path. Numbers can
be passed as strings or integers.

Raises InvalidPathError

Returns a resource or list via Deferred, or None

This method implements the control section. Depending on the path, it may return a new created
resource.

allEndpoints()

Returns list of endpoint specifications

This method returns the deprecated API spec. Please use Raml Specs instead.

rtypes
This object has an attribute named for each resource type, named after the singular form (e.g.,
self.master.data.builder). These attributes allow resource types to access one another for purposes
of coordination. They are not intended for external access – all external access to the data API should
be via the methods above or update methods.

3.2. APIs 369

Buildbot Documentation, Release 0.9.1

Updates

The updates section is available at self.master.data.updates, and contains a number of ad-hoc methods needed by
the process modules.

Note: The update methods are implemented in resource type classes, but through some initialization-time magic,
all appear as attributes of self.master.data.updates.

The update methods are found in the resource type pages.

Exceptions

exception buildbot.data.exceptions.DataException
This is a base class for all other Data API exceptions.

exception buildbot.data.exceptions.InvalidPathError
The path argument was invalid or unknown.

exception buildbot.data.exceptions.InvalidOptionError
A value in the options argument was invalid or ill-formed.

exception buildbot.data.exceptions.SchedulerAlreadyClaimedError
Identical to SchedulerAlreadyClaimedError.

Web Interface

The HTTP interface is implemented by the buildbot.www package, as configured by the user. Part of that
configuration is a base URL, which is considered a prefix for all paths mentioned here.

See Base web application for more information.

Extending the Data API

The data API may be extended in various ways: adding new endpoints, new fields to resource types, new update
methods, or entirely new resource types. In any case, you should only extend the API if you plan to submit the
extensions to be merged into Buildbot itself. Private API extensions are strongly discouraged.

Adding Resource Types

You’ll need to use both plural and singular forms of the resource type; in this example, we’ll use ‘pub’ and ‘pubs’.
You can also follow an existing file, like https://github.com/buildbot/buildbot/blob/master/master/buildbot/data/
changes.py, to see when to use which form.

In master/buildbot/data/pubs.py, create a subclass of ResourceType:

from buildbot.data import base

class Pub(base.ResourceType):
name = "pub"
endpoints = []
keyFields = ['pubid']

class EntityType(types.Entity):
pubid = types.Integer()
name = types.String()
num_taps = types.Integer()
closes_at = types.Integer()

370 Chapter 3. Buildbot Development

https://github.com/buildbot/buildbot/blob/master/master/buildbot/data/changes.py
https://github.com/buildbot/buildbot/blob/master/master/buildbot/data/changes.py

Buildbot Documentation, Release 0.9.1

entityType = EntityType(name)

class buildbot.data.base.ResourceType

name

Type string

The singular, lower-cased name of the resource type. This becomes the first component in message
routing keys.

plural

Type string

The plural, lower-cased name of the resource type. This becomes the key containing the data in REST
responses.

endpoints

Type list

Subclasses should set this to a list of endpoint classes for this resource type.

eventPathPatterns

Type str

This attribute should list the message routes where events should be sent, encoded as a REST like
endpoint:

pub/:pubid

In the example above, a call to produceEvent({'pubid': 10,'name':
'Winchester'},'opened') would result in a message with routing key
('pub','10','opened').

Several paths can be specified in order to be consistent with rest endpoints.

entityType

Type buildbot.data.types.Entity

The entity type describes the types of all of the fields in this particular resource type. See
buildbot.data.types.Entity and Adding Fields to Resource Types.

The parent class provides the following methods

getEndpoints()

Returns a list of Endpoint instances

This method returns a list of the endpoint instances associated with the resource type.

The base method instantiates each class in the endpoints attribute. Most subclasses can simply list
Endpoint subclasses in endpoints.

produceEvent(msg, event)

Parameters

• msg (dict) – the message body

• event (string) – the name of the event that has occurred

This is a convenience method to produce an event message for this resource type. It formats the routing
key correctly and sends the message, thereby ensuring consistent routing-key structure.

3.2. APIs 371

Buildbot Documentation, Release 0.9.1

Like all Buildbot source files, every resource type module must have corresponding tests. These should thoroughly
exercise all update methods.

All resource types must be documented in the Buildbot documentation and linked from the bottom of this file
(https://github.com/buildbot/buildbot/blob/master/master/docs/developer/data.rst).

Adding Endpoints

Each resource path is implemented as an Endpoint instance. In most cases, each instance is of a different class,
but this is not required.

The data connector’s get and control methods both take a path argument that is used to look up the corre-
sponding endpoint. The path matching is performed by buildbot.util.pathmatch, and supports automat-
ically extracting variable fields from the path. See that module’s description for details.

class buildbot.data.base.Endpoint

pathPatterns

Type string

This attribute defines the path patterns which incoming paths must match to select
this endpoint. Paths are specified as URIs, and can contain variables as parsed by
buildbot.util.pathmatch.Matcher. Multiple paths are separated by whitespace.

For example, the following specifies two paths with the second having a single variable:

pathPatterns = """
/bugs
/component/i:component_name/bugs

"""

rootLinkName

Type string

If set, then the first path pattern for this endpoint will be included as a link in the root of the API. This
should be set for any endpoints that begin an explorable tree.

isCollection

Type boolean

If true, then this endpoint returns collections of resources.

isRaw

Type boolean

If true, then this endpoint returns raw resource.

Raw resources are used to get the data not encoded in JSON via the rest API. In the REST principles,
this should be done via another endpoint, and not via a query parameter. The get() method from
endpoint should return following data structure:

{
"raw": u"raw data to be sent to the http client",
"mime-type": u"<mime-type>",
"filename": u"filename_to_be_used_in_content_disposition_attachement_

→˓header"
}

get(options, resultSpec, kwargs)

Parameters

372 Chapter 3. Buildbot Development

https://github.com/buildbot/buildbot/blob/master/master/docs/developer/data.rst

Buildbot Documentation, Release 0.9.1

• options (dict) – model-specific options

• resultSpec – a ResultSpec instance describing the desired results

• kwargs (dict) – fields extracted from the path

Returns data via Deferred

Get data from the endpoint. This should return either a list of dictionaries (for list endpoints), a
dictionary, or None (both for details endpoints). The endpoint is free to handle any part of the result
spec. When doing so, it should remove the relevant configuration from the spec. See below.

Any result spec configuration that remains on return will be applied automatically.

control(action, args, kwargs)

Parameters

• action – a short string naming the action to perform

• args – dictionary containing arguments for the action

• kwargs – fields extracted from the path

Continuing the pub example, a simple endpoint would look like this:

class PubEndpoint(base.Endpoint):
pathPattern = ('pub', 'i:pubid')

def get(self, resultSpec, kwargs):
return self.master.db.pubs.getPub(kwargs['pubid'])

Endpoint implementations must have unit tests. An endpoint’s path should be documented in the .rst file for its
resource type.

The initial pass at implementing any endpoint should just ignore the resultSpec argument to get. After that
initial pass, the argument can be used to optimize certain types of queries. For example, if the resource type
has many resources, but most real-life queries use the result spec to filter out all but a few resources from that
group, then it makes sense for the endpoint to examine the result spec and allow the underlying DB API to do that
filtering.

When an endpoint handles parts of the result spec, it must remove those parts from the spec before it returns. See
the documentation for ResultSpec for methods to do so.

Note that endpoints must be careful not to alter the order of the filtering applied for a result spec. For example,
if an endpoint implements pagination, then it must also completely implement filtering and ordering, since those
operations precede pagination in the result spec application.

Adding Messages

Message types are defined in https://github.com/buildbot/buildbot/blob/master/master/buildbot/test/util/validation.
py, via the message module-level value. This is a dictionary of MessageValidator objects, one for each
message type. The message type is determined from the first atom of its routing key. The events dictionary lists
the possible last atoms of the routing key. It should be identical to the attribute of the ResourceType with the same
name.

Adding Update Methods

Update methods are for use by the Buildbot process code, and as such are generally designed to suit the needs
of that code. They generally encapsulate logic common to multiple users (e.g., creating buildsets), and finish by
performing modifications in the database and sending a corresponding message. In general, Buildbot does not
depend on timing of either the database or message broker, so the order in which these operations are initiated is
not important.

3.2. APIs 373

https://github.com/buildbot/buildbot/blob/master/master/buildbot/test/util/validation.py
https://github.com/buildbot/buildbot/blob/master/master/buildbot/test/util/validation.py

Buildbot Documentation, Release 0.9.1

Update methods are considered part of Buildbot’s user-visible interface, and as such incompatible changes should
be avoied wherever possible. Instead, either add a new method (and potentially re-implement existing methods in
terms of the new method) or add new, optional parameters to an existing method. If an incompatible change is
unavoidable, it should be described clearly in the release notes.

Update methods are implemented as methods of ResourceType subclasses, decorated with
@base.updateMethod:

buildbot.data.base.updateMethod(f)
A decorator for ResourceType subclass methods, indicating that the method should be copied to
master.data.updates.

Returning to the pub example:

class PubResourceType(base.ResourceType):
...
@base.updateMethod
@defer.inlineCallbacks
def setPubTapList(self, pubid, beers):

pub = yield self.master.db.pubs.getPub(pubid)
...
self.produceMessage(pub, 'taps-updated')

Update methods should be documented in https://github.com/buildbot/buildbot/blob/master/master/docs/
developer/data.rst. They should be thoroughly tested with unit tests. They should have a fake implentation
in https://github.com/buildbot/buildbot/blob/master/master/buildbot/test/fake/fakedata.py. That fake implementa-
tion should be tested to match the real implementation in https://github.com/buildbot/buildbot/blob/master/master/
buildbot/test/unit/test_data_connector.py.

Adding Fields to Resource Types

The details of the fields of a resource type are rigorously enforced at several points in the Buildbot tests. The
enforcement is performed by the buildbot.data.types module.

The module provides a number of type classes for basic and compound types. Each resource type class defines its
entity type in its entityType class attribute. Other resource types may refer to this class attribute if they embed
an entity of that type.

The types are used both for tests, and by the REST interface to properly decode user-supplied query parameters.

Basic Types

class buildbot.data.types.Integer
An integer.

myid = types.Integer()

class buildbot.data.types.String
A string. Strings must always be Unicode.

name = types.String()

class buildbot.data.types.Binary
A binary bytestring.

data = types.Binary()

class buildbot.data.types.Boolean
A boolean value.

374 Chapter 3. Buildbot Development

https://github.com/buildbot/buildbot/blob/master/master/docs/developer/data.rst
https://github.com/buildbot/buildbot/blob/master/master/docs/developer/data.rst
https://github.com/buildbot/buildbot/blob/master/master/buildbot/test/fake/fakedata.py
https://github.com/buildbot/buildbot/blob/master/master/buildbot/test/unit/test_data_connector.py
https://github.com/buildbot/buildbot/blob/master/master/buildbot/test/unit/test_data_connector.py

Buildbot Documentation, Release 0.9.1

complete = types.Boolean()

class buildbot.data.types.Identifier(length)
An identifier; see Identifier. The constructor argument specifies the maximum length.

ident = types.Identifier(25)

Compound Types

class buildbot.data.types.NoneOk(nestedType)
Either the nested type, or None.

category = types.NoneOk(types.String())

class buildbot.data.types.List(of)
An list of objects. The named constructor argument of specifies the type of the list elements.

tags = types.List(of=types.String())

class buildbot.data.types.SourcedProperties
A data structure representing properties with their sources, in the form {name: (value,source)}.
The property name and source must be Unicode, and the value must be JSON-able.

props = types.SourcedProperties()

Entity Type

class buildbot.data.types.Entity(name)
A data resource is represented by a dictionary with well-known keys. To define those keys and their values,
subclass the Entity class within your ResourceType class and include each field as an attribute:

class MyStuff(base.ResourceType):
name = "mystuff"
...
class EntityType(types.Entity):

myid = types.Integer()
name = types.String()
data = types.Binary()
complete = types.Boolean()
ident = types.Identifier(25)
category = types.NoneOk(types.String())
tags = types.List(of=types.String())
props = types.SourcedProperties()

Then instantiate the class with the resource type name:

entityType = EntityType(name)

To embed another entity type, reference its entityType class attribute:

class EntityType(types.Entity):
...
master = masters.Master.entityType

3.2. APIs 375

Buildbot Documentation, Release 0.9.1

Data Model

The data api enforces a strong and well-defined model on Buildbot’s data. This model is influenced by REST, in
the sense that it defines resources, representations for resources, and identifiers for resources. For each resource
type, the API specifies

• the attributes of the resource and their types (e.g., changes have a string specifying their project);

• the format of links to other resources (e.g., buildsets to sourcestamp sets);

• the paths relating to the resource type;

• the format of routing keys for messages relating to the resource type;

• the events that can occur on that resource (e.g., a buildrequest can be claimed); and

• options and filters for getting resources.

Some resource type attributes only appear in certain formats, as noted in the documentation for the resource types.
In general, messages do not include any optional attributes, nor links.

Paths are given here separated by slashes, with key names prefixed by : and described below. Similarly, message
routing keys given here are separated by dots, with key names prefixed by $. The translation to tuples and other
formats should be obvious.

All strings in the data model are unicode strings.

3.2.3 Database

As of version 0.8.0, Buildbot has used a database as part of its storage backend. This section describes the database
connector classes, which allow other parts of Buildbot to access the database. It also describes how to modify the
database schema and the connector classes themselves.

Database Overview

All access to the Buildbot database is mediated by database connector classes. These classes provide a functional,
asynchronous interface to other parts of Buildbot, and encapsulate the database-specific details in a single location
in the codebase.

The connector API, defined below, is a stable API in Buildbot, and can be called from any other component.
Given a master master, the root of the database connectors is available at master.db, so, for example, the
state connector’s getState method is master.db.state.getState.

The connectors all use SQLAlchemy Core (http://www.sqlalchemy.org/docs/index.html) to achieve (almost)
database-independent operation. Note that the SQLAlchemy ORM is not used in Buildbot. Database queries
are carried out in threads, and report their results back to the main thread via Twisted Deferreds.

Schema

The database schema is maintained with SQLAlchemy-Migrate (https://github.com/openstack/sqlalchemy-
migrate). This package handles the details of upgrading users between different schema versions.

The schema itself is considered an implementation detail, and may change significantly from version to version.
Users should rely on the API (below), rather than performing queries against the database itself.

376 Chapter 3. Buildbot Development

http://www.sqlalchemy.org/docs/index.html
https://github.com/openstack/sqlalchemy-migrate

Buildbot Documentation, Release 0.9.1

API

types

Identifier

An “identifier” is a nonempty unicode string of limited length, containing only ASCII alphanumeric
characters along with - (dash) and _ (underscore), and not beginning with a digit Wherever an
identifier is used, the documentation will give the maximum length in characters. The function
buildbot.util.identifiers.isIdentifier is useful to verify a well-formed identifier.

buildrequests

exception buildbot.db.buildrequests.AlreadyClaimedError
Raised when a build request is already claimed, usually by another master.

exception buildbot.db.buildrequests.NotClaimedError
Raised when a build request is not claimed by this master.

class buildbot.db.buildrequests.BuildRequestsConnectorComponent
This class handles the complex process of claiming and unclaiming build requests, based on a polling
model: callers poll for unclaimed requests with getBuildRequests, then attempt to claim the requests
with claimBuildRequests. The claim can fail if another master has claimed the request in the interim.

An instance of this class is available at master.db.buildrequests.

Build requests are indexed by an ID referred to as a brid. The contents of a request are represented as build
request dictionaries (brdicts) with keys

•buildrequestid

•buildsetid

•builderid

•buildername

•priority

•claimed (boolean, true if the request is claimed)

•claimed_at (datetime object, time this request was last claimed)

•claimed_by_masterid (integer, the id of the master that claimed this buildrequest)

•complete (boolean, true if the request is complete)

•complete_at (datetime object, time this request was completed)

•submitted_at (datetime object, time this request was completed)

•results (integer result code)

•waited_for (boolean)

getBuildRequest(brid)

Parameters brid – build request id to look up

Returns brdict or None, via Deferred

Get a single BuildRequest, in the format described above. This method returns None if there is no
such buildrequest. Note that build requests are not cached, as the values in the database are not fixed.

getBuildRequests(buildername=None, complete=None, claimed=None, bsid=None,
branch=None, repository=None)

Parameters

3.2. APIs 377

Buildbot Documentation, Release 0.9.1

• buildername (string) – limit results to buildrequests for this builder

• complete – if true, limit to completed buildrequests; if false, limit to incomplete
buildrequests; if None, do not limit based on completion.

• claimed – see below

• bsid – see below

• repository – the repository associated with the sourcestamps originating the re-
quests

• branch – the branch associated with the sourcestamps originating the requests

Returns list of brdicts, via Deferred

Get a list of build requests matching the given characteristics.

Pass all parameters as keyword parameters to allow future expansion.

The claimed parameter can be None (the default) to ignore the claimed status of requests; True to
return only claimed builds, False to return only unclaimed builds, or a master ID to return only
builds claimed by a particular master instance. A request is considered unclaimed if its claimed_at
column is either NULL or 0, and it is not complete. If bsid is specified, then only build requests for
that buildset will be returned.

A build is considered completed if its complete column is 1; the complete_at column is not
consulted.

claimBuildRequests(brids[, claimed_at=XX])
Parameters

• brids (list) – ids of buildrequests to claim

• claimed_at (datetime) – time at which the builds are claimed

Returns Deferred

Raises AlreadyClaimedError

Try to “claim” the indicated build requests for this buildmaster instance. The resulting deferred will
fire normally on success, or fail with AlreadyClaimedError if any of the build requests are
already claimed by another master instance. In this case, none of the claims will take effect.

If claimed_at is not given, then the current time will be used.

As of 0.8.5, this method can no longer be used to re-claim build requests. All given ID’s must be
unclaimed. Use reclaimBuildRequests to reclaim.

Note: On database backends that do not enforce referential integrity (e.g., SQLite), this method
will not prevent claims for nonexistent build requests. On database backends that do not support
transactions (MySQL), this method will not properly roll back any partial claims made before an
AlreadyClaimedError is generated.

reclaimBuildRequests(brids)

Parameters brids (list) – ids of buildrequests to reclaim

Returns Deferred

Raises AlreadyClaimedError

Re-claim the given build requests, updating the timestamp, but checking that the requests are
owned by this master. The resulting deferred will fire normally on success, or fail with
AlreadyClaimedError if any of the build requests are already claimed by another master in-
stance, or don’t exist. In this case, none of the reclaims will take effect.

unclaimBuildRequests(brids)

378 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.1

Parameters brids (list) – ids of buildrequests to unclaim

Returns Deferred

Release this master’s claim on all of the given build requests. This will not unclaim requests that are
claimed by another master, but will not fail in this case. The method does not check whether a request
is completed.

completeBuildRequests(brids, results[, complete_at=XX])
Parameters

• brids (integer) – build request IDs to complete

• results (integer) – integer result code

• complete_at (datetime) – time at which the buildset was completed

Returns Deferred

Raises NotClaimedError

Complete a set of build requests, all of which are owned by this master instance. This will fail with
NotClaimedError if the build request is already completed or does not exist. If complete_at
is not given, the current time will be used.

unclaimExpiredRequests(old)

Parameters old (int) – number of seconds after which a claim is considered old

Returns Deferred

Find any incomplete claimed builds which are older than old seconds, and clear their claim informa-
tion.

This is intended to catch builds that were claimed by a master which has since disappeared. As a side
effect, it will log a message if any requests are unclaimed.

builds

class buildbot.db.builds.BuildsConnectorComponent
This class handles builds. One build record is created for each build performed by a master. This record
contains information on the status of the build, as well as links to the resources used in the build: builder,
master, worker, etc.

An instance of this class is available at master.db.builds.

Builds are indexed by buildid and their contents represented as builddicts (build dictionaries), with the
following keys:

•id (the build ID, globally unique)

•number (the build number, unique only within the builder)

•builderid (the ID of the builder that performed this build)

•buildrequestid (the ID of the build request that caused this build)

•workerid (the ID of the worker on which this build was performed)

•masterid (the ID of the master on which this build was performed)

•started_at (datetime at which this build began)

•complete_at (datetime at which this build finished, or None if it is ongoing)

•state_string (short string describing the build’s state)

•results (results of this build; see Build Result Codes)

getBuild(buildid)

3.2. APIs 379

Buildbot Documentation, Release 0.9.1

Parameters buildid (integer) – build id

Returns Build dictionary as above or None, via Deferred

Get a single build, in the format described above. Returns None if there is no such build.

getBuildByNumber(builderid, number)

Parameters

• builder (integer) – builder id

• number (integer) – build number within that builder

Returns Build dictionary as above or None, via Deferred

Get a single build, in the format described above, specified by builder and number, rather than build
id. Returns None if there is no such build.

getPrevSuccessfulBuild(builderid, number, ssBuild)

Parameters

• builderid (integer) – builder to get builds for

• number (integer) – the current build number. Previous build will be taken from
this number

• ssBuild (list) – the list of sourcestamps for the current build number

Returns None or a build dictionnary

Returns the last successful build from the current build number with the same reposi-
tory/repository/codebase

getBuilds(builderid=None, buildrequestid=None, complete=None)

Parameters

• builderid (integer) – builder to get builds for

• buildrequestid (integer) – buildrequest to get builds for

• complete (boolean) – if not None, filters results based on completeness

Returns list of build dictionaries as above, via Deferred

Get a list of builds, in the format described above. Each of the parameters limit the resulting set of
builds.

addBuild(builderid, buildrequestid, workerid, masterid, state_string)

Parameters

• builderid (integer) – builder to get builds for

• buildrequestid (integer) – build request id

• workerid (integer) – worker performing the build

• masterid (integer) – master performing the build

• state_string (unicode) – initial state of the build

Returns tuple of build ID and build number, via Deferred

Add a new build to the db, recorded as having started at the current time. This will invent a new
number for the build, unique within the context of the builder.

setBuildStateString(buildid, state_string):

Parameters

• buildid (integer) – build id

• state_string (unicode) – updated state of the build

380 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.1

Returns Deferred

Update the state strings for the given build.

finishBuild(buildid, results)

Parameters

• buildid (integer) – build id

• results (integer) – build result

Returns Deferred

Mark the given build as finished, with complete_at set to the current time.

Note: This update is done unconditionally, even if the build is already finished.

getBuildProperties(buildid)

Parameters buildid – build ID

Returns dictionary mapping property name to value,source, via Deferred

Return the properties for a build, in the same format they were given to addBuild.

Note that this method does not distinguish a non-existent build from a build with no properties, and
returns {} in either case.

setBuildProperty(buildid, name, value, source)

Parameters

• buildid (integer) – build ID

• name (string) – Name of the property to set

• value – Value of the property

• source (string) – Source of the Property to set

Returns Deferred

Set a build property. If no property with that name existed in that build, a new property will be created.

steps

class buildbot.db.steps.StepsConnectorComponent
This class handles the steps performed within the context of a build. Within a build, each step has a unique
name and a unique, 0-based number.

An instance of this class is available at master.db.steps.

Builds are indexed by stepid and their contents represented as stepdicts (step dictionaries), with the follow-
ing keys:

•id (the step ID, globally unique)

•number (the step number, unique only within the build)

•name (the step name, an 50-character identifier unique only within the build)

•buildid (the ID of the build containing this step)

•started_at (datetime at which this step began)

•complete_at (datetime at which this step finished, or None if it is ongoing)

•state_string (short string describing the step’s state)

•results (results of this step; see Build Result Codes)

3.2. APIs 381

Buildbot Documentation, Release 0.9.1

•urls (list of URLs produced by this step. Each urls is stored as a dictionary with keys name and url)

•hidden (true if the step should be hidden in status displays)

getStep(stepid=None, buildid=None, number=None, name=None)

Parameters

• stepid (integer) – the step id to retrieve

• buildid (integer) – the build from which to get the step

• number (integer) – the step number

• name (50-character identifier) – the step name

Returns stepdict via Deferred

Get a single step. The step can be specified by

•stepid alone;

•buildid and number, the step number within that build; or

•buildid and name, the unique step name within that build.

getSteps(buildid)

Parameters buildid (integer) – the build from which to get the step

Returns list of stepdicts, sorted by number, via Deferred

Get all steps in the given build, in order by number.

addStep(self, buildid, name, state_string)

Parameters

• buildid (integer) – the build to which to add the step

• name (50-character identifier) – the step name

• state_string (unicode) – the initial state of the step

Returns tuple of step ID, step number, and step name, via Deferred

Add a new step to a build. The given name will be used if it is unique; otherwise, a unique numerical
suffix will be appended.

setStepStateString(stepid, state_string):

Parameters

• stepid (integer) – step ID

• state_string (unicode) – updated state of the step

Returns Deferred

Update the state string for the given step.

finishStep(stepid, results, hidden)

Parameters

• stepid (integer) – step ID

• results (integer) – step result

• hidden (bool) – true if the step should be hidden

Returns Deferred

382 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.1

Mark the given step as finished, with complete_at set to the current time.

Note: This update is done unconditionally, even if the steps are already finished.

addURL(self, stepid, name, url)

Parameters

• stepid (integer) – the stepid to add the url.

• name (string) – the url name

• url (string) – the actual url

Returns None via deferred

Add a new url to a step. The new url is added to the list of urls.

logs

class buildbot.db.logs.LogsConnectorComponent
This class handles log data. Build steps can have zero or more logs. Logs are uniquely identified by name
within a step.

Information about a log, apart from its contents, is represented as a dictionary with the following keys,
referred to as a logdict:

•id (log ID, globally unique)

•stepid (step ID, indicating the containing step)

•name free-form name of this log

•slug (50-identifier for the log, unique within the step)

•complete (true if the log is complete and will not receive more lines)

•num_lines (number of lines in the log)

•type (log type; see below)

Each log has a type that describes how to interpret its contents. See the logchunk resource type for details.

A log is contains a sequence of newline-separated lines of unicode. Log line numbering is zero-based.

Each line must be less than 64k when encoded in UTF-8. Longer lines will be truncated, and a warning
logged.

Lines are stored internally in “chunks”, and optionally compressed, but the implementation hides these
details from callers.

getLog(logid)

Parameters logid (integer) – ID of the requested log

Returns logdict via Deferred

Get a log, identified by logid.

getLogBySlug(stepid, slug)

Parameters

• stepid (integer) – ID of the step containing this log

• slug – slug of the logfile to retrieve

Returns logdict via Deferred

Get a log, identified by name within the given step.

3.2. APIs 383

Buildbot Documentation, Release 0.9.1

getLogs(stepid)

Parameters stepid (integer) – ID of the step containing the desired logs

Returns list of logdicts via Deferred

Get all logs within the given step.

getLogLines(logid, first_line, last_line)

Parameters

• logid (integer) – ID of the log

• first_line – first line to return

• last_line – last line to return

Returns see below

Get a subset of lines for a logfile.

The return value, via Deferred, is a concatenation of newline-terminated strings. If the requested last
line is beyond the end of the logfile, only existing lines will be included. If the log does not exist, or
has no associated lines, this method returns an empty string.

addLog(stepid, name, type)

Parameters

• stepid (integer) – ID of the step containing this log

• name (string) – name of the logfile

• slug (50-character identifier) – slug (unique identifier) of the logfile

• type (string) – log type (see above)

Raises KeyError – if a log with the given slug already exists in the step

Returns ID of the new log, via Deferred

Add a new log file to the given step.

appendLog(logid, content)

Parameters

• logid (integer) – ID of the requested log

• content (string) – new content to be appended to the log

Returns tuple of first and last line numbers in the new chunk, via Deferred

Append content to an existing log. The content must end with a newline. If the given log does not
exist, the method will silently do nothing.

It is not safe to call this method more than once simultaneously for the same logid.

finishLog(logid)

Parameters logid (integer) – ID of the log to mark complete

Returns Deferred

Mark a log as complete.

Note that no checking for completeness is performed when appending to a log. It is up to the caller to
avoid further calls to appendLog after finishLog.

compressLog(logid)

Parameters logid (integer) – ID of the log to compress

Returns Deferred

384 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.1

Compress the given log. This method performs internal optimizations of a log’s chunks to reduce the
space used and make read operations more efficient. It should only be called for finished logs. This
method may take some time to complete.

buildsets

class buildbot.db.buildsets.BuildsetsConnectorComponent
This class handles getting buildsets into and out of the database. Buildsets combine multiple build requests
that were triggered together.

An instance of this class is available at master.db.buildsets.

Buildsets are indexed by bsid and their contents represented as bsdicts (buildset dictionaries), with keys

•bsid

•external_idstring (arbitrary string for mapping builds externally)

•reason (string; reason these builds were triggered)

•sourcestamps (list of sourcestamps for this buildset, by ID)

•submitted_at (datetime object; time this buildset was created)

•complete (boolean; true if all of the builds for this buildset are complete)

•complete_at (datetime object; time this buildset was completed)

•results (aggregate result of this buildset; see Build Result Codes)

addBuildset(sourcestamps, reason, properties, builderids, external_idstring=None, par-
ent_buildid=None, parent_relationship=None)

Parameters

• sourcestamps (list) – sourcestamps for the new buildset; see below

• reason (short unicode string) – reason for this buildset

• properties (dictionary, where values are tuples of (value,
source)) – properties for this buildset

• builderids (list of int) – builderids specified by this buildset

• external_idstring (unicode string) – external key to identify this build-
set; defaults to None

• submitted_at (datetime) – time this buildset was created; defaults to the cur-
rent time

• parent_buildid (int) – optional build id that is the parent for this buildset

• parent_relationship (unicode) – relationship identifier for the parent, this
is is configured relationship between the parent build, and the childs buildsets

Returns buildset ID and buildrequest IDs, via a Deferred

Add a new Buildset to the database, along with BuildRequests for each builder, returning the resulting
bsid via a Deferred. Arguments should be specified by keyword.

Each sourcestamp in the list of sourcestamps can be given either as an integer, assumed to be a sources-
tamp ID, or a dictionary of keyword arguments to be passed to findSourceStampId.

The return value is a tuple (bsid,brids) where bsid is the inserted buildset ID and brids is a
dictionary mapping builderids to build request IDs.

completeBuildset(bsid, results[, complete_at=XX])
Parameters

• bsid (integer) – buildset ID to complete

3.2. APIs 385

Buildbot Documentation, Release 0.9.1

• results (integer) – integer result code

• complete_at (datetime) – time the buildset was completed

Returns Deferred

Raises KeyError if the buildset does not exist or is already complete

Complete a buildset, marking it with the given results and setting its completed_at to the
current time, if the complete_at argument is omitted.

getBuildset(bsid)

Parameters bsid – buildset ID

Returns bsdict, or None, via Deferred

Get a bsdict representing the given buildset, or None if no such buildset exists.

Note that buildsets are not cached, as the values in the database are not fixed.

getBuildsets(complete=None)

Parameters complete – if true, return only complete buildsets; if false, return only in-
complete buildsets; if None or omitted, return all buildsets

Returns list of bsdicts, via Deferred

Get a list of bsdicts matching the given criteria.

getRecentBuildsets(count=None, branch=None, repository=None,
complete=None):

Parameters

• count (integer) – maximum number of buildsets to retrieve (required).

• branch (string) – optional branch name. If specified, only buildsets affecting
such branch will be returned.

• repository (string) – optional repository name. If specified, only buildsets
affecting such repository will be returned.

• complete (Boolean) – if true, return only complete buildsets; if false, return only
incomplete buildsets; if None or omitted, return all buildsets

Returns list of bsdicts, via Deferred

Get “recent” buildsets, as defined by their submitted_at times.

getBuildsetProperties(buildsetid)

Parameters bsid – buildset ID

Returns dictionary mapping property name to value,source, via Deferred

Return the properties for a buildset, in the same format they were given to addBuildset.

Note that this method does not distinguish a nonexistent buildset from a buildset with no properties,
and returns {} in either case.

workers

class buildbot.db.workers.WorkersConnectorComponent
This class handles Buildbot’s notion of workers. The worker information is returned as a dictionary:

•id

•name - the name of the worker

•workerinfo - worker information as dictionary

386 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.1

•connected_to - a list of masters, by ID, to which this worker is currently connected. This list will
typically contain only one master, but in unusual circumstances the same worker may appear to be
connected to multiple masters simultaneously.

•configured_on - a list of master-builder pairs, on which this worker is configured. Each pair is
represented by a dictionary with keys buliderid and masterid.

The worker information can be any JSON-able object. See worker for more detail.

findWorkerId(name=name)

Parameters name (50-character identifier) – worker name

Returns worker ID via Deferred

Get the ID for a worker, adding a new worker to the database if necessary. The worker information for
a new worker is initialized to an empty dictionary.

getWorkers(masterid=None, builderid=None)

Parameters

• masterid (integer) – limit to workers configured on this master

• builderid (integer) – limit to workers configured on this builder

Returns list of worker dictionaries, via Deferred

Get a list of workers. If either or both of the filtering parameters either specified, then the result is
limited to workers configured to run on that master or builder. The configured_on results are lim-
ited by the filtering parameters as well. The connected_to results are limited by the masterid
parameter.

getWorker(workerid=None, name=None, masterid=None, builderid=None)

Parameters

• name (string) – the name of the worker to retrieve

• workerid (integer) – the ID of the worker to retrieve

• masterid (integer) – limit to workers configured on this master

• builderid (integer) – limit to workers configured on this builder

Returns info dictionary or None, via Deferred

Looks up the worker with the given name or ID, returning None if no matching worker is found. The
masterid and builderid arguments function as they do for getWorkers.

workerConnected(workerid, masterid, workerinfo)

Parameters

• workerid (integer) – the ID of the worker

• masterid (integer) – the ID of the master to which it connected

• workerinfo (dict) – the new worker information dictionary

Returns Deferred

Record the given worker as attached to the given master, and update its cached worker information.
The supplied information completely replaces any existing information.

workerDisconnected(workerid, masterid)

Parameters

• workerid (integer) – the ID of the worker

• masterid (integer) – the ID of the master to which it connected

Returns Deferred

3.2. APIs 387

Buildbot Documentation, Release 0.9.1

Record the given worker as no longer attached to the given master.

workerConfigured(workerid, masterid, builderids)

Parameters

• workerid (integer) – the ID of the worker

• masterid (integer) – the ID of the master to which it configured

• of integer builderids (list) – the ID of the builders to which it is config-
ured

Returns Deferred

Record the given worker as being configured on the given master and for given builders. This method
will also remove any other builder that were configured previously for same (worker, master) combi-
nation.

deconfigureAllWorkersForMaster(masterid)

Parameters masterid (integer) – the ID of the master to which it configured

Returns Deferred

Unregister all the workers configured to a master for given builders. This shall happen when master
disabled or before reconfiguration

changes

class buildbot.db.changes.ChangesConnectorComponent
This class handles changes in the buildbot database, including pulling information from the changes sub-
tables.

An instance of this class is available at master.db.changes.

Changes are indexed by changeid, and are represented by a chdict, which has the following keys:

•changeid (the ID of this change)

•parent_changeids (list of ID; change’s parents)

•author (unicode; the author of the change)

•files (list of unicode; source-code filenames changed)

•comments (unicode; user comments)

•is_dir (deprecated)

•links (list of unicode; links for this change, e.g., to web views, review)

•revision (unicode string; revision for this change, or None if unknown)

•when_timestamp (datetime instance; time of the change)

•branch (unicode string; branch on which the change took place, or None for the “default branch”,
whatever that might mean)

•category (unicode string; user-defined category of this change, or None)

•revlink (unicode string; link to a web view of this change)

•properties (user-specified properties for this change, represented as a dictionary mapping keys to
(value, source))

•repository (unicode string; repository where this change occurred)

•project (unicode string; user-defined project to which this change corresponds)

getParentChangeIds(branch, repository, project, codebase)

388 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.1

Parameters

• branch (unicode string) – the branch of the change

• repository (unicode string) – the repository in which this change took
place

• project (unicode string) – the project this change is a part of

• codebase (unicode string) –

return the last changeID which matches the repository/project/codebase

addChange(author=None, files=None, comments=None, is_dir=0, links=None, revision=None,
when_timestamp=None, branch=None, category=None, revlink=’‘, properties={},
repository=’‘, project=’‘, uid=None)

Parameters

• author (unicode string) – the author of this change

• files – a list of filenames that were changed

• comments – user comments on the change

• is_dir – deprecated

• links (list of unicode strings) – a list of links related to this change,
e.g., to web viewers or review pages

• revision (unicode string) – the revision identifier for this change

• when_timestamp (datetime instance or None) – when this change oc-
curred, or the current time if None

• branch (unicode string) – the branch on which this change took place

• category (unicode string) – category for this change (arbitrary use by Build-
bot users)

• revlink (unicode string) – link to a web view of this revision

• properties (dictionary) – properties to set on this change, where values are
tuples of (value, source). At the moment, the source must be 'Change', although
this may be relaxed in later versions.

• repository (unicode string) – the repository in which this change took
place

• project (unicode string) – the project this change is a part of

• uid (integer) – uid generated for the change author

Returns new change’s ID via Deferred

Add a Change with the given attributes to the database, returning the changeid via a Deferred. All
arguments should be given as keyword arguments.

The project and repository arguments must be strings; None is not allowed.

getChange(changeid, no_cache=False)

Parameters

• changeid – the id of the change instance to fetch

• no_cache (boolean) – bypass cache and always fetch from database

Returns chdict via Deferred

Get a change dictionary for the given changeid, or None if no such change exists.

getChangeUids(changeid)

3.2. APIs 389

Buildbot Documentation, Release 0.9.1

Parameters changeid – the id of the change instance to fetch

Returns list of uids via Deferred

Get the userids associated with the given changeid.

getRecentChanges(count)

Parameters count – maximum number of instances to return

Returns list of dictionaries via Deferred, ordered by changeid

Get a list of the count most recent changes, represented as dictionaries; returns fewer if that many
do not exist.

Note: For this function, “recent” is determined by the order of the changeids, not by
when_timestamp. This is most apparent in DVCS’s, where the timestamp of a change may be
significantly earlier than the time at which it is merged into a repository monitored by Buildbot.

getChanges()

Returns list of dictionaries via Deferred

Get a list of the changes, represented as dictionaries; changes are sorted, and paged using generic data
query options

getChangesCount()

Returns list of dictionaries via Deferred

Get the number changes, that the query option would return if no paging option where set

getLatestChangeid()

Returns changeid via Deferred

Get the most-recently-assigned changeid, or None if there are no changes at all.

getChangesForBuild(buildid)

Parameters buildid – ID of the build

Returns list of dictionaries via Deferred

Get the “blame” list of changes for a build.

getChangeFromSSid(sourcestampid)

Parameters sourcestampid – ID of the sourcestampid

Returns chdict via Deferred

returns the change dictionnary related to the sourcestamp ID.

changesources

exception buildbot.db.changesources.ChangeSourceAlreadyClaimedError
Raised when a changesource request is already claimed by another master.

class buildbot.db.changesources.ChangeSourcesConnectorComponent
This class manages the state of the Buildbot changesources.

An instance of this class is available at master.db.changesources.

Changesources are identified by their changesourceid, which can be objtained from
findChangeSourceId.

Changesources are represented by dictionaries with the following keys:

•id - changesource’s ID

390 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.1

•name - changesource’s name

•masterid - ID of the master currently running this changesource, or None if it is inactive

Note that this class is conservative in determining what changesources are inactive: a changesource linked
to an inactive master is still considered active. This situation should never occur, however; links to a master
should be deleted when it is marked inactive.

findChangeSourceId(name)

Parameters name – changesource name

Returns changesource ID via Deferred

Return the changesource ID for the changesource with this name. If such a changesource is already in
the database, this returns the ID. If not, the changesource is added to the database and its ID returned.

setChangeSourceMaster(changesourceid, masterid)

Parameters

• changesourceid – changesource to set the master for

• masterid – new master for this changesource, or None

Returns Deferred

Set, or unset if masterid is None, the active master for this changesource. If no master is currently
set, or the current master is not active, this method will complete without error. If the current master
is active, this method will raise ChangeSourceAlreadyClaimedError.

getChangeSource(changesourceid)

Parameters changesourceid – changesource ID

Returns changesource dictionary or None, via Deferred

Get the changesource dictionary for the given changesource.

getChangeSources(active=None, masterid=None)

Parameters

• active (boolean) – if specified, filter for active or inactive changesources

• masterid (integer) – if specified, only return changesources attached associated
with this master

Returns list of changesource dictionaries in unspecified order

Get a list of changesources.

If active is given, changesources are filtered according to whether they are active (true) or inactive
(false). An active changesource is one that is claimed by an active master.

If masterid is given, the list is restricted to schedulers associated with that master.

schedulers

exception buildbot.db.schedulers.SchedulerAlreadyClaimedError
Raised when a scheduler request is already claimed by another master.

class buildbot.db.schedulers.SchedulersConnectorComponent
This class manages the state of the Buildbot schedulers. This state includes classifications of as-yet un-built
changes.

An instance of this class is available at master.db.schedulers.

Schedulers are identified by their schedulerid, which can be objtained from findSchedulerId.

Schedulers are represented by dictionaries with the following keys:

3.2. APIs 391

Buildbot Documentation, Release 0.9.1

•id - scheduler’s ID

•name - scheduler’s name

•masterid - ID of the master currently running this scheduler, or None if it is inactive

Note that this class is conservative in determining what schedulers are inactive: a scheduler linked to an
inactive master is still considered active. This situation should never occur, however; links to a master
should be deleted when it is marked inactive.

classifyChanges(objectid, classifications)

Parameters

• schedulerid – ID of the scheduler classifying the changes

• classifications (dictionary) – mapping of changeid to boolean, where the
boolean is true if the change is important, and false if it is unimportant

Returns Deferred

Record the given classifications. This method allows a scheduler to record which changes were im-
portant and which were not immediately, even if the build based on those changes will not occur for
some time (e.g., a tree stable timer). Schedulers should be careful to flush classifications once they are
no longer needed, using flushChangeClassifications.

flushChangeClassifications(objectid, less_than=None)

Parameters

• schedulerid – ID of the scheduler owning the flushed changes

• less_than – (optional) lowest changeid that should not be flushed

Returns Deferred

Flush all scheduler_changes for the given scheduler, limiting to those with changeid less than
less_than if the parameter is supplied.

getChangeClassifications(objectid[, branch])
Parameters

• schedulerid (integer) – ID of scheduler to look up changes for

• branch (string or None (for default branch)) – (optional) limit to
changes with this branch

Returns dictionary via Deferred

Return the classifications made by this scheduler, in the form of a dictionary mapping changeid to a
boolean, just as supplied to classifyChanges.

If branch is specified, then only changes on that branch will be given. Note that specifying
branch=None requests changes for the default branch, and is not the same as omitting the branch
argument altogether.

findSchedulerId(name)

Parameters name – scheduler name

Returns scheduler ID via Deferred

Return the scheduler ID for the scheduler with this name. If such a scheduler is already in the database,
this returns the ID. If not, the scheduler is added to the database and its ID returned.

setSchedulerMaster(schedulerid, masterid)

Parameters

• schedulerid – scheduler to set the master for

• masterid – new master for this scheduler, or None

392 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.1

Returns Deferred

Set, or unset if masterid is None, the active master for this scheduler. If no master is currently set,
or the current master is not active, this method will complete without error. If the current master is
active, this method will raise SchedulerAlreadyClaimedError.

getScheduler(schedulerid)

Parameters schedulerid – scheduler ID

Returns scheduler dictionary or None via Deferred

Get the scheduler dictionary for the given scheduler.

getSchedulers(active=None, masterid=None)

Parameters

• active (boolean) – if specified, filter for active or inactive schedulers

• masterid (integer) – if specified, only return schedulers attached associated with
this master

Returns list of scheduler dictionaries in unspecified order

Get a list of schedulers.

If active is given, schedulers are filtered according to whether they are active (true) or inactive
(false). An active scheduler is one that is claimed by an active master.

If masterid is given, the list is restricted to schedulers associated with that master.

sourcestamps

class buildbot.db.sourcestamps.SourceStampsConnectorComponent
This class manages source stamps, as stored in the database. A source stamp uniquely identifies a particular
version a single codebase. Source stamps are identified by their ID. It is safe to use sourcestamp ID equality
as a proxy for source stamp equality. For example, all builds of a particular version of a codebase will
share the same sourcestamp ID. This equality does not extend to patches: two sourcestamps generated with
exactly the same patch will have different IDs.

Relative source stamps have a revision of None, meaning “whatever the latest is when this sourcestamp
is interpreted”. While such source stamps may correspond to a wide array of revisions over the lifetime of
a buildbot install, they will only ever have one ID.

An instance of this class is available at master.db.sourcestamps.

•ssid

•branch (branch, or None for default branch)

•revision (revision, or None to indicate the latest revision, in which case this is a relative source
stamp)

•patchid (ID of the patch)

•patch_body (body of the patch, or None)

•patch_level (directory stripping level of the patch, or None)

•patch_subdir (subdirectory in which to apply the patch, or None)

•patch_author (author of the patch, or None)

•patch_comment (comment for the patch, or None)

•repository (repository containing the source; never None)

•project (project this source is for; never None)

3.2. APIs 393

Buildbot Documentation, Release 0.9.1

•codebase (codebase this stamp is in; never None)

•created_at (timestamp when this stamp was first created)

Note that the patch body is a bytestring, not a unicode string.

findSourceStampId(branch=None, revision=Node,
repository=None, project=None, patch_body=None,
patch_level=None, patch_author=None, patch_comment=None,
patch_subdir=None):

Parameters

• branch (unicode string or None) –

• revision (unicode string or None) –

• repository (unicode string or None) –

• project (unicode string or None) –

• codebase (unicode string (required)) –

• patch_body (unicode string or None) – patch body

• patch_level (integer or None) – patch level

• patch_author (unicode string or None) – patch author

• patch_comment (unicode string or None) – patch comment

• patch_subdir (unicode string or None) – patch subdir

Returns ssid, via Deferred

Create a new SourceStamp instance with the given attributes, or find an existing one. In either case,
return its ssid. The arguments all have the same meaning as in an ssdict.

If a new SourceStamp is created, its created_at is set to the current time.

getSourceStamp(ssid)

Parameters

• ssid – sourcestamp to get

• no_cache (boolean) – bypass cache and always fetch from database

Returns ssdict, or None, via Deferred

Get an ssdict representing the given source stamp, or None if no such source stamp exists.

getSourceStamps()

Returns list of ssdict, via Deferred

Get all sourcestamps in the database. You probably don’t want to do this! This method will be
extended to allow appropriate filtering.

getSourceStampsForBuild(buildid)

Parameters buildid – build ID

Returns list of ssdict, via Deferred

Get sourcestamps related to a build.

394 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.1

state

class buildbot.db.state.StateConnectorComponent
This class handles maintaining arbitrary key/value state for Buildbot objects. Each object can store arbi-
trary key/value pairs, where the values are any JSON-encodable value. Each pair can be set and retrieved
atomically.

Objects are identified by their (user-visible) name and their class. This allows, for example, a
nightly_smoketest object of class NightlyScheduler to maintain its state even if it moves be-
tween masters, but avoids cross-contaminating state between different classes of objects with the same
name.

Note that “class” is not interpreted literally, and can be any string that will uniquely identify the class for
the object; if classes are renamed, they can continue to use the old names.

An instance of this class is available at master.db.state.

Objects are identified by objectid.

getObjectId(name, class_name)

Parameters

• name – name of the object

• class_name – object class name

Returns the objectid, via a Deferred.

Get the object ID for this combination of a name and a class. This will add a row to the ‘objects’ table
if none exists already.

getState(objectid, name[, default])
Parameters

• objectid – objectid on which the state should be checked

• name – name of the value to retrieve

• default – (optional) value to return if name is not present

Returns state value via a Deferred

Raises KeyError – if name is not present and no default is given

Raises TypeError if JSON parsing fails

Get the state value for key name for the object with id objectid.

setState(objectid, name, value)

Parameters

• objectid – the objectid for which the state should be changed

• name – the name of the value to change

• value (JSON-able value) – the value to set

• returns – Deferred

Raises TypeError if JSONification fails

Set the state value for name for the object with id objectid, overwriting any existing value.

Those 3 methods have their threaded equivalent, thdGetObjectId, thdGetState, thdSetState
that are intended to run in synchronous code, (e.g master.cfg environnement)

3.2. APIs 395

Buildbot Documentation, Release 0.9.1

users

class buildbot.db.users.UsersConnectorComponent
This class handles Buildbot’s notion of users. Buildbot tracks the usual information about users – username
and password, plus a display name.

The more complicated task is to recognize each user across multiple interfaces with Buildbot. For example,
a user may be identified as ‘djmitche’ in Subversion, ‘dustin@v.igoro.us‘ in Git, and ‘dustin’ on IRC. To
support this functionality, each user as a set of attributes, keyed by type. The findUserByAttr method
uses these attributes to match users, adding a new user if no matching user is found.

Users are identified canonically by uid, and are represented by usdicts (user dictionaries) with keys

•uid

•identifier (display name for the user)

•bb_username (buildbot login username)

•bb_password (hashed login password)

All attributes are also included in the dictionary, keyed by type. Types colliding with the keys above are
ignored.

findUserByAttr(identifier, attr_type, attr_data)

Parameters

• identifier – identifier to use for a new user

• attr_type – attribute type to search for and/or add

• attr_data – attribute data to add

Returns userid via Deferred

Get an existing user, or add a new one, based on the given attribute.

This method is intended for use by other components of Buildbot to search for a user with the given
attributes.

Note that identifier is not used in the search for an existing user. It is only used when creating a
new user. The identifier should be based deterministically on the attributes supplied, in some fashion
that will seem natural to users.

For future compatibility, always use keyword parameters to call this method.

getUser(uid)

Parameters

• uid – user id to look up

• no_cache (boolean) – bypass cache and always fetch from database

Returns usdict via Deferred

Get a usdict for the given user, or None if no matching user is found.

getUserByUsername(username)

Parameters username (string) – username portion of user credentials

Returns usdict or None via deferred

Looks up the user with the bb_username, returning the usdict or None if no matching user is found.

getUsers()

Returns list of partial usdicts via Deferred

Get the entire list of users. User attributes are not included, so the results are not full userdicts.

396 Chapter 3. Buildbot Development

mailto:'dustin@v.igoro.us

Buildbot Documentation, Release 0.9.1

updateUser(uid=None, identifier=None, bb_username=None, bb_password=None,
attr_type=None, attr_data=None)

Parameters

• uid (int) – the user to change

• identifier (string) – (optional) new identifier for this user

• bb_username (string) – (optional) new buildbot username

• bb_password (string) – (optional) new hashed buildbot password

• attr_type (string) – (optional) attribute type to update

• attr_data (string) – (optional) value for attr_type

Returns Deferred

Update information about the given user. Only the specified attributes are updated. If no user with the
given uid exists, the method will return silently.

Note that bb_password must be given if bb_username appears; similarly, attr_type requires
attr_data.

removeUser(uid)

Parameters uid (int) – the user to remove

Returns Deferred

Remove the user with the given uid from the database. This will remove the user from any associated
tables as well.

identifierToUid(identifier)

Parameters identifier (string) – identifier to search for

Returns uid or None, via Deferred

Fetch a uid for the given identifier, if one exists.

masters

class buildbot.db.masters.MastersConnectorComponent
This class handles tracking the buildmasters in a multi-master configuration. Masters “check in” periodi-
cally. Other masters monitor the last activity times, and mark masters that have not recently checked in as
inactive.

Masters are represented by master dictionaries with the following keys:

•id – the ID of this master

•name – the name of the master (generally of the form hostname:basedir)

•active – true if this master is running

•last_active – time that this master last checked in (a datetime object)

findMasterId(name)

Parameters name (unicode) – name of this master

Returns master id via Deferred

Return the master ID for the master with this master name (generally hostname:basedir). If such
a master is already in the database, this returns the ID. If not, the master is added to the database, with
active=False, and its ID returned.

setMasterState(masterid, active)

Parameters

3.2. APIs 397

Buildbot Documentation, Release 0.9.1

• masterid (integer) – the master to check in

• active (boolean) – whether to mark this master as active or inactive

Returns boolean via Deferred

Mark the given master as active or inactive, returning true if the state actually changed. If active
is true, the last_active time is updated to the current time. If active is false, then any links to
this master, such as schedulers, will be deleted.

getMaster(masterid)

Parameters masterid (integer) – the master to check in

Returns Master dict or None via Deferred

Get the indicated master.

getMasters()

Returns list of Master dicts via Deferred

Get a list of the masters, represented as dictionaries; masters are sorted and paged using generic data
query options

setAllMastersActiveLongTimeAgo()

Returns None via Deferred

This method is intended to be call by upgrade-master, and will effectively force housekeeping on all
masters at next startup. This method is not intended to be called outside of housekeeping scripts.

builders

class buildbot.db.builders.BuildersConnectorComponent
This class handles the relationship between builder names and their IDs, as well as tracking which masters
are configured for this builder.

Builders are represented by master dictionaries with the following keys:

•id – the ID of this builder

•name – the builder name, a 20-character identifier

•masterids – the IDs of the masters where this builder is configured (sorted by id)

findBuilderId(name)

Parameters name (20-character identifier) – name of this builder

Returns builder id via Deferred

Return the builder ID for the builder with this builder name. If such a builder is already in the database,
this returns the ID. If not, the builder is added to the database.

addBuilderMaster(builderid=None, masterid=None)

Parameters

• builderid (integer) – the builder

• masterid (integer) – the master

Returns Deferred

Add the given master to the list of masters on which the builder is configured. This will do nothing if
the master and builder are already associated.

removeBuilderMaster(builderid=None, masterid=None)

Parameters

398 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.1

• builderid (integer) – the builder

• masterid (integer) – the master

Returns Deferred

Remove the given master from the list of masters on which the builder is configured.

getBuilder(builderid)

Parameters builderid (integer) – the builder to check in

Returns Builder dict or None via Deferred

Get the indicated builder.

getBuilders(masterid=None)

Parameters masterid (integer) – ID of the master to which the results should be
limited

Returns list of Builder dicts via Deferred

Get all builders (in unspecified order). If masterid is given, then only builders configured on that
master are returned.

Writing Database Connector Methods

The information above is intended for developers working on the rest of Buildbot, and treating the database layer
as an abstraction. The remainder of this section describes the internals of the database implementation, and is
intended for developers modifying the schema or adding new methods to the database layer.

Warning: It’s difficult to change the database schema significantly after it has been released, and very
disruptive to users to change the database API. Consider very carefully the future-proofing of any changes
here!

The DB Connector and Components

class buildbot.db.connector.DBConnector
The root of the database connectors, master.db, is a DBConnector instance. Its main purpose is to
hold reference to each of the connector components, but it also handles timed cleanup tasks.

If you are adding a new connector component, import its module and create an instance of it in this class’s
constructor.

class buildbot.db.base.DBConnectorComponent
This is the base class for connector components.

There should be no need to override the constructor defined by this base class.

db
A reference to the DBConnector, so that connector components can use e.g., self.db.pool or
self.db.model. In the unusual case that a connector component needs access to the master, the
easiest path is self.db.master.

checkLength(col, value)
For use by subclasses to check that ‘value’ will fit in ‘col’, where ‘col’ is a table column from the
model. Ignore this check for database engines that either provide this error themselves (postgres) or
that do not enforce maximum-length restrictions (sqlite)

findSomethingId(self, tbl, whereclause, insert_values, _race_hook=None)
Find (using C{whereclause}) or add (using C{insert_values) a row to C{table}, and return the resulting
ID.

3.2. APIs 399

Buildbot Documentation, Release 0.9.1

hashColumns(*args)
Hash the given values in a consistent manner: None is represented as xf5, an invalid unicode byte;
strings are converted to utf8; and integers are represented by their decimal expansion. The values are
then joined by ‘0’ and hashed with sha1.

doBatch(batch, batch_n=500)
returns an Iterator that batches stuff in order to not push to many thing in a single request. Especially
sqlite has 999 limit on argument it can take in a requests.

Direct Database Access

The connectors all use SQLAlchemy Core (http://www.sqlalchemy.org/docs/index.html) as a wrapper around
database client drivers. Unfortunately, SQLAlchemy is a synchronous library, so some extra work is required
to use it in an asynchronous context like Buildbot. This is accomplished by deferring all database operations to
threads, and returning a Deferred. The Pool class takes care of the details.

A connector method should look like this:

def myMethod(self, arg1, arg2):
def thd(conn):

q = ... # construct a query
for row in conn.execute(q):

... # do something with the results
return ... # return an interesting value

return self.db.pool.do(thd)

Picking that apart, the body of the method defines a function named thd taking one argument, a Connection
object. It then calls self.db.pool.do, passing the thd function. This function is called in a thread, and
can make blocking calls to SQLAlchemy as desired. The do method will return a Deferred that will fire with the
return value of thd, or with a failure representing any exceptions raised by thd.

The return value of thd must not be an SQLAlchemy object - in particular, any ResultProxy objects must be
parsed into lists or other data structures before they are returned.

Warning: As the name thd indicates, the function runs in a thread. It should not interact with any other part
of Buildbot, nor with any of the Twisted components that expect to be accessed from the main thread – the
reactor, Deferreds, etc.

Queries can be constructed using any of the SQLAlchemy core methods, using tables from Model, and executed
with the connection object, conn.

Note: SQLAlchemy requires the use of a syntax that is forbidden by pep8. If in where clauses you need to
select rows where a value is NULL, you need to write (tbl.c.value == None). This form is forbidden by pep8
which requires the use of is None instead of == None. As sqlalchemy is using operator overloading to implement
pythonic SQL statements, and is operator is not overloadable, we need to keep the == operators. In order to solve
this issue, buildbot uses buildbot.db.NULL constant, which is None. So instead of writting tbl.c.value == None,
please write tbl.c.value == NULL)

class buildbot.db.pool.DBThreadPool

do(callable, ...)

Returns Deferred

Call callable in a thread, with a Connection object as first argument. Returns a deferred that
will fire with the results of the callable, or with a failure representing any exception raised during its
execution.

400 Chapter 3. Buildbot Development

http://www.sqlalchemy.org/docs/index.html

Buildbot Documentation, Release 0.9.1

Any additional positional or keyword arguments are passed to callable.

do_with_engine(callable, ...)

Returns Deferred

Similar to do, call callable in a thread, but with an Engine object as first argument.

This method is only used for schema manipulation, and should not be used in a running master.

Database Schema

Database connector methods access the database through SQLAlchemy, which requires access to Python objects
representing the database tables. That is handled through the model.

class buildbot.db.model.Model
This class contains the canonical description of the buildbot schema, It is presented in the
form of SQLAlchemy Table instances, as class variables. At runtime, the model is avail-
able at master.db.model, so for example the buildrequests table can be referred to as
master.db.model.buildrequests, and columns are available in its c attribute.

The source file, https://github.com/buildbot/buildbot/blob/master/master/buildbot/db/model.py, contains
comments describing each table; that information is not replicated in this documentation.

Note that the model is not used for new installations or upgrades of the Buildbot database. See Modifying
the Database Schema for more information.

metadata
The model object also has a metadata attribute containing a MetaData instance. Connector meth-
ods should not need to access this object. The metadata is not bound to an engine.

The Model class also defines some migration-related methods:

is_current()

Returns boolean via Deferred

Returns true if the current database’s version is current.

upgrade()

Returns Deferred

Upgrades the database to the most recent schema version.

Caching

Connector component methods that get an object based on an ID are good candidates for caching. The cached
decorator makes this automatic:

buildbot.db.base.cached(cachename)

Parameters cache_name – name of the cache to use

A decorator for “getter” functions that fetch an object from the database based on a single key. The wrapped
method will only be called if the named cache does not contain the key.

The wrapped function must take one argument (the key); the wrapper will take a key plus an optional
no_cache argument which, if true, will cause it to invoke the underlying method even if the key is in the
cache.

The resulting method will have a cache attribute which can be used to access the underlying cache.

In most cases, getter methods return a well-defined dictionary. Unfortunately, Python does not handle weak
references to bare dictionaries, so components must instantiate a subclass of dict. The whole assembly looks
something like this:

3.2. APIs 401

https://github.com/buildbot/buildbot/blob/master/master/buildbot/db/model.py

Buildbot Documentation, Release 0.9.1

class ThDict(dict):
pass

class ThingConnectorComponent(base.DBConnectorComponent):

@base.cached('thdicts')
def getThing(self, thid):

def thd(conn):
...
thdict = ThDict(thid=thid, attr=row.attr, ...)
return thdict

return self.db.pool.do(thd)

Tests

It goes without saying that any new connector methods must be fully tested!

You will also want to add an in-memory implementation of the methods to the fake classes in
master/buildbot/test/fake/fakedb.py. Non-DB Buildbot code is tested using these fake imple-
mentations in order to isolate that code from the database code, and to speed-up tests.

The keys and types used in the return value from a connector’s get methods are described in https://github.com/
buildbot/buildbot/blob/master/master/buildbot/test/util/validation.py, via the dbdict module-level value. This is
a dictionary of DictValidator objects, one for each return value.

These values are used within test methods like this:

rv = yield self.db.masters.getMaster(7)
validation.verifyDbDict(self, 'masterdict', rv)

Modifying the Database Schema

Changes to the schema are accomplished through migration scripts, supported by SQLAlchemy-Migrate
(https://github.com/openstack/sqlalchemy-migrate). In fact, even new databases are created with the migration
scripts – a new database is a migrated version of an empty database.

The schema is tracked by a version number, stored in the migrate_version table. This number is incremented
for each change to the schema, and used to determine whether the database must be upgraded. The master will
refuse to run with an out-of-date database.

To make a change to the schema, first consider how to handle any existing data. When adding new columns, this
may not be necessary, but table refactorings can be complex and require caution so as not to lose information.

Create a new script in https://github.com/buildbot/buildbot/blob/master/master/buildbot/db/migrate/versions, fol-
lowing the numbering scheme already present. The script should have an update method, which takes an engine
as a parameter, and upgrades the database, both changing the schema and performing any required data migra-
tions. The engine passed to this parameter is “enhanced” by SQLAlchemy-Migrate, with methods to handle
adding, altering, and dropping columns. See the SQLAlchemy-Migrate documentation for details.

Next, modify https://github.com/buildbot/buildbot/blob/master/master/buildbot/db/model.py to represent the up-
dated schema. Buildbot’s automated tests perform a rudimentary comparison of an upgraded database with the
model, but it is important to check the details - key length, nullability, and so on can sometimes be missed by the
checks. If the schema and the upgrade scripts get out of sync, bizarre behavior can result.

Also, adjust the fake database table definitions in https://github.com/buildbot/buildbot/blob/master/master/
buildbot/test/fake/fakedb.py according to your changes.

Your upgrade script should have unit tests. The classes in https://github.com/buildbot/buildbot/blob/master/
master/buildbot/test/util/migration.py make this straightforward. Unit test scripts should be named e.g.,
test_db_migrate_versions_015_remove_bad_master_objectid.py.

402 Chapter 3. Buildbot Development

https://github.com/buildbot/buildbot/blob/master/master/buildbot/test/util/validation.py
https://github.com/buildbot/buildbot/blob/master/master/buildbot/test/util/validation.py
https://github.com/openstack/sqlalchemy-migrate
https://github.com/buildbot/buildbot/blob/master/master/buildbot/db/migrate/versions
https://github.com/buildbot/buildbot/blob/master/master/buildbot/db/model.py
https://github.com/buildbot/buildbot/blob/master/master/buildbot/test/fake/fakedb.py
https://github.com/buildbot/buildbot/blob/master/master/buildbot/test/fake/fakedb.py
https://github.com/buildbot/buildbot/blob/master/master/buildbot/test/util/migration.py
https://github.com/buildbot/buildbot/blob/master/master/buildbot/test/util/migration.py

Buildbot Documentation, Release 0.9.1

The master/buildbot/test/integration/test_upgrade.py also tests upgrades, and will confirm
that the resulting database matches the model. If you encounter implicit indexes on MySQL, that do not appear
on SQLite or Postgres, add them to implied_indexes in master/buidlbot/db/model.py.

Foreign key checking

PostgreSQL and SQlite db backends are checking the foreign keys consistancy. bug #2248
(http://trac.buildbot.net/ticket/2248) needs to be fixed so that we can support foreign key checking for MySQL.

To maintain consistency with real db, fakedb can check the foreign key consistancy of your test data. for this, just
enable it with:

self.db = fakedb.FakeDBConnector(self.master, self)
self.db.checkForeignKeys = True

Note that tests that only use fakedb do not really need foreign key consistency, even if this is a good practice to
enable it in new code.

Database Compatibility Notes

Or: “If you thought any database worked right, think again”

Because Buildbot works over a wide range of databases, it is generally limited to database features present in all
supported backends. This section highlights a few things to watch out for.

In general, Buildbot should be functional on all supported database backends. If use of a backend adds minor
usage restrictions, or cannot implement some kinds of error checking, that is acceptable if the restrictions are
well-documented in the manual.

The metabuildbot tests Buildbot against all supported databases, so most compatibility errors will be caught before
a release.

Index Length in MySQL

MySQL only supports about 330-character indexes. The actual index length is 1000 bytes, but MySQL uses 3-
byte encoding for UTF8 strings. This is a longstanding bug in MySQL - see “Specified key was too long; max key
length is 1000 bytes” with utf8 (http://bugs.mysql.com/bug.php?id=4541). While this makes sense for indexes
used for record lookup, it limits the ability to use unique indexes to prevent duplicate rows.

InnoDB only supports indexes up to 255 unicode characters, which is why all indexed columns are limited to 255
characters in Buildbot.

Transactions in MySQL

Unfortunately, use of the MyISAM storage engine precludes real transactions in MySQL.
transaction.commit() and transaction.rollback() are essentially no-ops: modifications to
data in the database are visible to other users immediately, and are not reverted in a rollback.

Referential Integrity in SQLite and MySQL

Neither MySQL nor SQLite enforce referential integrity based on foreign keys. Postgres does enforce, however.
If possible, test your changes on Postgres before committing, to check that tables are added and removed in the
proper order.

3.2. APIs 403

http://trac.buildbot.net/ticket/2248
http://bugs.mysql.com/bug.php?id=4541
http://bugs.mysql.com/bug.php?id=4541

Buildbot Documentation, Release 0.9.1

Subqueries in MySQL

MySQL’s query planner is easily confused by subqueries. For example, a DELETE query specifying id’s that are
IN a subquery will not work. The workaround is to run the subquery directly, and then execute a DELETE query
for each returned id.

If this weakness has a significant performance impact, it would be acceptable to conditionalize use of the subquery
on the database dialect.

Too Many Variables in SQLite

Sqlite has a limitation on the number of variables it can use. This limitation is usually
SQLITE_LIMIT_VARIABLE_NUMBER=999 (http://www.sqlite.org/c3ref/c_limit_attached.html#sqlitelimitvariablenumber).
There is currently no way with pysqlite to query the value of this limit. The C-api sqlite_limit is just not
bound to the python.

When you hit this problem, you will get error like the following:

sqlalchemy.exc.OperationalError: (OperationalError) too many SQL variables
u'DELETE FROM scheduler_changes WHERE scheduler_changes.changeid IN (?, ?, ?,
→˓.tons of ?? and IDs 9363, 9362, 9361)

You can use the method doBatch in order to write batching code in a consistent manner.

Testing migrations with real databases

By default Buildbot test suite uses SQLite database for testings database migrations. To use other database
set BUILDBOT_TEST_DB_URL environment variable to value in SQLAlchemy database URL specification
(http://docs.sqlalchemy.org/en/latest/core/engines.html#database-urls).

For example, to run tests with file-based SQLite database you can start tests in the following way:

BUILDBOT_TEST_DB_URL=sqlite:////tmp/test_db.sqlite trial buildbot.test

Run databases in Docker

Docker (https://www.docker.com/) allows to easily install and configure different databases locally in containers.

To run tests with PostgreSQL:

Install psycopg.
pip install psycopg2
Start container with PostgreSQL 9.5.
It will listen on port 15432 on localhost.
sudo docker run --name bb-test-postgres -e POSTGRES_PASSWORD=password \

-p 127.0.0.1:15432:5432 -d postgres:9.5
Start interesting tests
BUILDBOT_TEST_DB_URL=postgresql://postgres:password@localhost:15432/postgres \

trial buildbot.test

To run tests with MySQL:

Install MySQL-python.
pip install MySQL-python
Start container with MySQL 5.5.
It will listen on port 13306 on localhost.
sudo docker run --name bb-test-mysql -e MYSQL_ROOT_PASSWORD=password \

-p 127.0.0.1:13306:3306 -d mysql:5.5
Start interesting tests

404 Chapter 3. Buildbot Development

http://www.sqlite.org/c3ref/c_limit_attached.html#sqlitelimitvariablenumber
http://docs.sqlalchemy.org/en/latest/core/engines.html#database-urls
https://www.docker.com/

Buildbot Documentation, Release 0.9.1

BUILDBOT_TEST_DB_URL=mysql+mysqldb://root:password@127.0.0.1:13306/mysql \
trial buildbot.test

3.2.4 Messaging and Queues

As of version 0.9.0, Buildbot uses a message-queueing structure to handle asynchronous notifications in a dis-
tributed fashion. This avoids, for the most part, the need for each master to poll the database, allowing masters to
react to events as they happen.

Overview

Buildbot is structured as a hybrid state- and event-based application, which will probably offend adherents of
either pattern. In particular, the most current state is stored in the Database, while any changes to the state are
announced in the form of a message. The content of the messages is sufficient to reconstruct the updated state,
allowing external processes to represent “live” state without polling the database.

This split nature immediately brings to light the problem of synchronizing the two interfaces. Queueing systems
can introduce queueing delays as messages propagate. Likewise, database systems may introduce a delay between
committed modifications and the modified data appearing in queries; for example, with MySQL master/slave
replication, there can be several seconds’ delay before a slave is updated.

Buildbot’s MQ connector simply relays messages, and makes no attempt to coordinate the timing of those mes-
sages with the corresponding database updates. It is up to higher layers to apply such coordination.

Connector API

All access to the queueing infrastructure is mediated by an MQ connector. The connector’s API is defined below.
The connector itself is always available as master.mq, where master is the current BuildMaster instance.
The connector API is quite simple. It is loosely based on AMQP, although simplified because there is only one

exchange (see Queue Schema).

All messages include a “routing key”, which is a tuple of 7-bit ascii strings describing the content of the message.
By convention, the first element of the tuple gives the type of the data in the message. The last element of the tuple
describes the event represented by the message. The remaining elements of the tuple describe attributes of the
data in the message that may be useful for filtering; for example, buildsets may usefully be filtered on buildsetids.
The topics and associated message types are described below in Message Schema.

Filters are also specified with tuples. For a filter to match a routing key, it must have the same length, and each
element of the filter that is not None must match the corresponding routing key element exactly.

class buildbot.mq.base.MQConnector
This is an abstract parent class for MQ connectors, and defines the interface. It should not be instantiated
directly. It is a subclass of buildbot.util.service.AsyncService, and subclasses can override
service methods to start and stop the connector.

produce(routing_key, data)

Parameters

• routing_key (tuple) – the routing key for this message

• data – JSON-serializable body of the message

This method produces a new message and queues it for delivery to any associated consumers.

The routing key and data should match one of the formats given in Message Schema.

The method returns immediately; the caller will not receive any indication of a failure to transmit the
message, although errors will be displayed in twistd.log.

startConsuming(callback, filter[, persistent_name=name])

3.2. APIs 405

Buildbot Documentation, Release 0.9.1

Parameters

• callback – callable to invoke for matching messages

• filter (tuple) – filter for routing keys of interest

• persistent_name – persistent name for this consumer

Returns a QueueRef instance via Deferred

This method will begin consuming messages matching the filter, invoking callback for each mes-
sage. See above for the format of the filter.

The callback will be invoked with two arguments: the message’s routing key and the message body, as
a Python data structure. It may return a Deferred, but no special processing other than error handling
will be applied to that Deferred. In particular, note that the callback may be invoked a second time
before the Deferred from the first invocation fires.

A message is considered delivered as soon as the callback is invoked - there is no support for acknowl-
edgements or re-queueing unhandled messages.

Note that the timing of messages is implementation-dependent. It is not guaranteed that messages sent
before the startConsuming method completes will be received. In fact, because the registration
process may not be immediate, even messages sent after the method completes may not be received.

If persistent_name is given, then the consumer is assumed to be persistent, and consumption can
be resumed with the given name. Messages that arrive when no consumer is active are queued and
will be delivered when a consumer becomes active.

waitUntilEvent(filter, check_callback)

Parameters

• filter (tuple) – filter for routing keys of interest

• check_callback (function) – a callback which check if the event has already
happened

Returns a Deferred that fires when the event has been received, and contain tuple (rout-
ing_key, value) representing the event

This method is a helper which returns a defer that fire when a certain event has occured. This is
useful for waiting the end of a build or disconnection of a worker. You shall make sure when using
this method that this event will happen in the future, and take care of race conditions. For that caller
must provide a check_callback which will check of the event has already occured. The whole race-
condition-free process is:

•Register to event

•Check if it has already happened

•If not wait for the event

•Unregister from event

class buildbot.mq.base.QueueRef
The QueueRef returned (via Deferred) from startConsuming can be used to stop consuming mes-
sages when they are no longer needed. Users should be very careful to ensure that consumption is terminated
in all cases.

stopConsuming()
Stop invoking the callback passed to startConsuming. This method can be called multiple
times for the same QueueRef instance without harm.

After the first call to this method has returned, the callback will not be invoked.

406 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.1

Implementations

Several concrete implementations of the MQ connector exist. The simplest is intended for cases where only one
master exists, similar to the SQLite database support. The remainder use various existing queueing applications
to support distributed communications.

Simple

class buildbot.mq.simple.SimpleMQ
The SimpleMQ class implements a local equivalent of a message-queueing server. It is intended for Build-
bot installations with only one master.

Wamp

class buildbot.mq.wamp.WampMQ
The WampMQ class implements message-queueing using a wamp router. This class translates the semantics
of the buildbot mq api to the semantics of the wamp messaging system. The message route is translated to
a wamp topic by joining with dot and prefixing with buildbot namespace. Example message that is sent via
wamp is:

topic = "org.buildbot.mq.builds.1.new"
data = {

'builderid': 10,
'buildid': 1,
'buildrequestid': 13,
'workerid': 20,
'complete': False,
'complete_at': None,
'masterid': 824,
'number': 1,
'results': None,
'started_at': 1,
'state_string': u'created'

}

class buildbot.wamp.connector.WampConnector
The WampConnector class implements a buildbot service for wamp. It is managed outside of the mq
module as this protocol can also be reused for worker protocol. The connector support queuing of requests
until the wamp connection is created, but do not support disconnection and reconnection. Reconnection will
be supported as part of a next release of AutobahnPython (https://github.com/crossbario/autobahn-python/
issues/295). There is a chicken and egg problem at the buildbot initialization phasis, so the produce mes-
sages are actually not sent with deferred.

Queue Schema

Buildbot uses a particularly simple architecture: in AMQP terms, all messages are sent to a single topic exchange,
and consumers define anonymous queues bound to that exchange.

In future versions of Buildbot, some components (e.g., schedulers) may use durable queues to ensure that messages
are not lost when one or more masters are disconnected.

Message Schema

This section describes the general structure messages. The specific routing keys and content of each message are
described in the relevant sub-section of Data API.

3.2. APIs 407

https://github.com/crossbario/autobahn-python/issues/295
https://github.com/crossbario/autobahn-python/issues/295

Buildbot Documentation, Release 0.9.1

Routing Keys

Routing keys are a sequence of strings, usually written with dot separators. Routing keys are represented with
variables when one or more of the words in the key are defined by the content of the message. For example,
buildset.$bsid describes routing keys such as buildset.1984, where 1984 is the ID of the buildset
described by the message body. Internally, keys are represented as tuples of strings.

Body Format

Message bodies are encoded in JSON. The top level of each message is an object (a dictionary).

Most simple Python types - strings, numbers, lists, and dictionaries - are mapped directly to the corresponding
JSON types. Timestamps are represented as seconds since the UNIX epoch in message bodies.

Cautions

Message ordering is generally maintained by the backend implementations, but this should not be depended on.
That is, messages originating from the same master are usually delivered to consumers in the order they were
produced. Thus, for example, a consumer can expect to see a build request claimed before it is completed. That
said, consumers should be resilient to messages delivered out of order, at the very least by scheduling a “reload”
from state stored in the database when messages arrive in an invalid order.

Unit tests should be used to ensure this resiliency.

Some related messages are sent at approximately the same time. Due to the non-blocking nature of message
delivery, consumers should not assume that subsequent messages in a sequence remain queued. For example,
upon receipt of a buildset.$bsid.new message, it is already too late to try to subscribe to the associated
build requests messages, as they may already have been consumed.

Schema Changes

Future versions of Buildbot may add keys to messages, or add new messages. Consumers should expect unknown
keys and, if using wildcard topics, unknown messages.

3.3 Python3 compatibility

A good place to start looking for advice to ensure that any code is compatible with both Python-3.x and
Python2.6/2.7 is too look at the python-future cheat sheet (http://python-future.org/compatible_idioms.html) .
Buildbot uses the python-future library to ensure compatibility with both Python2.6/2.7 and Python3.x.

3.3.1 Imports

All __future__ import have to happen at the top of the module, anything else is seen as a syntax error. All
imports from the python-future package should happen below __future__ imports, but before any other.

Yes:

from __future__ import print_function
from builtins import basestring

No:

408 Chapter 3. Buildbot Development

http://python-future.org/compatible_idioms.html

Buildbot Documentation, Release 0.9.1

from twisted.application import internet
from twisted.spread import pb
from builtins import str
from __future__ import print_function

3.3.2 Dictionaries

In python3, dict.iteritems is no longer available. While dict.items() does exist, it can be memory
intensive in python2. For this reason, please use the python.future function iteritems().

Example:

d = {"cheese": 4, "bread": 5, "milk": 1}
for item, num in d.iteritems():

print("We have {} {}".format(num, item))

should be written as:

from future.utils import iteritems
d = {"cheese": 4, "bread": 5, "milk": 1}
for item, num in iteritems(d):

print("We have {} {}".format(num, item))

This also applies to the similar methods dict.itervalues() and dict.values(), which have an equiv-
alent itervalues().

If a list is required, please use list(iteritems(dict)). This is for compatibility with the six library.

For iterating over dictionary keys, please use for key in dict:. For example:

d = {"cheese": 4, "bread": 5, "milk": 1}
for item in d:

print("We have {}".format(item))

Similarly when you want a list of keys:

keys = list(d)

3.3.3 New-style classes

All classes in Python3 are newstyle, so any classes added to the code base must therefore be new-style. This is
done by inheriting object

Old-style:

class Foo:
def __init__(self, bar)

self.bar = bar

new-style:

class Foo(object):
def __init__(self, bar)

self.bar = bar

When creating new-style classes, it is advised to import object from the builtins module. The reasoning for this
can be read in the python-future documentation (http://python-future.org/changelog.html#newobject-base-object-
defines-fallback-py2-compatible-special-methods)

3.3. Python3 compatibility 409

http://python-future.org/changelog.html#newobject-base-object-defines-fallback-py2-compatible-special-methods

Buildbot Documentation, Release 0.9.1

3.3.4 Strings

Note: This has not yet been implemented in the current code base, and will not be strictly adhered to yet. But it
is important to keep in mind when writing code, that there is a strict distinction between bytestrings and unicode
in Python3’

In python2, there is only one type of string. It can be both unicode and bytestring. In python3, this is no longer
the case. For this reasons all string must be marked with either u'' or b'' to signify if the string is a unicode
string or a bytestring respectively

Example:

u'this is a unicode string, a string for humans to read'
b'This is a bytestring, a string for computers to read'

3.3.5 Exceptions

All exceptions should be written with the as statement. Before:

try:
number = 5 / 0

except ZeroDivisionError, err:
print(err.msg)

After:

try:
number = 5/0

except ZeroDivisionError as err:
print(err.msg)

3.3.6 Basestring

In Python2 there is a basestring type, which both str and unicode inherit. In Python3, only unicode should be of
this type, while bytestrings are type(byte).

For this reason, we use a builtin form python future. Before:

s = "this is a string"
if(isinstance(basestring)):

print "This line will run"

After:

from builtins import str
unicode_s = u"this is a unicode string"
byte_s = b"this is a bytestring"

if(isinstance(unicode_s, str)):
print("This line will print")

if(isinstance(byte_s, str):
print("this line will not print")

3.3.7 Print statements

Print statements are gone in python3. Please import from __future__ import print_function at the
very top of the module to enable use of python3 style print functions

410 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.1

3.3.8 Division

Integer division is slightly different in Python3. // is integer division and / is floating point division. For this
reason, we use division from the future module. Before:

2 / 3 = 0

After:

from __future__ import division

2 / 3 = 1.5
2 // 3 = 0

3.3.9 Types

The types standard library has changed in Python3. Please make sure to read the official documentation
(https://docs.python.org/3.3/library/types.html) for the library and adapt accordingly

3.4 Classes

The sections contained here document classes that can be used or subclassed.

Note: Some of this information duplicates information available in the source code itself. Consider this in-
formation authoritative, and the source code a demonstration of the current implementation which is subject to
change.

3.4.1 Builds

The Build class represents a running build, with associated steps.

Build

class buildbot.process.build.Build

buildid
The ID of this build in the database.

getSummaryStatistic(name, summary_fn, initial_value=None)

Parameters

• name – statistic name to summarize

• summary_fn – callable with two arguments that will combine two values

• initial_value – first value to pass to summary_fn

Returns summarized result

This method summarizes the named step statistic over all steps in which it exists, using
combination_fn and initial_value to combine multiple results into a single result. This
translates to a call to Python’s reduce:

return reduce(summary_fn, step_stats_list, initial_value)

3.4. Classes 411

https://docs.python.org/3.3/library/types.html

Buildbot Documentation, Release 0.9.1

getUrl()

Returns Url as string

Returns url of the build in the UI. Build must be started. This is useful for customs steps.

3.4.2 Workers

The Worker class represents a worker, which may or may not be connected to the master. Instances of this class
are created directly in the Buildbot configuration file.

Worker

class buildbot.worker.Worker

workerid
The ID of this worker in the database.

3.4.3 BuildFactory

BuildFactory Implementation Note

The default BuildFactory, provided in the buildbot.process.factory module, contains an internal
list of BuildStep specifications: a list of (step_class,kwargs) tuples for each. These specification tuples
are constructed when the config file is read, by asking the instances passed to addStep for their subclass and
arguments.

To support config files from Buildbot version 0.7.5 and earlier, addStep also accepts the
f.addStep(shell.Compile,command=["make","build"]) form, although its use is discour-
aged because then the Compile step doesn’t get to validate or complain about its arguments until build time.
The modern pass-by-instance approach allows this validation to occur while the config file is being loaded, where
the admin has a better chance of noticing problems.

When asked to create a Build, the BuildFactory puts a copy of the list of step specifications into the new
Build object. When the Build is actually started, these step specifications are used to create the actual set of
BuildSteps, which are then executed one at a time. This serves to give each Build an independent copy of each
step.

Each step can affect the build process in the following ways:

• If the step’s haltOnFailure attribute is True, then a failure in the step (i.e. if it completes with a result
of FAILURE) will cause the whole build to be terminated immediately: no further steps will be executed,
with the exception of steps with alwaysRun set to True. haltOnFailure is useful for setup steps
upon which the rest of the build depends: if the CVS checkout or ./configure process fails, there is no
point in trying to compile or test the resulting tree.

• If the step’s alwaysRun attribute is True, then it will always be run, regardless of if previous steps have
failed. This is useful for cleanup steps that should always be run to return the build directory or worker into
a good state.

• If the flunkOnFailure or flunkOnWarnings flag is set, then a result of FAILURE or WARNINGS
will mark the build as a whole as FAILED. However, the remaining steps will still be executed. This is
appropriate for things like multiple testing steps: a failure in any one of them will indicate that the build has
failed, however it is still useful to run them all to completion.

• Similarly, if the warnOnFailure or warnOnWarnings flag is set, then a result of FAILURE or
WARNINGS will mark the build as having WARNINGS, and the remaining steps will still be executed. This
may be appropriate for certain kinds of optional build or test steps. For example, a failure experienced while
building documentation files should be made visible with a WARNINGS result but not be serious enough to
warrant marking the whole build with a FAILURE.

412 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.1

In addition, each Step produces its own results, may create logfiles, etc. However only the flags described above
have any effect on the build as a whole.

The pre-defined BuildSteps like CVS and Compile have reasonably appropriate flags set on them al-
ready. For example, without a source tree there is no point in continuing the build, so the CVS class has the
haltOnFailure flag set to True. Look in buildbot/steps/*.py to see how the other Steps are
marked.

Each Step is created with an additional workdir argument that indicates where its actions should take place.
This is specified as a subdirectory of the worker’s base directory, with a default value of build. This is only
implemented as a step argument (as opposed to simply being a part of the base directory) because the CVS/SVN
steps need to perform their checkouts from the parent directory.

3.4.4 BuildSetSummaryNotifierMixin

Some status notifiers will want to report the status of all builds all at once for a particular buildset, instead of
reporting each build individually as it finishes. In order to do this, the status notifier must wait for all builds to
finish, collect their results, and then report a kind of summary on all of the collected results. The act of waiting
for and collecting the results of all of the builders is implemented via BuildSetSummaryNotifierMixin,
to be subclassed by a status notification implementation.

BuildSetSummaryNotifierMixin

buildbot.status.buildset.BuildSetSummaryNotifierMixin::
This class provides some helper methods for implementing a status notification that provides notifications
for all build results for a buildset at once.

This class provides the following methods:

buildbot.status.buildset.summarySubscribe()
Call this to start receiving sendBuildSetSummary callbacks. Typically this will be called from
the subclass’s startService method.

buildbot.status.buildset.summaryUnsubscribe()
Call this to stop receiving sendBuildSetSummary callbacks. Typically this will be called from
the subclass’s stopService method.

The following methods are hooks to be implemented by the subclass.

buildbot.status.buildset.sendBuildSetSummary(buildset, builds)

Parameters

• buildset – A BuildSet object

• builds – A list of Build objects

This method must be implemented by the subclass. This method is called when all of the builds for a
buildset have finished, and it should initiate sending a summary status for the buildset.

The following attributes must be provided by the subclass.

buildbot.status.buildset.master
This must point to the BuildMaster object.

3.4.5 Change Sources

3.4.6 ChangeSource

class buildbot.changes.base.ChangeSource
This is the base class for change sources.

3.4. Classes 413

Buildbot Documentation, Release 0.9.1

Subclasses should override the inherited activate and deactivate methods if necessary to handle
initialization and shutdown.

Change sources which are active on every master should, instead, override startService and
stopService.

3.4.7 PollingChangeSource

class buildbot.changes.base.PollingChangeSource
This is a subclass of ChangeSource which adds polling behavior. Its constructor accepts the
pollInterval and pollAtLaunch arguments as documented for most built-in change sources.

Subclasses should override the poll method. This method may return a Deferred. Calls to poll will not
overlap.

3.4.8 RemoteCommands

Most of the action in build steps consists of performing operations on the worker. This is accomplished via
RemoteCommand and its subclasses. Each represents a single operation on the worker.

Most data is returned to a command via updates. These updates are described in detail in Updates.

RemoteCommand

class buildbot.process.remotecommand.RemoteCommand(remote_command, args,
collectStdout=False, ig-
nore_updates=False, de-
codeRC=dict(0), stdioLog-
Name=’stdio’)

Parameters

• remote_command (string) – command to run on the worker

• args (dictionary) – arguments to pass to the command

• collectStdout – if True, collect the command’s stdout

• ignore_updates – true to ignore remote updates

• decodeRC – dictionary associating rc values to buildsteps results constants (e.g.
SUCCESS, FAILURE, WARNINGS)

• stdioLogName – name of the log to which to write the command’s stdio

This class handles running commands, consisting of a command name and a dictionary of arguments. If
true, ignore_updates will suppress any updates sent from the worker.

This class handles updates for stdout, stderr, and header by appending them to s stdio logfile named
by the stdioLogName parameter. Steps that run multiple commands and want to separate those com-
mands’ stdio streams can use this parameter.

It handles updates for rc by recording the value in its rc attribute.

Most worker-side commands, even those which do not spawn a new process on the worker, generate logs
and an rc, requiring this class or one of its subclasses. See Updates for the updates that each command
may send.

active
True if the command is currently running

run(step, remote)

Parameters

414 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.1

• step – the buildstep invoking this command

• remote – a reference to the remote WorkerForBuilder instance

Returns Deferred

Run the command. Call this method to initiate the command; the returned Deferred will fire when the
command is complete. The Deferred fires with the RemoteCommand instance as its value.

interrupt(why)

Parameters why (Twisted Failure) – reason for interrupt

Returns Deferred

This method attempts to stop the running command early. The Deferred it returns will fire when
the interrupt request is received by the worker; this may be a long time before the command itself
completes, at which time the Deferred returned from run will fire.

results()

Returns results constant

This method checks the rc against the decodeRC dictionary, and returns results constant

didFail()

Returns bool

This method returns True if the results() function returns FAILURE

The following methods are invoked from the worker. They should not be called directly.

remote_update(updates)

Parameters updates – new information from the worker

Handles updates from the worker on the running command. See Updates for the content of the
updates. This class splits the updates out, and handles the ignore_updates option, then calls
remoteUpdate to process the update.

remote_complete(failure=None)

Parameters failure – the failure that caused the step to complete, or None for success

Called by the worker to indicate that the command is complete. Normal completion (even with a
nonzero rc) will finish with no failure; if failure is set, then the step should finish with status
EXCEPTION .

These methods are hooks for subclasses to add functionality.

remoteUpdate(update)

Parameters update – the update to handle

Handle a single update. Subclasses must override this method.

remoteComplete(failure)

Parameters failure – the failure that caused the step to complete, or None for success

Returns Deferred

Handle command completion, performing any necessary cleanup. Subclasses should override this
method. If failure is not None, it should be returned to ensure proper processing.

logs
A dictionary of LogFile instances representing active logs. Do not modify this directly – use
useLog instead.

rc
Set to the return code of the command, after the command has completed. For compatibility with shell
commands, 0 is taken to indicate success, while nonzero return codes indicate failure.

3.4. Classes 415

Buildbot Documentation, Release 0.9.1

stdout
If the collectStdout constructor argument is true, then this attribute will contain all data from
stdout, as a single string. This is helpful when running informational commands (e.g., svnversion),
but is not appropriate for commands that will produce a large amount of output, as that output is held
in memory.

To set up logging, use useLog or useLogDelayed before starting the command:

useLog(log, closeWhenFinished=False, logfileName=None)

Parameters

• log – the LogFile instance to add to.

• closeWhenFinished – if true, call finish when the command is finished.

• logfileName – the name of the logfile, as given to the worker. This is stdio for
standard streams.

Route log-related updates to the given logfile. Note that stdio is not included by default, and must be
added explicitly. The logfileName must match the name given by the worker in any log updates.

useLogDelayed(logfileName, activateCallback, closeWhenFinished=False)

Parameters

• logfileName – the name of the logfile, as given to the worker. This is stdio for
standard streams.

• activateCallback – callback for when the log is added; see below

• closeWhenFinished – if true, call finish when the command is finished.

Similar to useLog, but the logfile is only actually added when an update arrives for it. The callback,
activateCallback, will be called with the RemoteCommand instance when the first update for
the log is delivered. It should return the desired log instance, optionally via a Deferred.

With that finished, run the command using the inherited run method. During the run, you can inject data
into the logfiles with any of these methods:

addStdout(data)

Parameters data – data to add to the logfile

Returns Deferred

Add stdout data to the stdio log.

addStderr(data)

Parameters data – data to add to the logfile

Returns Deferred

Add stderr data to the stdio log.

addHeader(data)

Parameters data – data to add to the logfile

Returns Deferred

Add header data to the stdio log.

addToLog(logname, data)

Parameters

• logname – the logfile to receive the data

• data – data to add to the logfile

Returns Deferred

416 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.1

Add data to a logfile other than stdio.

class buildbot.process.remotecommand.RemoteShellCommand(workdir, com-
mand, env=None,
want_stdout=True,
want_stderr=True,
timeout=20*60,
maxTime=None,
sigtermTime=None, log-
files={}, usePTY=None,
logEnviron=True, collect-
Stdio=False)

Parameters

• workdir – directory in which command should be executed, relative to the builder’s
basedir.

• command (string or list) – shell command to run

• want_stdout – If false, then no updates will be sent for stdout.

• want_stderr – If false, then no updates will be sent for stderr.

• timeout – Maximum time without output before the command is killed.

• maxTime – Maximum overall time from the start before the command is killed.

• sigtermTime – Try to kill the command with SIGTERM and wait for sigtermTime
seconds before firing SIGKILL. If None, SIGTERM will not be fired.

• env – A dictionary of environment variables to augment or replace the existing envi-
ronment on the worker.

• logfiles – Additional logfiles to request from the worker.

• usePTY – True to use a PTY, false to not use a PTY; the default value is False.

• logEnviron – If false, do not log the environment on the worker.

• collectStdout – If True, collect the command’s stdout.

Most of the constructor arguments are sent directly to the worker; see shell for the details of the formats.
The collectStdout parameter is as described for the parent class.

If shell command contains passwords they can be hidden from log files by passing them as tuple in com-
mand argument. Eg. ['print',('obfuscated','password','dummytext')] is logged as
['print','dummytext'].

This class is used by the ShellCommand step, and by steps that run multiple customized shell commands.

3.4.9 BuildSteps

There are a few parent classes that are used as base classes for real buildsteps. This section describes the base
classes. The “leaf” classes are described in Build Steps.

See Writing New BuildSteps for a guide to implementing new steps.

BuildStep

class buildbot.process.buildstep.BuildStep(name, description, descriptionDone, descrip-
tionSuffix, locks, haltOnFailure, flunkOn-
Warnings, flunkOnFailure, warnOnWarnings,
warnOnFailure, alwaysRun, progressMetrics,
useProgress, doStepIf, hideStepIf)

All constructor arguments must be given as keyword arguments. Each constructor parameter is copied to

3.4. Classes 417

Buildbot Documentation, Release 0.9.1

the corresponding attribute.

name
The name of the step. Note that this value may change when the step is started, if the existing name
was not unique.

stepid
The ID of this step in the database. This attribute is not set until the step starts.

description
The description of the step.

descriptionDone
The description of the step after it has finished.

descriptionSuffix
Any extra information to append to the description.

locks
List of locks for this step; see Interlocks.

progressMetrics
List of names of metrics that should be used to track the progress of this build, and build ETA’s for
users. This is generally set in the

useProgress
If true (the default), then ETAs will be calculated for this step using progress metrics. If the step is
known to have unpredictable timing (e.g., an incremental build), then this should be set to false.

doStepIf
A callable or bool to determine whether this step should be executed. See Common Parameters for
details.

hideStepIf
A callable or bool to determine whether this step should be shown in the waterfall and build details
pages. See Common Parameters for details.

The following attributes affect the behavior of the containing build:

haltOnFailure
If true, the build will halt on a failure of this step, and not execute subsequent tests (except those with
alwaysRun).

flunkOnWarnings
If true, the build will be marked as a failure if this step ends with warnings.

flunkOnFailure
If true, the build will be marked as a failure if this step fails.

warnOnWarnings
If true, the build will be marked as warnings, or worse, if this step ends with warnings.

warnOnFailure
If true, the build will be marked as warnings, or worse, if this step fails.

alwaysRun
If true, the step will run even if a previous step halts the build with haltOnFailure.

logEncoding
The log encoding to use for logs produced in this step, or None to ues the global default. See Log
Handling.

rendered
At the begining of the step, the renderable attributes are rendered against the properties. There is a
slight delay however when those are not yet rendered, which lead to weird and difficult to reproduce
bugs. To address this problem, a rendered attribute is available for methods that could be called
early in the buildstep creation.

418 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.1

results
This is the result (a code from buildbot.process.results) of the step. This attribute only
exists after the step is finished, and should only be used in getResultSummary .

A few important pieces of information are not available when a step is constructed, and are added later.
These are set by the following methods; the order in which these methods are called is not defined.

setBuild(build)

Parameters build – the Build instance controlling this step.

This method is called during setup to set the build instance controlling this worker. Subclasses can
override this to get access to the build object as soon as it is available. The default implementation sets
the build attribute.

build
The build object controlling this step.

setWorker(build)

Parameters build – the Worker instance on which this step will run.

Similarly, this method is called with the worker that will run this step. The default implementation
sets the worker attribute.

worker
The worker that will run this step.

workdir
Implemented as a property. Workdir where actions of the step are happening. The workdir is by order
of priority

•workdir of the step, if defined via constructor argument

•workdir of the BuildFactory (itself defaults to ‘build’).

BuildFactory workdir can be a function of sourcestamp. See Factory Workdir Functions

setDefaultWorkdir(workdir)

Parameters workdir – the default workdir, from the build

Note: This method is deprecated and should not be used anymore, as workdir is calculated automati-
cally via a property

setupProgress()
This method is called during build setup to give the step a chance to set up progress tracking. It is only
called if the build has useProgress set. There is rarely any reason to override this method.

Execution of the step itself is governed by the following methods and attributes.

startStep(remote)

Parameters remote – a remote reference to the worker-side WorkerForBuilderPb
instance

Returns Deferred

Begin the step. This is the build’s interface to step execution. Subclasses should override run to
implement custom behaviors.

run()

Returns result via Deferred

Execute the step. When this method returns (or when the Deferred it returns fires), the step is com-
plete. The method’s return value must be an integer, giving the result of the step – a constant from

3.4. Classes 419

Buildbot Documentation, Release 0.9.1

buildbot.process.results. If the method raises an exception or its Deferred fires with fail-
ure, then the step will be completed with an EXCEPTION result. Any other output from the step
(logfiles, status strings, URLs, etc.) is the responsibility of the run method.

Subclasses should override this method. Do not call finished or failed from this method.

start()

Returns None or SKIPPED, optionally via a Deferred.

Begin the step. BuildSteps written before Buildbot-0.9.0 often override this method instead of run,
but this approach is deprecated.

When the step is done, it should call finished, with a result – a constant from
buildbot.process.results. The result will be handed off to the Build.

If the step encounters an exception, it should call failed with a Failure object.

If the step decides it does not need to be run, start can return the constant SKIPPED. In this case,
it is not necessary to call finished directly.

finished(results)

Parameters results – a constant from results

A call to this method indicates that the step is finished and the build should analyze the results and
perhaps proceed to the next step. The step should not perform any additional processing after calling
this method. This method must only be called from the (deprecated) start method.

failed(failure)

Parameters failure – a Failure instance

Similar to finished, this method indicates that the step is finished, but handles exceptions with
appropriate logging and diagnostics.

This method handles BuildStepFailed specially, by calling finished(FAILURE). This pro-
vides subclasses with a shortcut to stop execution of a step by raising this failure in a context where
failed will catch it. This method must only be called from the (deprecated) start method.

interrupt(reason)

Parameters reason (string or Failure) – why the build was interrupted

This method is used from various control interfaces to stop a running step. The step should be brought
to a halt as quickly as possible, by cancelling a remote command, killing a local process, etc. The step
must still finish with either finished or failed.

The reason parameter can be a string or, when a worker is lost during step processing, a
ConnectionLost failure.

The parent method handles any pending lock operations, and should be called by implementations in
subclasses.

stopped
If false, then the step is running. If true, the step is not running, or has been interrupted.

A step can indicate its up-to-the-moment status using a short summary string. These methods allow step
subclasses to produce such summaries.

updateSummary()
Update the summary, calling getCurrentSummary or getResultSummary as appropriate.
New-style build steps should call this method any time the summary may have changed. This method
is debounced, so even calling it for every log line is acceptable.

getCurrentSummary()

Returns dictionary, optionally via Deferred

420 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.1

Returns a dictionary containing status information for a running step. The dictionary can have a step
key with a unicode value giving a summary for display with the step. This method is only called while
the step is running.

New-style build steps should override this method to provide a more interesting summary than the
default u"running".

getResultSummary()

Returns dictionary, optionally via Deferred

Returns a dictionary containing status information for a completed step. The dictionary can have keys
step and build, each with unicode values. The step key gives a summary for display with the
step, while the build key gives a summary for display with the entire build. The latter should be
used sparingly, and include only information that the user would find relevant for the entire build, such
as a number of test failures. Either or both keys can be omitted.

This method is only called while the step is finished. The step’s result is available in self.results
at that time.

New-style build steps should override this method to provide a more interesting summary than the
default, or to provide any build summary information.

describe(done=False)

Parameters done – If true, the step is finished.

Returns list of strings

Describe the step succinctly. The return value should be a sequence of short strings suitable for display
in a horizontally constrained space.

Note: Be careful not to assume that the step has been started in this method. In relatively rare
circumstances, steps are described before they have started. Ideally, unit tests should be used to ensure
that this method is resilient.

Note: This method is not called for new-style steps. Instead, override getCurrentSummary and
getResultSummary .

Build steps have statistics, a simple key/value store of data which can later be aggregated over all steps in a
build. Note that statistics are not preserved after a build is complete.

hasStatistic(stat)

Parameters stat (string) – name of the statistic

Returns True if the statistic exists on this step

getStatistic(stat, default=None)

Parameters

• stat (string) – name of the statistic

• default – default value if the statistic does not exist

Returns value of the statistic, or the default value

getStatistics()

Returns a dictionary of all statistics for this step

setStatistic(stat, value)

Parameters

• stat (string) – name of the statistic

3.4. Classes 421

Buildbot Documentation, Release 0.9.1

• value – value to assign to the statistic

Returns value of the statistic

Build steps support progress metrics - values that increase roughly linearly during the execution of the step,
and can thus be used to calculate an expected completion time for a running step. A metric may be a count
of lines logged, tests executed, or files compiled. The build mechanics will take care of translating this
progress information into an ETA for the user.

setProgress(metric, value)

Parameters

• metric (string) – the metric to update

• value (integer) – the new value for the metric

Update a progress metric. This should be called by subclasses that can provide useful progress-
tracking information.

The specified metric name must be included in progressMetrics.

The following methods are provided as utilities to subclasses. These methods should only be invoked after
the step is started.

workerVersion(command, oldversion=None)

Parameters

• command (string) – command to examine

• oldversion – return value if the worker does not specify a version

Returns string

Fetch the version of the named command, as specified on the worker. In practice, all commands on
a worker have the same version, but passing command is still useful to ensure that the command is
implemented on the worker. If the command is not implemented on the worker, workerVersion
will return None.

Versions take the form x.y where x and y are integers, and are compared as expected for version
numbers.

Buildbot versions older than 0.5.0 did not support version queries; in this case, workerVersionwill
return oldVersion. Since such ancient versions of Buildbot are no longer in use, this functionality
is largely vestigial.

workerVersionIsOlderThan(command, minversion)

Parameters

• command (string) – command to examine

• minversion – minimum version

Returns boolean

This method returns true if command is not implemented on the worker, or if it is older than
minversion.

checkWorkerHasCommand(command)

Parameters command (string) – command to examine

This method raise WorkerTooOldError if command is not implemented on the worker

getWorkerName()

Returns string

Get the name of the worker assigned to this step.

422 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.1

Most steps exist to run commands. While the details of exactly how those commands are constructed are
left to subclasses, the execution of those commands comes down to this method:

runCommand(command)

Parameters command – RemoteCommand instance

Returns Deferred

This method connects the given command to the step’s worker and runs it, returning the Deferred from
run.

The BuildStep class provides methods to add log data to the step. Subclasses provide a great deal of
user-configurable functionality on top of these methods. These methods can be called while the step is
running, but not before.

addLog(name, type=”s”, logEncoding=None)

Parameters

• name – log name

• type – log type; see logchunk

• logEncoding – the log encoding, or None to use the step or global default (see Log
Handling)

Returns Log instance via Deferred

Add a new logfile with the given name to the step, and return the log file instance.

getLog(name)

Parameters name – log name

Raises

• KeyError – if there is no such log

• KeyError – if no such log is defined

Returns Log instance

Return an existing logfile, previously added with addLog. Note that this return value is synchronous,
and only available after addLog‘s deferred has fired.

addCompleteLog(name, text)

Parameters

• name – log name

• text – content of the logfile

Returns Deferred

This method adds a new log and sets text as its content. This is often useful to add a short logfile
describing activities performed on the master. The logfile is immediately closed, and no further data
can be added.

If the logfile’s content is a bytestring, it is decoded with the step’s log encoding or the global default log
encoding. To add a logfile with a different character encoding, perform the decode operation directly
and pass the resulting unicode string to this method.

addHTMLLog(name, html)

Parameters

• name – log name

• html – content of the logfile

Returns Deferred

3.4. Classes 423

Buildbot Documentation, Release 0.9.1

Similar to addCompleteLog, this adds a logfile containing pre-formatted HTML, allowing more
expressiveness than the text format supported by addCompleteLog.

addLogObserver(logname, observer)

Parameters

• logname – log name

• observer – log observer instance

Add a log observer for the named log. The named log need not have been added already: the observer
will be connected when the log is added.

See Adding LogObservers for more information on log observers.

addLogWithFailure(why, logprefix=’‘)

Parameters

• why (Failure) – the failure to log

• logprefix – prefix for the log name

Returns Deferred

Add log files displaying the given failure, named <logprefix>err.text and
<logprefix>err.html.

addLogWithException(why, logprefix=’‘)

Parameters

• why (Exception) – the exception to log

• logprefix – prefix for the log name

Returns Deferred

Similar to addLogWithFailure, but for an Exception instead of a Failure.

Along with logs, build steps have an associated set of links that can be used to provide additional information
for developers. Those links are added during the build with this method:

addURL(name, url)

Parameters

• name – URL name

• url – the URL

Add a link to the given url, with the given name to displays of this step. This allows a step to provide
links to data that is not available in the log files.

LoggingBuildStep

class buildbot.process.buildstep.LoggingBuildStep(name, locks, haltOnFailure,
flunkOnWarnings, flunkOnFailure,
warnOnWarnings, warnOnFail-
ure, alwaysRun, progressMetrics,
useProgress, doStepIf, hideStepIf)

The remaining arguments are passed to the BuildStep constructor.

Warning: Subclasses of this class are always old-style steps. As such, this class will be removed after
Buildbot-0.9.0. Instead, subclass BuildStep and mix in ShellMixin to get similar behavior.

424 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.1

This subclass of BuildStep is designed to help its subclasses run remote commands that produce standard
I/O logfiles. It:

•tracks progress using the length of the stdout logfile

•provides hooks for summarizing and evaluating the command’s result

•supports lazy logfiles

•handles the mechanics of starting, interrupting, and finishing remote commands

•detects lost workers and finishes with a status of RETRY

logfiles
The logfiles to track, as described for ShellCommand. The contents of the class-level logfiles
attribute are combined with those passed to the constructor, so subclasses may add log files with a
class attribute:

class MyStep(LoggingBuildStep):
logfiles = dict(debug='debug.log')

Note that lazy logfiles cannot be specified using this method; they must be provided as constructor
arguments.

setupLogsRunCommandAndProcessResults(cmd, stdioLog=None, closeLogWhenFinished=True, errorMessages=None, logfiles=None, lazylogfiles=False):

Parameters

• command – the RemoteCommand instance to start

• stdioLog – an optional Log object where the stdout of the command will be stored.

• closeLogWhenFinished – a boolean

• logfiles – optional dictionary see ShellCommand

• lazylogfiles – optional boolean see ShellCommand

Returns step result from buildbot.process.results

Note:

This method permits an optional errorMessages parameter, allowing errors detected
early in the command process to be logged. It will be removed, and its use is deprecated.

Handle all of the mechanics of running the given command. This sets up all required logfiles, and calls
the utility hooks described below.

Subclasses should use that method if they want to launch multiple commands in a single step. One
could use that method, like for example

@defer.inlineCallbacks
def run(self):

cmd = RemoteCommand(...)
res = yield self.setupLogRunCommandAndProcessResults(cmd)
if res == results.SUCCESS:

cmd = RemoteCommand(...)
res = yield self.setupLogRunCommandAndProcessResults(cmd)

defer.returnValue(res)

To refine the status output, override one or more of the following methods. The LoggingBuildStep
implementations are stubs, so there is no need to call the parent method.

commandComplete(command)

Parameters command – the just-completed remote command

3.4. Classes 425

Buildbot Documentation, Release 0.9.1

This is a general-purpose hook method for subclasses. It will be called after the remote command has
finished, but before any of the other hook functions are called.

evaluateCommand(command)

Parameters command – the just-completed remote command

Returns step result from buildbot.process.results

This hook should decide what result the step should have.

CommandMixin

The runCommand method can run a RemoteCommand instance, but it’s no help in building that object or
interpreting the results afterward. This mixin class adds some useful methods for running commands.

This class can only be used in new-style steps.

class buildbot.process.buildstep.CommandMixin
Some remote commands are simple enough that they can boil down to a method call. Most of these take
an abandonOnFailure argument which, if true, will abandon the entire buildstep on command failure.
This is accomplished by raising BuildStepFailed.

These methods all write to the stdio log (generally just for errors). They do not close the log when
finished.

runRmdir(dir, abandonOnFailure=True)

Parameters

• dir – directory to remove

• abndonOnFailure – if true, abandon step on failure

Returns Boolean via Deferred

Remove the given directory, using the rmdir command. Returns False on failure.

runMkdir(dir, abandonOnFailure=True)

Parameters

• dir – directory to create

• abndonOnFailure – if true, abandon step on failure

Returns Boolean via Deferred

Create the given directory and any parent directories, using the mkdir command. Returns False on
failure.

pathExists(path)

Parameters path – path to test

Returns Boolean via Deferred

Determine if the given path exists on the worker (in any form - file, directory, or otherwise). This uses
the stat command.

runGlob(path)

Parameters path – path to test

Returns list of filenames

Get the list of files matching the given path pattern on the worker. This uses Python’s glob module.
If the runGlob method fails, it aborts the step.

getFileContentFromWorker(path, abandonOnFailure=False)

Parameters path – path of the file to download from worker

426 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.1

Returns string via deferred (content of the file)

Get the content of a file on the worker.

ShellMixin

Most Buildbot steps run shell commands on the worker, and Buildbot has an impressive array of configuration pa-
rameters to control that execution. The ShellMixin mixin provides the tools to make running shell commands
easy and flexible.

This class can only be used in new-style steps.

class buildbot.process.buildstep.ShellMixin
This mixin manages the following step configuration parameters, the contents of which are documented in
the manual. Naturally, all of these are renderable.

command

workdir

env

want_stdout

want_stderr

usePTY

logfiles

lazylogfiles

timeout

maxTime

logEnviron

interruptSignal

sigtermTime

initialStdin

decodeRC

setupShellMixin(constructorArgs, prohibitArgs=[])

Parameters

• constructorArgs (dict) – constructor keyword arguments

• prohibitArgs (list) – list of recognized arguments to reject

Returns keyword arguments destined for BuildStep

This method is intended to be called from the shell constructor, passed any keyword arguments not
otherwise used by the step. Any attributes set on the instance already (e.g., class-level attributes) are
used as defaults. Attributes named in prohibitArgs are rejected with a configuration error.

The return value should be passed to the BuildStep constructor.

makeRemoteShellCommand(collectStdout=False, collectStderr=False, **overrides)

Parameters

• collectStdout – if true, the command’s stdout wil be available in cmd.stdout
on completion

• collectStderr – if true, the command’s stderr wil be available in cmd.stderr
on completion

3.4. Classes 427

Buildbot Documentation, Release 0.9.1

• overrides – overrides arguments that might have been passed to
setupShellMixin

Returns RemoteShellCommand instance via Deferred

This method constructs a RemoteShellCommand instance based on the instance attributes and any
supplied overrides. It must be called while the step is running, as it examines the worker capabilities
before creating the command. It takes care of just about everything:

•Creating log files and associating them with the command

•Merging environment configuration

•Selecting the appropriate workdir configuration

All that remains is to run the command with runCommand.

The ShellMixin class implements getResultSummary , returning a summary of the command.
If no command was specified or run, it falls back to the default getResultSummary based on
descriptionDone. Subclasses can override this method to return a more appropriate status.

Exceptions

exception buildbot.process.buildstep.BuildStepFailed
This exception indicates that the buildstep has failed. It is useful as a way to skip all subsequent processing
when a step goes wrong. It is handled by BuildStep.failed.

3.4.10 BaseScheduler

class buildbot.schedulers.base.BaseScheduler
This is the base class for all Buildbot schedulers. See Writing Schedulers for information on writing new
schedulers.

__init__(name, builderNames, properties={}, codebases={‘’:{}})

Parameters

• name – (positional) the scheduler name

• builderName – (positional) a list of builders, by name, for which this scheduler can
queue builds

• properties – a dictionary of properties to be added to queued builds

• codebases – the codebase configuration for this scheduler (see user documentation)

Initializes a new scheduler.

The scheduler configuration parameters, and a few others, are available as attributes:

name
This scheduler’s name.

builderNames

Type list

Builders for which this scheduler can queue builds.

codebases

Type dict

The codebase configuration for this scheduler.

properties

Type Properties instance

428 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.1

Properties that this scheduler will attach to queued builds. This attribute includes the scheduler
property.

schedulerid

Type integer

The ID of this scheduler in the schedulers table.

Subclasses can consume changes by implementing gotChange and calling
startConsumingChanges from startActivity.

startConsumingChanges(self, fileIsImportant=None, change_filter=None, onlyImpor-
tant=False)

Parameters

• fileIsImportant (callable) – a callable provided by the user to distinguish
important and unimportant changes

• change_filter (buildbot.changes.filter.ChangeFilter instance)
– a filter to determine which changes are even considered by this scheduler, or None
to consider all changes

• onlyImportant (boolean) – If True, only important changes, as specified by
fileIsImportant, will be added to the buildset.

Returns Deferred

Subclasses should call this method when becoming active in order to receive changes. The parent class
will take care of filtering the changes (using change_filter) and (if fileIsImportant is not
None) classifying them.

gotChange(change, important)

Parameters

• change (Change) – the new change

• important (boolean) – true if the change is important

Returns Deferred

This method is called when a change is received. Schedulers which consume changes should imple-
ment this method.

If the fileIsImportant parameter to startConsumingChanges was None, then all changes
are considered important. It is guaranteed that the codebase of the change is one of the scheduler’s
codebase.

Note: The change instance will instead be a change resource in later versions.

The following methods are available for subclasses to queue new builds. Each creates a new buildset with a
build request for each builder.

addBuildsetForSourceStamps(self, sourcestamps=[], waited_for=False, reason=’‘,
external_idstring=None, properties=None, builder-
Names=None)

Parameters

• sourcestamps (list) – a list of full sourcestamp dictionaries or sourcestamp IDs

• waited_for (boolean) – if true, this buildset is being waited for (and thus should
continue during a clean shutdown)

• reason (string) – reason for the build set

• external_idstring (string) – external identifier for the buildset

3.4. Classes 429

Buildbot Documentation, Release 0.9.1

• properties (Properties instance) – properties - in addition to those in the
scheduler configuration - to include in the buildset

• builderNames (list) – a list of builders for the buildset, or None to use the
scheduler’s configured builderNames

Returns (buildset ID, buildrequest IDs) via Deferred

Add a buildset for the given source stamps. Each source stamp must be specified as a complete source
stamp dictionary (with keys revision, branch, project, repository, and codebase), or
an integer sourcestampid.

The return value is a tuple. The first tuple element is the ID of the new buildset. The second tuple
element is a dictionary mapping builder name to buildrequest ID.

addBuildsetForSourceStampsWithDefaults(reason, sourcestamps, waited_for=False,
properties=None, builderNames=None)

Parameters

• reason (string) – reason for the build set

• sourcestamps (list) – partial list of source stamps to build

• waited_for (boolean) – if true, this buildset is being waited for (and thus should
continue during a clean shutdown)

• properties (Properties instance) – properties - in addition to those in the
scheduler configuration - to include in the buildset

• builderNames (list) – a list of builders for the buildset, or None to use the
scheduler’s configured builderNames

Returns (buildset ID, buildrequest IDs) via Deferred, as for
addBuildsetForSourceStamps

Create a buildset based on the supplied sourcestamps, with defaults applied from the scheduler’s con-
figuration.

The sourcestamps parameter is a list of source stamp dictionaries, giving the required parameters.
Any unspecified values, including sourcestamps from unspecified codebases, will be filled in from
the scheduler’s configuration. If sourcestamps is None, then only the defaults will be used. If
sourcestamps includes sourcestamps for codebases not configured on the scheduler, they will be
included anyway, although this is probably a sign of an incorrect configuration.

addBuildsetForChanges(waited_for=False, reason=’‘, external_idstring=None,
changeids=[], builderNames=None, properties=None)

Parameters

• waited_for (boolean) – if true, this buildset is being waited for (and thus should
continue during a clean shutdown)

• reason (string) – reason for the build set

• external_idstring (string) – external identifier for the buildset

• changeids (list) – changes from which to construct the buildset

• builderNames (list) – a list of builders for the buildset, or None to use the
scheduler’s configured builderNames

• properties (Properties instance) – properties - in addition to those in the
scheduler configuration - to include in the buildset

Returns (buildset ID, buildrequest IDs) via Deferred, as for
addBuildsetForSourceStamps

430 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.1

Add a buildset for the given changes (changeids). This will take sourcestamps from the latest of
any changes with the same codebase, and will fill in sourcestamps for any codebases for which no
changes are included.

The active state of the scheduler is tracked by the following attribute and methods.

active
True if this scheduler is active

activate()

Returns Deferred

Subclasses should override this method to initiate any processing that occurs only on active schedulers.
This is the method from which to call startConsumingChanges, or to set up any timers or
message subscriptions.

deactivate()

Returns Deferred

Subclasses should override this method to stop any ongoing processing, or wait for it to complete. The
method’s returned Deferred should not fire until the processing is complete.

The state-manipulation methods are provided by buildbot.util.state.StateMixin. Note that
no locking of any sort is performed between these two functions. They should only be called by an active
scheduler.

getState(name[, default])
Parameters

• name – state key to fetch

• default – default value if the key is not present

Returns Deferred

This calls through to buildbot.db.state.StateConnectorComponent.getState, us-
ing the scheduler’s objectid.

setState(name, value)

Parameters

• name – state key

• value – value to set for the key

Returns Deferred

This calls through to buildbot.db.state.StateConnectorComponent.setState, us-
ing the scheduler’s objectid.

3.4.11 ForceScheduler

The force scheduler has a symbiotic relationship with the web application, so it deserves some further description.

Parameters

The force scheduler comes with a fleet of parameter classes. This section contains information to help users or
developers who are interested in adding new parameter types or hacking the existing types.

class buildbot.schedulers.forceshed.BaseParameter(name, label, regex, **kwargs)
This is the base implementation for most parameters, it will check validity, ensure the arg is present if the
required attribute is set, and implement the default value. It will finally call updateFromKwargs to
process the string(s) from the HTTP POST.

3.4. Classes 431

Buildbot Documentation, Release 0.9.1

The BaseParameter constructor converts all keyword arguments into instance attributes, so it is gener-
ally not necessary for subclasses to implement a constructor.

For custom parameters that set properties, one simple customization point is getFromKwargs:

getFromKwargs(kwargs)
Parameters kwargs – a dictionary of the posted values

Given the passed-in POST parameters, return the value of the property that should be set.

For more control over parameter parsing, including modifying sourcestamps or changeids, override the
updateFromKwargs function, which is the function that ForceScheduler invokes for processing:

updateFromKwargs(master, properties, changes, sourcestamps, collector, kwargs)
Parameters

• master – the BuildMaster instance
• properties – a dictionary of properties
• changes – a list of changeids that will be used to build the SourceStamp for

the forced builds
• sourcestamps – the SourceStamp dictionary that will be passed to the

build; some parameters modify sourcestamps rather than properties.
• collector – a buildbot.schedulers.forcesched.ValidationErrorCollector

object, which is used by nestedParameter to collect errors from its childs
• kwargs – a dictionary of the posted values

This method updates properties, changes, and/or sourcestamps according to the
request. The default implementation is good for many simple uses, but can be overridden
for more complex purposes.

When overriding this function, take all parameters by name (not by position), and include
an **unused catch-all to guard against future changes.

The remaining attributes and methods should be overridden by subclasses, although
BaseParameter provides appropriate defaults.

name
The name of the parameter. This corresponds to the name of the property that your parameter
will set. This name is also used internally as identifier for http POST arguments

label
The label of the parameter, as displayed to the user. This value can contain raw HTML.

fullName()
A fully-qualified name that uniquely identifies the parameter in the scheduler. This name
is used internally as the identifier for HTTP POST arguments. It is a mix of name and the
parent’s name (in the case of nested parameters). This field is not modifiable.

type
A string identifying the type that the parameter conforms to. It is used by the angular
application to find which angular directive to use for showing the form widget. The avail-
able values are visible in https://github.com/buildbot/buildbot/blob/master/www/base/src/
app/common/directives/forcefields/forcefields.directive.coffee.

Examples of how to create a custom parameter widgets are available in the buildbot source
code in directories:

•https://github.com/buildbot/buildbot/blob/master/www/codeparameter
•https://github.com/buildbot/buildbot/blob/master/www/nestedexample

default
The default value to use if there is no user input. This is also used to fill in the form presented
to the user.

required
If true, an error will be shown to user if there is no input in this field

multiple
If true, this parameter represents a list of values (e.g. list of tests to run)

432 Chapter 3. Buildbot Development

https://github.com/buildbot/buildbot/blob/master/www/base/src/app/common/directives/forcefields/forcefields.directive.coffee
https://github.com/buildbot/buildbot/blob/master/www/base/src/app/common/directives/forcefields/forcefields.directive.coffee
https://github.com/buildbot/buildbot/blob/master/www/codeparameter
https://github.com/buildbot/buildbot/blob/master/www/nestedexample

Buildbot Documentation, Release 0.9.1

regex
A string that will be compiled as a regex and used to validate the string value of this param-
eter. If None, then no validation will take place.

parse_from_args(l)
return the list of object corresponding to the list or string passed default function will just
call parse_from_arg with the first argument

parse_from_arg(s)
return the object corresponding to the string passed default function will just return the
unmodified string

Nested Parameters

The NestedParameter class is a container for parameters. The original motivating purpose for this feature
is the multiple-codebase configuration, which needs to provide the user with a form to control the branch (et al)
for each codebase independently. Each branch parameter is a string field with name ‘branch’ and these must be
disambiguated.

In Buildbot nine, this concept has been extended to allow grouping different parameters into UI containers. Details
of the available layouts is described in NestedParameter.

Each of the child parameters mixes in the parent’s name to create the fully qualified fullName. This allows, for
example, each of the ‘branch’ fields to have a unique name in the POST request. The NestedParameter handles
adding this extra bit to the name to each of the children. When the kwarg dictionary is posted back, this class also
converts the flat POST dictionary into a richer structure that represents the nested structure.

As illustration, if the nested parameter has the name ‘foo’, and has children ‘bar1’ and ‘bar2’, then the POST
will have entries like “foo.bar1” and “foo.bar2”. The nested parameter will translate this into a dictionary in the
‘kwargs’ structure, resulting in something like:

kwargs = {
...
'foo': {

'bar1': '...',
'bar2': '...'

}
}

Arbitrary nesting is allowed and results in a deeper dictionary structure.

Nesting can also be used for presentation purposes. If the name of the NestedParameter is empty, the nest is
“anonymous” and does not mangle the child names. However, in the HTML layout, the nest will be presented as
a logical group.

3.4.12 IRenderable

buildbot.interfaces.IRenderable::
Providers of this class can be “rendered”, based on available properties, when a build is started.

getRenderingFor(iprops)

Parameters iprops – the IProperties provider supplying the properties of the build.

Returns the interpretation of the given properties, optionally in a Deferred.

3.4.13 IProperties

buildbot.interfaces.IProperties::
Providers of this interface allow get and set access to a build’s properties.

3.4. Classes 433

Buildbot Documentation, Release 0.9.1

getProperty(propname, default=None)
Get a named property, returning the default value if the property is not found.

hasProperty(propname)
Determine whether the named property exists.

setProperty(propname, value, source)
Set a property’s value, also specifying the source for this value.

getProperties()
Get a buildbot.process.properties.Properties instance. The interface of this class is
not finalized; where possible, use the other IProperties methods.

3.4.14 ResultSpecs

Result specifications are used by the Data API to describe the desired results of a get call. They can be used to
filter, sort and paginate the contents of collections, and to limit the fields returned for each item.

Python calls to get call can pass a ResultSpec instance directly. Requests to the HTTP REST API are
converted into instances automatically.

Implementers of Data API endpoints can ignore result specifications entirely, except where efficiency suffers. Any
filters, sort keys, and so on still present after the endpoint returns its result are applied generically. ResultSpec
instances are mutable, so endpoints that do apply some of the specification can remove parts of the specification.

Result specifications are applied in the following order:

• Field Selection (fields)

• Filters

• Order

• Pagination (limit/offset)

• Properties

Only fields & properties are applied to non-collection results. Endpoints processing a result specification should
take care to replicate this behavior.

class buildbot.data.resultspec.ResultSpec
A result specification has the following attributes, which should be treated as read-only:

filters
A list of Filter instances to be applied. The result is a logical AND of all filters.

fields
A list of field names that should be included, or None for no sorting. if the field names all begin with
-, then those fields will be omitted and all others included.

order
A list of field names to sort on. if any field name begins with -, then the ordering on that field will be
in reverse.

limit
The maximum number of collection items to return.

offset
The 0-based index of the first collection item to return.

properties

A list of Property instances to be applied. The result is a logical AND of all properties.

All of the attributes can be supplied as constructor keyword arguments.

Endpoint implementations may call these methods to indicate that they have processed part of the
result spec. A subsequent call to apply will then not waste time re-applying that part.

434 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.1

popProperties()
If a property exists, return its values list and remove it from the result spec.

popFilter(field, op)
If a filter exists for the given field and operator, return its values list and remove it from the result
spec.

popBooleanFilter(field)
If a filter exists for the field, remove it and return the expected value (True or False); otherwise
return None. This method correctly handles odd cases like field__ne=false.

popStringFilter(field)
If one string filter exists for the field, remove it and return the expected value (as string); otherwise
return None.

popIntegerFilter(field)
If one integer filter exists for the field, remove it and return the expected value (as integer); other-
wise return None. raises ValueError if the field is not convertible to integer.

removePagination()
Remove the pagination attributes (limit and offset) from the result spec. And endpoint
that calls this method should return a ListResult instance with its pagination attributes set
appropriately.

removeOrder()
Remove the order attribute.

popField(field)
Remove a single field from the fields attribute, returning True if it was present. Endpoints can
use this in conditionals to avoid fetching particularly expensive fields from the DB API.

The following method is used internally to apply any remaining parts of a result spec that are not
handled by the endpoint.

apply(data)
Apply the result specification to the data, returning a transformed copy of the data. If the data is
a collection, then the result will be a ListResult instance.

class buildbot.data.resultspec.Filter(field, op, values)

Parameters

• field (string) – the field to filter on

• op (string) – the comparison operator (e.g., “eq” or “gt”)

• values (list) – the values on the right side of the operator

A filter represents a limitation of the items from a collection that should be returned.

Many operators, such as “gt”, only accept one value. Others, such as “eq” or “ne”, can accept multiple
values. In either case, the values must be passed as a list.

class buildbot.data.resultspec.Property(values)

Parameters values (list) – the values on the right side of the operator (eq)

A property represents an item of a foreign table.

In either case, the values must be passed as a list.

3.4.15 Protocols

To exchange information over the network between master and worker we need to use protocol.

buildbot.worker.protocols.base provide interfaces to implement wrappers around protocol specific
calls, so other classes which use them do not need to know about protocol calls or handle protocol specific excep-
tions.

3.4. Classes 435

Buildbot Documentation, Release 0.9.1

class buildbot.worker.protocols.base.Listener(master)

Parameters master – buildbot.master.BuildMaster instance

Responsible for spawning Connection instances and updating registrations. Protocol-specific subclasses are
instantiated with protocol-specific parameters by the buildmaster during startup.

class buildbot.worker.protocols.base.Connection(master, worker)
Represents connection to single worker

proxies
Dictionary containing mapping between Impl classes and Proxy class for this protocol This may be
overridden by subclass to declare its proxy implementations

createArgsProxies(args)

Returns shallow copy of args dictionary with proxies instead of impls

Helper method that will use proxies, and replace Impl objects by specific Proxy counterpart.

notifyOnDisconnect(cb)

Parameters cb – callback

Returns buildbot.util.subscriptions.Subscription

Register a callback to be called if worker gets disconnected

loseConnection()
Close connection

remotePrint(message)

Parameters message (string) – message for worker

Returns Deferred

Print message to worker log file

remoteGetWorkerInfo()

Returns Deferred

Get worker information, commands and version, put them in dictonary then return back

remoteSetBuilderList(builders)

Parameters builders (List) – list with wanted builders

Returns Deferred containing PB references XXX

Take list with wanted builders and send them to worker, return list with created builders

remoteStartCommand(remoteCommand, builderName, commandId, commandName, args)

Parameters

• remoteCommand – RemoteCommandImpl instance

• builderName (string) – self explanatory

• commandId (string) – command number

• commandName (string) – command which will be executed on worker

• args (List) – arguments for that command

Returns Deferred

Start command on worker

remoteShutdown()

Returns Deferred

Shutdown the worker, causing its process to halt permanently.

436 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.1

remoteStartBuild(builderName)
:param builderName name of the builder for which the build is starting :returns: Deferred

Just starts build

remoteInterruptCommand(builderName, commandId, why)

Parameters

• builderName (string) – self explanatory

• commandId (string) – command number

• why (string) – reason to interrupt

Returns Deferred

Interrupt the command executed on builderName with given commandId on worker, print reason
“why” to worker logs

Following classes are describing the worker -> master part of the protocol.

In order to support old workers, we must make sure we do not change the current pb protocol. This is why we
implement a Impl vs Proxy methods. All the objects that are referenced from the workers for remote calls
have an Impl and a Proxy base classes in this module.

Impl classes are subclassed by buildbot master, and implement the actual logic for the protocol api. Proxy
classes are implemented by the worker/master protocols, and implements the demux and de-serialization of pro-
tocol calls.

On worker sides, those proxy objects are replaced by a proxy object having a single method to call master side
methodss:

class buildbot.worker.protocols.base.workerProxyObject

callRemote(message, *args, **kw)
calls the method "remote_" + message on master side

class buildbot.worker.protocols.base.RemoteCommandImpl
Represents a RemoteCommand status controller

remote_update(updates)

Parameters updates – dictionary of updates

Called when the workers has updates to the current remote command

possible keys for updates are:

•stdout: Some logs where captured in remote command’s stdout. value: <data> as
string

•stderr: Some logs where captured in remote command’s stderr. value: <data> as string

•header: remote command’s header text. value: <data> as string

•log: one of the watched logs has received some text. value: (<logname> as
string,<data> as string)

•rc: Remote command exited with a return code. value: <rc> as integer

•elapsed: Remote command has taken <elapsed> time. value: <elapsed seconds> as
float

•stat: sent by the stat command with the result of the os.stat, converted to a tuple. value:
<stat> as tuple

•files: sent by the glob command with the result of the glob.glob. value: <files> as
list of string

3.4. Classes 437

Buildbot Documentation, Release 0.9.1

•got_revision: sent by the source commands with the revision checked out. value:
<revision> as string

•repo_downloaded: sent by the repo command with the list of patches downloaded by repo.
value: <downloads> as list of string

class buildbot.worker.protocols.base.FileWriterImpl
Class used to implement data transfer between worker and master

class buildbot.worker.protocols.base.FileReaderImpl(object)

remote_read(maxLength)

Parameters maxLength – maximum length of the data to send

Returns data read

called when worker needs more data

remote_close()
Called when master should close the file

3.4.16 WorkerManager

WorkerRegistration

class buildbot.worker.manager.WorkerRegistration(master, worker)
Represents single Worker registration

unregister()
Remove registartion for worker

update(worker_config, global_config)

Parameters

• worker_config (Worker) – new Worker instance

• global_config (MasterConfig) – Buildbot config

Update the registration in case the port or password has changed.

NOTE: You should invoke this method after calling WorkerManager.register(worker)

WorkerManager

class buildbot.worker.manager.WorkerManager(master)
Handle Worker registrations for mulitple protocols

register(worker)

Parameters worker (Worker) – new Worker instance

Returns WorkerRegistration

Creates WorkerRegistration instance.

NOTE: You should invoke .update() on returned WorkerRegistration instance

3.4.17 Logs

class buildbot.process.log.Log
This class handles write-only access to log files from running build steps. It does not provide an interface
for reading logs - such access should occur directly through the Data API.

438 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.1

Instances of this class can only be created by the addLog method of a build step.

name
The name of the log.

type
The type of the log, represented as a single character. See logchunk for details.

logid
The ID of the logfile.

decoder
A callable used to decode bytestrings. See logEncoding.

subscribe(receiver)

Parameters receiver (callable) – the function to call

Register receiver to be called with line-delimited chunks of log data. The callable is invoked as
receiver(stream,chunk), where the stream is indicated by a single character, or None for
logs without streams. The chunk is a single string containing an arbitrary number of log lines, and
terminated with a newline. When the logfile is finished, receiver will be invoked with None for
both arguments.

The callable cannot return a Deferred. If it must perform some asynchronous operation, it will need to
handle its own Deferreds, and be aware that multiple overlapping calls may occur.

Note that no “rewinding” takes place: only log content added after the call to subscribe will be
supplied to receiver.

finish()

Returns Deferred

This method indicates that the logfile is finished. No further additions will be permitted.

In use, callers will receive a subclass with methods appropriate for the log type:

class buildbot.process.log.TextLog

addContent(text):

Parameters text – log content

Returns Deferred

Add the given data to the log. The data need not end on a newline boundary.

class buildbot.process.log.HTMLLog

addContent(text):

Parameters text – log content

Returns Deferred

Same as TextLog.addContent.

class buildbot.process.log.StreamLog
This class handles logs containing three interleaved streams: stdout, stderr, and header. The resulting log
maintains data distinguishing these streams, so they can be filtered or displayed in different colors. This
class is used to represent the stdio log in most steps.

addStdout(text)

Parameters text – log content

Returns Deferred

Add content to the stdout stream. The data need not end on a newline boundary.

3.4. Classes 439

Buildbot Documentation, Release 0.9.1

addStderr(text)

Parameters text – log content

Returns Deferred

Add content to the stderr stream. The data need not end on a newline boundary.

addHeader(text)

Parameters text – log content

Returns Deferred

Add content to the header stream. The data need not end on a newline boundary.

3.4.18 LogObservers

class buildbot.process.logobserver.LogObserver
This is a base class for objects which receive logs from worker commands as they are produced. It does not
provide an interface for reading logs - such access should occur directly through the Data API.

See Adding LogObservers for help creating and using a custom log observer.

The three methods that subclasses may override follow. None of these methods may return a Deferred. It is
up to the callee to handle any asynchronous operations. Subclasses may also override the constructor, with
no need to call LogObserver‘s constructor.

outReceived(data):

Parameters data (unicode) – received data

This method is invoked when a “chunk” of data arrives in the log. The chunk contains one or more
newline-terminated unicode lines. For stream logs (e.g., stdio), output to stderr generates a call to
errReceived, instead.

errReceived(data):

Parameters data (unicode) – received data

This method is similar to outReceived, but is called for output to stderr.

headerReceived(data):

Parameters data (unicode) – received data

This method is similar to outReceived, but is called for header output.

finishReceived()
This method is invoked when the observed log is finished.

class buildbot.process.logobserver.LogLineObserver
This subclass of LogObserver calls its subclass methods once for each line, instead of once per chunk.

outLineReceived(line):

Parameters line (unicode) – received line, without newline

Like outReceived, this is called once for each line of output received. The argument does not
contain the trailing newline character.

errLineReceived(line):

Parameters line (unicode) – received line, without newline

Similar to outLineReceived, but for stderr.

headerLineReceived(line):

Parameters line (unicode) – received line, without newline

Similar to outLineReceived, but for header output..

440 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.1

finishReceived()
This method, inherited from LogObserver, is invoked when the observed log is finished.

class buildbot.process.logobserver.LineConsumerLogObserver
This subclass of LogObserver takes a generator function and “sends” each line to that function. This
allows consumers to be written as stateful Python functions, e.g.,

def logConsumer(self):
while True:

stream, line = yield
if stream == 'o' and line.startswith('W'):

self.warnings.append(line[1:])

def __init__(self):
...
self.warnings = []
self.addLogObserver('stdio', logobserver.LineConsumerLogObserver(self.

→˓logConsumer))

Each yield expression evaluates to a tuple of (stream, line), where the stream is one of ‘o’, ‘e’, or ‘h’ for
stdout, stderr, and header, respectively. As with any generator function, the yield expression will raise
a GeneratorExit exception when the generator is complete. To do something after the log is finished,
just catch this exception (but then re-raise it or return)

def logConsumer(self):
while True:

try:
stream, line = yield
if stream == 'o' and line.startswith('W'):

self.warnings.append(line[1:])
except GeneratorExit:

self.warnings.sort()
return

Warning: This use of generator functions is a simple Python idiom first described in
PEP 342 (https://www.python.org/dev/peps/pep-0342/). It is unrelated to the generators used in
inlineCallbacks. In fact, consumers of this type are incompatible with asynchronous program-
ming, as each line must be processed immediately.

class buildbot.process.logobserver.BufferLogObserver(wantStdout=True, wantSt-
derr=False)

Parameters

• wantStdout (boolean) – true if stdout should be buffered

• wantStderr (boolean) – true if stderr should be buffered

This subclass of LogObserver buffers stdout and/or stderr for analysis after the step is complete. This
can cause excessive memory consumption if the output is large.

getStdout()

Returns unicode string

Return the accumulated stdout.

getStderr()

Returns unicode string

Return the accumulated stderr.

3.4. Classes 441

https://www.python.org/dev/peps/pep-0342/

Buildbot Documentation, Release 0.9.1

3.4.19 Authentication

class buildbot.www.auth.AuthBase
This class is the base class for all authentication methods. All authentications are not done at the same
level, so several optional methods are available. This class implements default implementation. The lo-
gin session is stored via twisted’s request.getSession(), and detailed used information is stored
in request.getSession().user_info. The session information is then sent to the UI via the
config constant (in the user attribute of config)

userInfoProvider
Authentication modules are responsible for providing user information as detailed as possible. When
there is a need to get additional information from another source, a userInfoProvider can optionally be
specified.

reconfigAuth(master, new_config)

Parameters

• master – the reference to the master

• new_config – the reference to the new configuration

Reconfigure the authentication module. In the base class, this simply sets self.master.

maybeAutoLogin(request)

Parameters request – the request object

Returns Deferred

This method is called when /config.js is fetched. If the authentication method supports automatic
login, e.g., from a header provided by a frontend proxy, this method handles the login.

If it succeeds, the method sets request.getSession().user_info. If the login fails unex-
pectedly, it raises resource.Error. The default implementation simply returns without setting
user_info.

getLoginResource()
Return the resource representing /auth/login.

getLogout()
Return the resource representing /auth/logout.

updateUserInfo(request)

Parameters request – the request object

Separate entrypoint for getting user information. This is a mean to call self.userInfoProvider if pro-
vided.

class buildbot.www.auth.UserInfoProviderBase
Class that can be used, to get more info for the user like groups, in a separate database.

getUserInfo(username)

returns the user infos, from the username used for login (via deferred)

returns a dict with following keys:

•email: email address of the user

•full_name: Full name of the user, like “Homer Simpson”

•groups: groups the user belongs to, like [”duff fans”, “dads”]

class buildbot.www.oauth2.OAuth2Auth
OAuth2Auth implements oauth2 2 phases authentication. With this method /auth/login is called twice.
Once without argument. It should return the URL the browser has to redirect in order to perform oauth2
authentication, and authorization. Then the oauth2 provider will redirect to /auth/login?code=???,
and buildbot web server will verify the code using the oauth2 provider.

442 Chapter 3. Buildbot Development

Buildbot Documentation, Release 0.9.1

Typical login process is:

•UI calls the /auth/login api, and redirect the browser to the returned oauth2 provider url

•oauth2 provider shows a web page with a form for the user to authenticate, and ask the user the
permission for buildbot to access its account.

•oauth2 provider redirects the browser to /auth/login?code=???

•OAuth2Auth module verifies the code, and get the user’s additional information

•buildbot UI is reloaded, with the user authenticated.

This implementation is using requests (http://docs.python-requests.org/en/latest/) subclasses must override
following class attributes: * name Name of the oauth plugin * faIcon font awesome class to use for
login button logo * resourceEndpoint URI of the resource where the authentication token is used
* authUri URI the browser is pointed to to let the user enter creds * tokenUri URI to verify the
browser code and get auth token * authUriAdditionalParams Additional parameters for the authUri
* tokenUriAdditionalParams Additional parameters for the tokenUri

getUserInfoFromOAuthClient(self, c)
This method is called after a successful authentication to get additional information about the user
from the oauth2 provider.

3.4.20 Avatars

Buildbot’s avatar support associate a small image with each user.

class buildbot.www.avatar.AvatarBase
Class that can be used, to get more the avatars for the users. This can be used for the authenticated users,
but also for the users referenced by changes.

getUserAvatar(self, email, size, defaultAvatarUrl)

returns the user’s avatar, from the user’s email (via deferred). If the data is directly available, this function
returns a tuple (mime_type,picture_raw_data). If the data is available in another URL, this func-
tion can raise resource.Redirect(avatar_url), and the web server will redirect to the avatar_url.

3.4.21 Web Server Classes

Most of the source in https://github.com/buildbot/buildbot/blob/master/master/buildbot/www is self-explanatory.
However, a few classes and methods deserve some special mention.

Resources

class buildbot.www.resource.Redirect(url)
This is a subclass of Twisted Web’s Error. If this is raised within asyncRenderHelper, the user will
be redirected to the given URL.

class buildbot.www.resource.Resource
This class specializes the usual Twisted Web Resource class.

It adds support for resources getting notified when the master is reconfigured.

needsReconfig
If True, reconfigResource will be called on reconfig.

reconfigResource(new_config)

Parameters new_config – new MasterConfig instance

Returns Deferred if desired

Reconfigure this resource.

3.4. Classes 443

http://docs.python-requests.org/en/latest/
https://github.com/buildbot/buildbot/blob/master/master/buildbot/www

Buildbot Documentation, Release 0.9.1

It’s surprisingly difficult to render a Twisted Web resource asynchronously. This method makes it quite a
bit easier:

asyncRenderHelper(request, callable, writeError=None)

Parameters

• request – the request instance

• callable – the render function

• writeError – optional callable for rendering errors

This method will call callable, which can return a Deferred, with the given request. The value
returned from this callable will be converted to an HTTP response. Exceptions, including Error
subclasses, are handled properly. If the callable raises Redirect, the response will be a suitable
HTTP 302 redirect.

Use this method as follows:

def render_GET(self, request):
return self.asyncRenderHelper(request, self.renderThing)

444 Chapter 3. Buildbot Development

CHAPTER 4

Release Notes for Buildbot |version|

The following are the release notes for Buildbot |version|.

See Upgrading to Nine for a guide to upgrading from 0.8.x to 0.9.x

4.1 Master

4.1.1 Features

4.1.2 Fixes

4.1.3 Changes for Developers

4.1.4 Features

4.1.5 Fixes

4.1.6 Deprecations, Removals, and Non-Compatible Changes

4.2 Worker

4.2.1 Fixes

4.2.2 Changes for Developers

4.2.3 Deprecations, Removals, and Non-Compatible Changes

4.3 Details

For a more detailed description of the changes made in this version, see the git log itself:

git log v0.9.0rc1..master

4.4 Older Versions

Release notes for older versions of Buildbot are available in the https://github.com/buildbot/buildbot/blob/master/
master/docs/relnotes/ directory of the source tree. Newer versions are also available here:

445

https://github.com/buildbot/buildbot/blob/master/master/docs/relnotes/
https://github.com/buildbot/buildbot/blob/master/master/docs/relnotes/

Buildbot Documentation, Release 0.9.1

4.4.1 Release Notes for Buildbot 0.9.1

The following are the release notes for Buildbot 0.9.1. This version was released on October 6, 2016.

This is a concatenation of important changes done between 0.8.12 and 0.9.1. This does not contain details of the
bug fixes related to the nine beta and rc period. This document was written during the very long period of nine
development. It might contain some incoherencies, please help us and report them on irc or trac.

See Upgrading to Nine for a guide to upgrading from 0.8.x to 0.9.x

Master

Features

• Add support for hyper.sh via HyperLatentWorker Hyper (https://hyper.sh) is a CaaS solution for host-
ing docker container in the cloud, billed to the second. It forms a very cost efficient solution to run your CI
in the cloud.

• The Trigger step now supports unimportantSchedulerNames

• add a UI button to allow to cancel the whole queue for a builder

• Buildbot log viewer now support 256 colors ANSI codes

• new GitHub which correctly checkout the magic branch like refs/pull/xx/merge.

• MailNotifier now supports a schedulers constructor argument that allows you to send mail only for
builds triggered by the specified list of schedulers.

• MailNotifier now supports a branches constructor argument that allows you to send mail only for
builds triggered by the specified list of branches.

• Optimization of the data api filtering, sorting and paging, speeding up a lot the UI when the master has lots
of builds.

• GerritStatusPush now accepts a notify parameter to control who gets emailed by Gerrit.

• Add a format_fn parameter to the HttpStatusPush reporter to customize the information being
pushed.

• Latent Workers can now start in parallel.

– The build started by latent worker will be created while the latent worker is substantiated.

– Latent Workers will now report startup issues in the UI.

• Workers will be temporarily put in quarantine in case of build preparation issues. This avoids master
and database overload in case of bad worker configuration. The quarantine is implemented with an
exponential back-off timer.

• Master Stop will now stop all builds, and wait for all workers to properly disconnect. Previously, the worker
connections was stopped, which incidentally made all their builds marked retried. Now, builds started with
a Triggereable scheduler will be cancelled, while other builds will be retried. The master will make
sure that all latent workers are stopped.

• The MessageFormatter class also allows inline-templates with the template parameter.

• The MessageFormatter class allows custom mail’s subjects with the subject and subject_name
parameters.

• The MessageFormatter class allows extending the context given to the Templates via the ctx param-
eter.

• The new MessageFormatterMissingWorker class allows to customize the message sent when a
worker is missing.

• The OpenStackLatentWorker worker now supports rendering the block device parameters. The
volume_size parameter will be automatically calculated if it is None.

446 Chapter 4. Release Notes for Buildbot |version|

https://hyper.sh

Buildbot Documentation, Release 0.9.1

Fixes

• fix the UI to allow to cancel a buildrequest (bug #3582 (http://trac.buildbot.net/ticket/3582))

• GitHub change hook now correctly use the refs/pull/xx/merge branch for testing PRs.

• Fix the UI to better adapt to different screen width (bug #3614 (http://trac.buildbot.net/ticket/3614))

• Don’t log AlreadyClaimedError. They are normal in case of Trigger cancelling, and in a multi-
master configuration.

• Fix issues with worker disconnection. When a worker disconnects, its current buildstep must be interrupted
and the buildrequests should be retried.

• Fix the worker missing email notification.

• Fix issue with worker builder list not being updated in UI when buildmaster is reconfigured (bug #3629
(http://trac.buildbot.net/ticket/3629))

Changes for Developers

Features

• New SharedService can be used by steps, reporters, etc to implement per master resource limit.

• New HttpClientService can be used by steps, reporters, etc to implement HTTP client.
This class will automatically choose between treq (https://pypi.python.org/pypi/treq) and txrequests
(https://pypi.python.org/pypi/txrequests), whichever is installed, in order to access HTTP servers. This
class comes with a fake implementation helping to write unit tests.

• All HTTP reporters have been ported to HttpClientService

Fixes

Deprecations, Removals, and Non-Compatible Changes

• By default, non-distinct commits received via buildbot.status.web.hooks.github.GitHubEventHandler
now get recorded as a Change. In this way, a commit pushed to a branch that is not being watched (e.g.
a dev branch) will still get acted on when it is later pushed to a branch that is being watched (e.g. master).
In the past, such a commit would get ignored and not built because it was non-distinct. To disable this
behavior and revert to the old behavior, install a ChangeFilter that checks the github_distinct
property:

ChangeFilter(filter_fn=lambda c: c.properties.getProperty('github_distinct'))

• setup.py ‘scripts’ have been converted to console_scripts entry point. This makes them more portable and
compatible with wheel format. Most consequences are for the windows users:

– buildbot.bat does not exist anymore, and is replaced by buildbot.exe, which is generated
by the console_script entrypoint.

– buildbot_service.py is replaced by buildbot_windows_service.exe, which is gen-
erated by the console_script entrypoint As this script has been written in 2006, has only inline docu-
mentation and no unit tests, it is not guaranteed to be working. Please help improving the windows
situation.

• The user and password parameters of the HttpStatusPush reporter have been deprecated in favor
of the auth parameter.

• The template_name parameter of the MessageFormatter class has been deprecated in favor of
template_filename.

4.4. Older Versions 447

http://trac.buildbot.net/ticket/3582
http://trac.buildbot.net/ticket/3614
http://trac.buildbot.net/ticket/3629
https://pypi.python.org/pypi/treq
https://pypi.python.org/pypi/txrequests

Buildbot Documentation, Release 0.9.1

Worker

Fixes

Changes for Developers

Deprecations, Removals, and Non-Compatible Changes

• The worker now requires at least Twisted 10.2.0.

• setup.py ‘scripts’ have been converted to console_scripts entry point. This makes them more portable and
compatible with wheel format. Most consequences are for the windows users:

– buildbot_worker.bat does not exist anymore, and is replaced by buildbot_worker.exe,
which is generated by the console_script entrypoint.

– buildbot_service.py is replaced by buildbot_worker_windows_service.exe,
which is generated by the console_script entrypoint As this script has been written in 2006, has only
inline documentation and no unit tests, it is not guaranteed to be working. Please help improving the
windows situation.

• AbstractLatentWorker is now in buildbot.worker.latent instead of
buildbot.worker.base.

Details

For a more detailed description of the changes made in this version, see the git log itself:

git log v0.9.0..v0.9.1

4.4.2 Release Notes for Buildbot 0.9.0

The following are the release notes for Buildbot 0.9.0. This version was released on October 6, 2016.

This is a concatenation of important changes done between 0.8.12 and 0.9.0. This does not contain details of the
bug fixes related to the nine beta and rc period. This document was written during the very long period of nine
development. It might contain some incoherencies, please help us and report them on irc or trac.

See Upgrading to Nine for a guide to upgrading from 0.8.x to 0.9.x

Master

This version represents a refactoring of Buildbot into a consistent, well-defined application composed of loosely
coupled components. The components are linked by a common database backend and a messaging system. This
allows components to be distributed across multiple build masters. It also allows the rendering of complex web
status views to be performed in the browser, rather than on the buildmasters.

The branch looks forward to committing to long-term API compatibility, but does not reach that goal. The
Buildbot-0.9.x series of releases will give the new APIs time to “settle in” before we commit to them. Com-
mitment will wait for Buildbot-1.0.0 (as per http://semver.org). Once Buildbot reaches version 1.0.0, upgrades
will become much easier for users.

To encourage contributions from a wider field of developers, the web application is designed to look like a normal
AngularJS application. Developers familiar with AngularJS, but not with Python, should be able to start hacking
on the web application quickly. The web application is “pluggable”, so users who develop their own status displays
can package those separately from Buildbot itself.

Other goals:

448 Chapter 4. Release Notes for Buildbot |version|

http://semver.org

Buildbot Documentation, Release 0.9.1

• An approachable HTTP REST API, with real time event features used by the web application but available
for any other purpose.

• A high degree of coverage by reliable, easily-modified tests.

• “Interlocking” tests to guarantee compatibility. For example, the real and fake DB implementations must
both pass the same suite of tests. Then no unseen difference between the fake and real implementations can
mask errors that will occur in production.

Requirements

The buildbot package requires Python 2.7 – Python 2.5 and 2.6 are no longer supported. The
buildbot-slave package requires Python 2.6 or higher – Python 2.4 and 2.5 are no longer supported.

No additional software or systems, aside from some minor Python packages, are required.

But the devil is in the details:

• If you want to do web development, or build the buildbot-www package, you’ll need Node. It’s an
Angular app, and that’s how such apps are developed. We’ve taken pains to not make either a requirement
for users - you can simply ‘pip install’ buildbot-www and be on your way. This is the case even if you’re
hacking on the Python side of Buildbot.

• For a single master, nothing else is required.

Note for distro package maintainers: The npm dependency hell

In order to build the buildbot-www package, you’ll need Node.

Node has a very specific package manager named npm, which has the interesting property of allowing different
version of package to co-exist in the same environment. The node ecosystem also has the habit of creating
packages for a few line of code.

Buildbot UI uses the node ecosystem to build its javascript UI.

The buildsystem that we use is called guanlecoja (https://www.npmjs.com/package/guanlecoja), which is just an
integration of various javascript build tools.

Through npm dependency hell, guanlecoja is depending on 625 npm packages/versions. We do not advise you to
try and package all those npm build dependencies. They are not required in order to run buildbot.

We do release pre-built packages in the form of the wheel (http://pythonwheels.com/) format on pypi. Those
wheels contain the full python source code, and prebuilt javascript source code.

Depending on distro maintainers feedback, we could also release source tarballs with prebuilt javascript, but those
would be pypi packages with different names, e.g. buildbot_www_prebuilt.0.9.0.tar.gz.

Another option would be to package a guanlecoja (https://www.npmjs.com/package/guanlecoja) that would embed
all its dependencies inside one package.

Detailed requirements

see Requirements

Features

Buildbot-0.9.0 introduces the Data API, a consistent and scalable method for accessing and updating the state of
the Buildbot system. This API replaces the existing, ill-defined Status API, which has been removed. Buildbot-
0.9.0 introduces new WWW Server Interface using websocket for realtime updates. Buildbot code that interacted
with the Status API (a substantial portion!) has been rewritten to use the Data API. Individual features and
improvements to the Data API are not described on this page.

4.4. Older Versions 449

https://www.npmjs.com/package/guanlecoja
http://pythonwheels.com/
https://www.npmjs.com/package/guanlecoja

Buildbot Documentation, Release 0.9.1

• Buildbot now supports plugins. They allow Buildbot to be extended by using components distributed in-
dependently from the main code. They also provide for a unified way to access all components. When
previously the following construction was used:

from buildbot.kind.other.bits import ComponentClass

... ComponentClass ...

the following construction achieves the same result:

from buildbot.plugins import kind

... kind.ComponentClass ...

Kinds of components that are available this way are described in Plugin Infrastructure in Buildbot.

Note: While the components can be still directly imported as buildbot.kind.other.bits, this
might not be the case after Buildbot v1.0 is released.

• Both the P4 source step and P4 change source support ticket-based authentication.

• OpenStack latent slaves now support block devices as a bootable volume.

• Add new Cppcheck step.

• Add a new Docker latent Workers.

• Add a new configuration for creating custom services in out-of-tree CI systems or plugins. See
buildbot.util.service.BuildbotService

• Add try_ssh configuration file setting and --ssh command line option for the try tool to specify the
command to use for connecting to the build master.

• GitHub change hook now supports application/json format.

• Add support for dynamically adding steps during a build. See Dynamic Build Factories.

• GitPoller now supports detecting new branches

• Git supports an “origin” option to give a name to the remote repo.

• Mercurial hook was updated and modernized. It is no longer necessary to fork. One can now extend
PYTHONPATH via the hook configuration. Among others, it permits to use a buildbot virtualenv instead
of installing buildbot in all the system. Added documentation inside the hook. Misc. clean-up and reorga-
nization in order to make the code a bit more readable.

• UI templates can now be customizable. You can provide html or jade overrides to the www plugins, to
customize the UI

• The irc command hello now returns ‘Hello’ in a random language if invoked more than once.

• Triggerable now accepts a reason parameter.

• GerritStatusPush now accepts a builders parameter.

• StatusPush callback now receives build results (success/failure/etc) with the buildFinished event.

• There’s a new renderable type, Transform.

• GitPoller now has a buildPushesWithNoCommits option to allow the rebuild of already known
commits on new branches.

• Add GitLab authentication plugin for web UI. See buildbot.www.oauth2.GitLabAuth.

• CMake build step is added. It provides a convenience interface to CMake
(https://cmake.org/cmake/help/latest/) build system.

• MySQL InnoDB tables are now supported.

450 Chapter 4. Release Notes for Buildbot |version|

https://cmake.org/cmake/help/latest/

Buildbot Documentation, Release 0.9.1

• HttpStatusPush has been ported to reporter API.

• StashStatusPush has been ported to reporter API.

• GithubStatusPush has been ported to reporter API.

• summaryCB of GerritStatusPush now gets not only pre-processed information but the actual build as
well.

• EC2LatentWorker supports VPCs, instance profiles, and advanced volume mounts.

• New steps for Visual Studio 2015 (VS2015, VC14, and MsBuild14).

• The P4 step now obfuscates the password in status logs.

• Added support for specifying the depth of a shallow clone in Git.

• OpenStackLatentWorker now uses a single novaclient instance to not require re-authentication when
starting or stopping instances.

• Buildbot UI introduces branch new Authentication, and Authorizations framework.

Please look at their respective guide in WWW Server

• buildbot stop now waits for complete buildmaster stop by default.

• New --no-wait argument for buildbot stop which allows not to wait for complete master shut-
down.

• New LocalWorkerworker to run a worker in the master process, requires buildbot-worker package
installed.

• GerritStatusPush now includes build properties in the startCB and reviewCB functions.
startCB now must return a dictionary.

• add tool to send usage data to buildbot.net buildbotNetUsageData

• new GitHub which correctly checkout the magic branch like refs/pull/xx/merge.

• Enable parallel builds with Visual Studio and MSBuild.

Reporters

Status plugins have been moved into the reporters namespace. Their API has slightly to changed in order to
adapt to the new data API. See respective documentation for details.

• GerritStatusPush renamed to GerritStatusPush

• MailNotifier renamed to MailNotifier

• MailNotifier argument messageFormatter should now be a MessageFormatter, due to re-
moval of data api, custom message formaters need to be rewritten.

• MailNotifier argument previousBuildGetter is not supported anymore

• Gerrit supports specifying an SSH identity file explicitly.

• Added StashStatusPush status hook for Atlassian Stash

• MailNotifier no longer forces SSL 3.0 when useTls is true.

• GerritStatusPush callbacks slightly changed signature, and include a master reference instead of a
status reference.

• new GitLabStatusPush to report builds results to GitLab.

• new HipchatStatusPush to report build results to Hipchat.

4.4. Older Versions 451

Buildbot Documentation, Release 0.9.1

Fixes

• Buildbot is now compatible with SQLAlchemy 0.8 and higher, using the newly-released SQLAlchemy-
Migrate.

• The version check for SQLAlchemy-Migrate was fixed to accept more version string formats.

• The HTTPStep step’s requeset parameters are now renderable.

• With Git(), force the updating submodules to ensure local changes by the build are overwitten. This both
ensures more consistent builds and avoids errors when updating submodules.

• Buildbot is now compatible with Gerrit v2.6 and higher.

To make this happen, the return result of reviewCB and summaryCB callback has changed from

(message, verified, review)

to

{'message': message,
'labels': {'label-name': value,

...
}

}

The implications are:

– there are some differences in behaviour: only those labels that were provided will be updated

– Gerrit server must be able to provide a version, if it can’t the GerritStatusPush will not work

Note: If you have an old style reviewCB and/or summaryCB implemented, these will still work, however
there could be more labels updated than anticipated.

More detailed information is available in GerritStatusPush section.

• P4Source‘s server_tz parameter now works correctly.

• The revlink in changes broduced by the Bitbucket hook now correctly includes the changes/ portion
of the URL.

• PBChangeSource‘s git hook contrib/git_buildbot.py now supports git tags

A pushed git tag generates a change event with the branch property equal to the tag name. To schedule
builds based on buildbot tags, one could use something like this:

c['schedulers'].append(
SingleBranchScheduler(name='tags',

change_filter=filter.ChangeFilter(
branch_re='v[0-9]+\.[0-9]+\.[0-9]+(?:-pre|rc[0-9]+|p[0-9]+)?')

treeStableTimer=None,
builderNames=['tag_build']))

• Missing “name” and “email” properties received from Gerrit are now handled properly

• Fixed bug which made it impossible to specify the project when using the BitBucket dialect.

• The PyLint step has been updated to understand newer output.

• Fixed SVN master-side source step: if a SVN operation fails, the repository end up in a situation when a
manual intervention is required. Now if SVN reports such a situation during initial check, the checkout will
be clobbered.

• The build properties are now stored in the database in the build_properties table.

452 Chapter 4. Release Notes for Buildbot |version|

Buildbot Documentation, Release 0.9.1

• The list of changes in the build page now displays all the changes since the last sucessful build.

• GitHub change hook now correctly responds to ping events.

• GitHub change hook now correctly use the refs/pull/xx/merge branch for testing PRs.

• buildbot.steps.http steps now correctly have url parameter renderable

• When no arguments are used buildbot checkconfig now uses buildbot.tac to locate the master
config file.

• buildbot.util.flatten now correctly flattens arbitrarily nested lists. buildbot.util.flattened_iterator provides an
iterable over the collection which may be more efficient for extremely large lists.

• The PyFlakes and PyLint steps no longer parse output in Buildbot log headers (bug #3337
(http://trac.buildbot.net/ticket/3337)).

• GerritChangeSource is now less verbose by default, and has a debug option to enable the logs.

• P4Source no longer relies on the perforce server time to poll for new changes.

• The commit message for a change from P4Source now matches what the user typed in.

• Fix incompatibility with MySQL-5.7 (bug #3421 (http://trac.buildbot.net/ticket/3421))

• Fix incompatibility with postgresql driver psycopg2 (bug #3419 (http://trac.buildbot.net/ticket/3419), fur-
ther regressions will be catched by travis)

• Made Interpolate safe for deepcopy or serialization/deserialization

• sqlite access is serialized in order to improve stability (bug #3565 (http://trac.buildbot.net/ticket/3565))

Deprecations, Removals, and Non-Compatible Changes

• Seamless upgrading between buildbot 0.8.12 and buildbot 0.9.0 is not supported. Users should start from a
clean install but can reuse their config according to the Upgrading to Nine guide.

• BonsaiPoller is removed.

• buildbot.ec2buildslave is removed; use buildbot.buildslave.ec2 instead.

• buildbot.libvirtbuildslave is removed; use buildbot.buildslave.libvirt instead.

• buildbot.util.flatten falttens lists and tuples by default (previously only lists). Additionally, flattening some-
thing that isn’t the type to flatten has different behaviour. Previously, it would return the original value.
Instead, it now returns an array with the original value as the sole element.

• buildbot.tac does not support print statements anymore. Such files should now use print as a
function instead (see https://docs.python.org/3.0/whatsnew/3.0.html#print-is-a-function for more details).
Note that this applies to both python2.x and python3.x runtimes.

• Deprecated workdir property has been removed, builddir property should be used instead.

• To support MySQL InnoDB, the size of six VARCHAR(256) columns
changes.(author,branch,category,name); object_state.name;
user.identifier was reduced to VARCHAR(255).

• StatusPush has been removed from buildbot. Please use the much simpler HttpStatusPush in-
stead.

• Worker changes described in below worker section will probably impact a buildbot developer who uses
undocumented ‘slave‘ API. Undocumented APIs have been replaced without failover, so any custom code
that uses it shall be updated with new undocumented API.

• Web server does not provide /png and /redirect anymore (bug #3357 (http://trac.buildbot.net/ticket/3357)).
This functionality is used to implement build status images. This should be easy to implement if you need
it. One could port the old image generation code, or implement a redirection to http://shields.io/.

4.4. Older Versions 453

http://trac.buildbot.net/ticket/3337
http://trac.buildbot.net/ticket/3421
http://trac.buildbot.net/ticket/3419
http://trac.buildbot.net/ticket/3565
https://docs.python.org/3.0/whatsnew/3.0.html#print-is-a-function
http://trac.buildbot.net/ticket/3357
http://shields.io/

Buildbot Documentation, Release 0.9.1

• Support of worker-side usePTY was removed from buildbot-worker. usePTY argument was re-
moved from WorkerForBuilder and Worker classes.

• html is no longer permitted in ‘label’ attributes of forcescheduler parameters.

• public_html directory is not created anymore in buildbot create-master (it’s not used for some
time already). Documentation was updated with suggestions to use third party web server for serving static
file.

• usePTY default value has been changed from slave-config to None (use of slave-config will
still work).

WebStatus

The old, clunky WebStatus has been removed. You will like the new interface! RIP WebStatus, you were a good
friend.

remove it and replace it with www configuration.

Requirements

• Support for python 2.6 was dropped from the master.

• Buildbot’s tests now require at least Mock-0.8.0.

• SQLAlchemy-Migrate-0.6.1 is no longer supported.

• Builder names are now restricted to unicode strings or ASCII bytestrings. Encoded bytestrings are not
accepted.

Steps

• New-style steps are now the norm, and support for old-style steps is deprecated. Upgrade your steps to
new-style now, as support for old-style steps will be dropped after Buildbot-0.9.0. See New-Style Build
Steps for details.

– Status strings for old-style steps could be supplied through a wide variety of conflicting means
(describe, description, descriptionDone, descriptionSuffix, getText, and
setText, to name just a few). While all attempts have been made to maintain compatibility, you
may find that the status strings for old-style steps have changed in this version. To fix steps that call
setText, try setting the descriptionDone attribute directly, instead – or just rewrite the step in
the new style.

• Old-style source steps (imported directly from buildbot.steps.source) are no longer supported on
the master.

• The monotone source step got an overhaul and can now better manage its database (initialize and/or migrate
it, if needed). In the spirit of monotone, buildbot now always keeps the database around, as it’s an append-
only database.

Changes and Removals

• Buildslave names must now be 50-character identifier. Note that this disallows some common characters in
bulidslave names, including spaces, /, and ..

• Builders now have “tags” instead of a category. Builders can have multiple tags, allowing more flexible
builder displays.

• ForceScheduler has the following changes:

– The default configuration no longer contains four AnyPropertyParameter instances.

454 Chapter 4. Release Notes for Buildbot |version|

Buildbot Documentation, Release 0.9.1

– Configuring codebases is now mandatory, and the deprecated branch, repository, project,
revision are not supported anymore in ForceScheduler

– buildbot.schedulers.forcesched.BaseParameter.updateFromKwargs now
takes a collector parameter used to collect all validation errors

• Periodic, Nightly and NightlyTriggerable have the following changes:

– The Periodic and Nightly schedulers can now consume changes and use onlyIfChanged
and createAbsoluteTimestamps.

– All “timed” schedulers now handle codebases the same way. Configuring codebases is strongly
recommended. Using the branch parameter is discouraged.

• Logs are now stored as Unicode strings, and thus must be decoded properly from the bytestrings provided
by shell commands. By default this encoding is assumed to be UTF-8, but the logEncoding parameter
can be used to select an alternative. Steps and individual logfiles can also override the global default.

• The PB status service uses classes which have now been removed, and anyway is redundant to the REST
API, so it has been removed. It has taken the following with it:

– buildbot statuslog

– buildbot statusgui (the GTK client)

– buildbot debugclient

The PBListener status listener is now deprecated and does nothing. Accordingly, there is no external
access to status objects via Perspective Broker, aside from some compatibility code for the try scheduler.

The debugPassword configuration option is no longer needed and is thus deprecated.

• The undocumented and un-tested TinderboxMailNotifier, designed to send emails suitable for the
abandoned and insecure Tinderbox tool, has been removed.

• Buildslave info is no longer available via Interpolate and the SetSlaveInfo buildstep has been removed.

• The undocumented path parameter of the MasterShellCommand buildstep has been renamed
workdir for better consistency with the other steps.

• The name and source of a Property have to be unicode or ascii string.

• Property values must be serializable in JSON.

• IRC has the following changes:

– categories parameter is deprecated and removed. It should be replaced with tags=[cat]

– noticeOnChannel parameter is deprecated and removed.

• workdir behavior has been unified:

– workdir attribute of steps is now a property in BuildStep, and choose the workdir given following
priority:

* workdir of the step, if defined

* workdir of the builder (itself defaults to ‘build’)

* setDefaultWorkdir() has been deprecated, but is now behaving the same for all the steps: Setting
self.workdir if not already set

• Trigger now has a getSchedulersAndProperties method that can ve overriden to support dy-
namic triggering.

• `master.cfg is now parsed from a thread. Previously it was run in the main thread, and thus slowing
down the master in case of big config, or network access done to generate the config.

• SVNPoller‘s svnurl parameter has been changed to repourl.

• Providing Latent AWS EC2 credentails by the .ec2/aws_id file is deprecated: Use the standard
.aws/credentials file, instead.

4.4. Older Versions 455

Buildbot Documentation, Release 0.9.1

Changes for Developers

• Botmaster no longer service parent for workers. Service parent functionality has been transferred to Work-
erManager. It should be noted Botmaster no longer has a slaves field as it was moved to WorkerManager.

• The sourcestamp DB connector now returns a patchid field.

• Buildbot no longer polls the database for jobs. The db_poll_interval configuration parameter and
the db key of the same name are deprecated and will be ignored.

• The interface for adding changes has changed. The new method is
master.data.updates.addChange (implemented by addChange), although the old inter-
face (master.addChange) will remain in place for a few versions. The new method:

– returns a change ID, not a Change instance;

– takes its when_timestamp argument as epoch time (UNIX time), not a datetime instance; and

– does not accept the deprecated parameters who, isdir, is_dir, and when.

– requires that all strings be unicode, not bytestrings.

Please adjust any custom change sources accordingly.

• A new build status, CANCELLED, has been added. It is used when a step or build is deliberately cancelled
by a user.

• This upgrade will delete all rows from the buildrequest_claims table. If you are using this table
for analytical purposes outside of Buildbot, please back up its contents before the upgrade, and restore it
afterward, translating object IDs to scheduler IDs if necessary. This translation would be very slow and is
not required for most users, so it is not done automatically.

• All of the schedulers DB API methods now accept a schedulerid, rather than an objectid. If you have custom
code using these methods, check your code and make the necessary adjustments.

• The addBuildsetForSourceStamp method has become addBuildsetForSourceStamps,
and its signature has changed. The addBuildsetForSourceStampSetDetails
method has become addBuildsetForSourceStampsWithDefaults, and its signa-
ture has changed. The addBuildsetForSourceStampDetails method has been re-
moved. The addBuildsetForLatest method has been removed. It is equivalent to
addBuildsetForSourceStampDetails with sourcestamps=None. These methods are
not yet documented, and their interface is not stable. Consult the source code for details on the changes.

• The preStartConsumingChanges and startTimedSchedulerService hooks have been re-
moved.

• The triggerable schedulers trigger method now requires a list of sourcestamps, rather than a dictionary.

• The SourceStamp class is no longer used. It remains in the codebase to support loading data from pickles
on upgrade, but should not be used in running code.

• The BuildRequest class no longer has full source or sources attributes. Use the data API to get
this information (which is associated with the buildset, not the build request) instead.

• The undocumented BuilderControl method submitBuildRequest has been removed.

• The debug client no longer supports requesting builds (the requestBuild method has been removed).
If you have been using this method in production, consider instead creating a new change source, using the
ForceScheduler, or using one of the try schedulers.

• The buildbot.misc.SerializedInvocation class has been removed; use
buildbot.util.debounce.method instead.

• The progress attributes of both buildbot.process.buildstep.BuildStep
and buildbot.process.build.Build have been removed. Sub-
classes should only be accessing the progress-tracking mechanics via the
buildbot.process.buildstep.BuildStep.setProgress method.

456 Chapter 4. Release Notes for Buildbot |version|

Buildbot Documentation, Release 0.9.1

• The BuilderConfig nextSlave keyword argument takes a callable. This callable now receives
BuildRequest instance in its signature as 3rd parameter. For retro-compatibility, all callable taking
only 2 parameters will still work.

• properties object is now directly present in build, and not in build_status. This should not change much
unless you try to access your properties via step.build.build_status. Remember that with PropertiesMixin,
you can access properties via getProperties on the steps, and on the builds objects.

Slaves/Workers

Transition to “worker” terminology

Since version 0.9.0 of Buildbot “slave”-based terminology is deprecated in favor of “worker”-based terminology.

For details about public API changes see Transition to “worker” terminology, and Release Notes for Buildbot
0.9.0b8 release notes.

• The buildbot-slave package has been renamed to buildbot-worker.

• Buildbot now requires import to be sorted using isort (https://isort.readthedocs.io/en/stable/). Please run
make isort before creating a PR or use any available editor plugin in order to reorder your imports.

Requirements

• buildbot-worker requires Python 2.6

Features

• The Buildbot worker now includes the number of CPUs in the information it supplies to the master on con-
nection. This value is autodetected, but can be overridden with the --numcpus argument to buildslave
create-worker.

• The DockerLatentWorker image attribute is now renderable (can take properties in account).

• The DockerLatentWorker sets environment variables describing how to connect to the master. Exam-
ple dockerfiles can be found in master/contrib/docker.

• DockerLatentWorker now has a hostconfig parameter that can be used to setup host configuration
when creating a new container.

• DockerLatentWorker now has a networking_config parameter that can be used to setup con-
tainer networks.

• The DockerLatentWorker volumes attribute is now renderable.

Fixes

Changes for Developers

• EC2 Latent Worker upgraded from boto2 to boto3.

Deprecations, Removals, and Non-Compatible Changes

• buildmaster and worker no longer supports old-style source steps.

4.4. Older Versions 457

https://isort.readthedocs.io/en/stable/

Buildbot Documentation, Release 0.9.1

• On Windows, if a ShellCommand step in which command was specified as a list is executed, and a list
element is a string consisting of a single pipe character, it no longer creates a pipeline. Instead, the pipe
character is passed verbatim as an argument to the program, like any other string. This makes command
handling consistent between Windows and Unix-like systems. To have a pipeline, specify command as a
string.

• Support for python 2.6 was dropped from the master.

• public_html directory is not created anymore in buildbot create-master (it’s not used for some
time already). Documentation was updated with suggestions to use third party web server for serving static
file.

• usePTY default value has been changed from slave-config to None (use of slave-config will
still work).

• GithubStatusPush reporter was renamed to GitHubStatusPush.

• Worker commands version bumped to 3.0.

• Master/worker protocol has been changed:

– slave_commands key in worker information was renamed to worker_commands.

– getSlaveInfo remote method was renamed to getWorkerInfo.

– slave-config value of usePTY is not supported anymore.

– slavesrc command argument was renamed to workersrc in uploadFile and
uploadDirectory commands.

– slavedest command argument was renamed to workerdest in downloadFile command.

– Previously deprecated WorkerForBuilder.remote_shutdown() remote command has been
removed.

Details

For a more detailed description of the changes made in this version, see the git log itself:

git log v0.8.12..v0.9.0

4.4.3 Release Notes for Buildbot 0.9.0rc4

The following are the release notes for Buildbot 0.9.0rc4. This version was released on September 28, 2016.

See Upgrading to Nine for a guide to upgrading from 0.8.x to 0.9.x

Master

Fixes

• Fix the UI to better adapt to different screen width (bug #3614 (http://trac.buildbot.net/ticket/3614))

• Add more REST api documentation (document /raw endpoints, and POST actions)

Details

For a more detailed description of the changes made in this version, see the git log itself:

git log v0.9.0rc3..v0.9.0rc4

458 Chapter 4. Release Notes for Buildbot |version|

http://trac.buildbot.net/ticket/3614

Buildbot Documentation, Release 0.9.1

4.4.4 Release Notes for Buildbot 0.9.0rc3

The following are the release notes for Buildbot 0.9.0rc3. This version was released on September 14, 2016.

See Upgrading to Nine for a guide to upgrading from 0.8.x to 0.9.x

Master

Features

• add tool to send usage data to buildbot.net buildbotNetUsageData

Fixes

• Publish python module buildbot.buildslave in the dist files

• Upgrade to guanlecoja 0.7 (for compatibility with node6)

• Fix invocation of trial on windows, with twisted 16+

• Fix rare issue which makes buildbot throw a exception when there is a sourcestamp with no change for a
particular codebase.

Details

For a more detailed description of the changes made in this version, see the git log itself:

git log v0.9.0rc2..v0.9.0rc3

4.4.5 Release Notes for Buildbot 0.9.0rc2

The following are the release notes for Buildbot 0.9.0rc2. This version was released on August 23, 2016.

See Upgrading to Nine for a guide to upgrading from 0.8.x to 0.9.x

Master

Features

• add a UI button to allow to cancel the whole queue for a builder

Fixes

• fix the UI to allow to cancel a buildrequest (bug #3582 (http://trac.buildbot.net/ticket/3582))

• Fix BitbucketPullrequestPoller change detection

• Fix customization for template_type in email reporter

• fix DockerLatent integration of volumes mounting

• misc doc fixes

• fix buildbot not booting when builder tags contains duplicates

• forcesched: fix owner parameter when no authentication is used

• REST: fix problem with twisted 16 error reporting

4.4. Older Versions 459

http://trac.buildbot.net/ticket/3582

Buildbot Documentation, Release 0.9.1

• CORS: format errors according to API type

• Dockerfiles fix and upgrade Ubuntu to 16.04

• Fixes #3430 Increased size of builder identifier from 20 to 50 (brings it in line to size of steps and workers
in same module).

• Fix missing VS2015 entry_points

• removed the restriction on twisted < 16.3.0 now that autobahn 0.16.0 fixed the issue

Changes for Developers

Features

Fixes

Deprecations, Removals, and Non-Compatible Changes

• remove repo from worker code (obsoleted by repo master source step)

Worker

Fixes

Changes for Developers

Deprecations, Removals, and Non-Compatible Changes

Details

For a more detailed description of the changes made in this version, see the git log itself:

git log v0.9.0rc1..v0.9.0rc2

4.4.6 Release Notes for Buildbot 0.9.0rc1

The following are the release notes for Buildbot 0.9.0rc1.

See Upgrading to Nine for a guide to upgrading from 0.8.x to 0.9.x

Master

Features

• new HipchatStatusPush to report build results to Hipchat.

• new steps for Visual Studio 2015 (VS2015, VC14, and MsBuild14).

• The P4 step now obfuscates the password in status logs.

• Added support for specifying the depth of a shallow clone in Git.

• OpenStackLatentWorker now uses a single novaclient instance to not require re-authentication when
starting or stopping instances.

• The dist parameter in RpmBuild is now renderable.

460 Chapter 4. Release Notes for Buildbot |version|

Buildbot Documentation, Release 0.9.1

• new BitbucketStatusPush to report build results to a Bitbucket Cloud repository.

Fixes

• GerritStatusPush now includes build properties in the startCB and reviewCB functions.
startCB now must return a dictionary.

• Fix TypeError exception with HgPoller if usetimestamps=False is used (bug #3562
(http://trac.buildbot.net/ticket/3562))

• Fix recovery upon master unclean kill or crash (bug #3564 (http://trac.buildbot.net/ticket/3564))

• sqlite access is serialized in order to improve stability (bug #3565 (http://trac.buildbot.net/ticket/3565))

• Docker latent worker has been fixed (bug #3571 (http://trac.buildbot.net/ticket/3571))

Changes for Developers

Features

Fixes

Deprecations, Removals, and Non-Compatible Changes

• Support for python 2.6 was dropped from the master.

• public_html directory is not created anymore in buildbot create-master (it’s not used for some
time already). Documentation was updated with suggestions to use third party web server for serving static
file.

• usePTY default value has been changed from slave-config to None (use of slave-config will
still work).

• GithubStatusPush reporter was renamed to GitHubStatusPush.

Worker

Deprecations, Removals, and Non-Compatible Changes

• The buildbot-slave package has finished being renamed to buildbot-worker.

Worker

Fixes

• runGlob() uses the correct remote protocol for both CommandMixin and
ComposititeStepMixin.

• Rename glob() to runGlob() in CommandMixin

Changes for Developers

• EC2 Latent Worker upgraded from boto2 to boto3.

4.4. Older Versions 461

http://trac.buildbot.net/ticket/3562
http://trac.buildbot.net/ticket/3564
http://trac.buildbot.net/ticket/3565
http://trac.buildbot.net/ticket/3571

Buildbot Documentation, Release 0.9.1

Deprecations, Removals, and Non-Compatible Changes

• Worker commands version bumped to 3.0.

• Master/worker protocol has been changed:

– slave_commands key in worker information was renamed to worker_commands.

– getSlaveInfo remote method was renamed to getWorkerInfo.

– slave-config value of usePTY is not supported anymore.

– slavesrc command argument was renamed to workersrc in uploadFile and
uploadDirectory commands.

– slavedest command argument was renamed to workerdest in downloadFile command.

– Previously deprecated WorkerForBuilder.remote_shutdown() remote command has been
removed.

Details

For a more detailed description of the changes made in this version, see the git log itself:

git log v0.9.0b9..v0.9.0rc1

Note that Buildbot-0.8.11 was never released.

4.4.7 Release Notes for Buildbot 0.9.0b9

The following are the release notes for Buildbot 0.9.0b9 This version was released on May 10, 2016.

See Upgrading to Nine for a guide to upgrading from 0.8.x to 0.9.x

Master

Features

• new GitLabStatusPush to report builds results to GitLab.

• buildbot stop now waits for complete buildmaster stop by default.

• New --no-wait argument for buildbot stop which allows not to wait for complete master shut-
down.

• Builder page is now sorted by builder name

• LogViewer page now supports ANSI color codes, and is displayed white on black.

Changes for Developers

• Speed improvements for integration tests by use of SynchronousTestCase, and in-memory sqlite.

• Buildbot now requires import to be sorted using isort (https://isort.readthedocs.io/en/stable/). Please run
make isort before creating a PR or use any available editor plugin in order to reorder your imports.

462 Chapter 4. Release Notes for Buildbot |version|

https://isort.readthedocs.io/en/stable/

Buildbot Documentation, Release 0.9.1

Fixes

• OpenStackLatentWorker uses the novaclient API correctly now.

• The MsBuild4 and MsBuild12 steps work again (bug #2878 (http://trac.buildbot.net/ticket/2878)).

• Scheduler changes are now identified by serviceid instead of objectid (bug #3532
(http://trac.buildbot.net/ticket/3532))

• Make groups optional in LdapUserInfo (bug #3511 (http://trac.buildbot.net/ticket/3511))

• Buildbot nine do not write pickles anymore in the master directory

• Fix build page to not display build urls, but rather directly the build-summary, which already contain the
URL.

• UI Automatically reconnect on disconnection from the websocket. (bug #3462
(http://trac.buildbot.net/ticket/3462))

Deprecations, Removals, and Non-Compatible Changes

• The buildmaster now requires at least Twisted-14.0.1.

• The web ui has upgrade its web components dependencies to latest versions
(https://github.com/buildbot/guanlecoja-ui/tree/master#changelog). This can impact web-ui plugin.

• Web server does not provide /png and /redirect anymore (bug #3357 (http://trac.buildbot.net/ticket/3357)).
This functionality is used to implement build status images. This should be easy to implement if you need
it. One could port the old image generation code, or implement a redirection to http://shields.io/.

• Support of worker-side usePTY was removed from buildbot-worker. usePTY argument was re-
moved from WorkerForBuilder and Worker classes.

• html is no longer permitted in ‘label’ attributes of forcescheduler parameters.

• LocalWorker now requires buildbot-worker package, instead of buildbot-slave.

• Collapse Request Functions now takes master as first argument. The previous callable contained too few
data in order to be really usable. As collapseRequests has never been released outside of beta, backward
compatibility with previous release has not been implemented.

• This is the last version of buildbot nine which supports python 2.6 for the master. Next version will drop
python 2.6 support.

Worker

Fixes

• buildbot-worker script now outputs message to terminal.

• Windows helper script now called buildbot-worker.bat (was buildbot_worker.bat, notice
underscore), so that buildbot-worker command can be used in virtualenv both on Windows and
POSIX systems.

Changes for Developers

• SLAVEPASS environment variable is not removed in default-generated buildbot.tac. Environment
variables are cleared in places where they are used (e.g. in Docker Latent Worker contrib scripts).

• Master-part handling has been removed from buildbot-worker log watcher (bug #3482
(http://trac.buildbot.net/ticket/3482)).

• WorkerDetectedError exception type has been removed.

4.4. Older Versions 463

http://trac.buildbot.net/ticket/2878
http://trac.buildbot.net/ticket/3532
http://trac.buildbot.net/ticket/3511
http://trac.buildbot.net/ticket/3462
https://github.com/buildbot/guanlecoja-ui/tree/master#changelog
http://trac.buildbot.net/ticket/3357
http://shields.io/
http://trac.buildbot.net/ticket/3482

Buildbot Documentation, Release 0.9.1

Details

For a more detailed description of the changes made in this version, see the git log itself:

git log v0.9.0b8..v0.9.0b9

4.4.8 Release Notes for Buildbot 0.9.0b8

The following are the release notes for Buildbot 0.9.0b8 This version was released on April 11, 2016.

See Upgrading to Nine for a guide to upgrading from 0.8.x to 0.9.x

Master

Features

• GitPoller now has a buildPushesWithNoCommits option to allow the rebuild of already known
commits on new branches.

• Add GitLab authentication plugin for web UI. See buildbot.www.oauth2.GitLabAuth.

• DockerLatentWorker now has a hostconfig parameter that can be used to setup host configuration
when creating a new container.

• DockerLatentWorker now has a networking_config parameter that can be used to setup con-
tainer networks.

• The DockerLatentWorker volumes attribute is now renderable.

• CMake build step is added. It provides a convenience interface to CMake
(https://cmake.org/cmake/help/latest/) build system.

• MySQL InnoDB tables are now supported.

• HttpStatusPush has been ported to reporter API.

• StashStatusPush has been ported to reporter API.

• GithubStatusPush has been ported to reporter API.

• summaryCB of GerritStatusPush now gets not only pre-processed information but the actual build as
well.

• EC2LatentWorker supports VPCs, instance profiles, and advanced volume mounts.

Fixes

• Fix loading LdapUserInfo plugin and its documentation (bug #3371
(http://trac.buildbot.net/ticket/3371)).

• Fix deprecation warnings seen with docker-py >= 1.4 when passing arguments to
docker_client.start().

• GitHubEventHandler now uses the ['repository']['html_url'] key in the webhook pay-
load to populate repository, as the previously used ['url'] and ['clone_url'] keys had a dif-
ferent format between push and pull requests and GitHub and GitHub Enterprise instances.

• Fix race condition where log compression could lead to empty log results in reporter api

• Error while applying db upgrade is now properly reported in the buildbot upgrade-master command line.

• Made Interpolate safe for deepcopy or serialization/deserialization

• Optimized UI REST requests for child builds and change page.

464 Chapter 4. Release Notes for Buildbot |version|

https://cmake.org/cmake/help/latest/
http://trac.buildbot.net/ticket/3371

Buildbot Documentation, Release 0.9.1

• Fix DockerLatentWorker use of volume parameter, they now propely manage src:dest syntax.

• Fix DockerLatentWorker to properly create properties so that docker parameters can be renderable.

• Lock down autobahn version for python 2.6 (note that autobahn and twisted are no longer supporting 2.6,
and thus do not receive security fixes anymore).

• Fix docs and example to always use port 8020 for the web ui.

Deprecations, Removals, and Non-Compatible Changes

• Deprecated workdir property has been removed, builddir property should be used instead.

• To support MySQL InnoDB, the size of six VARCHAR(256) columns
changes.(author,branch,category,name); object_state.name;
user.identifier was reduced to VARCHAR(255).

• StatusPush has been removed from buildbot. Please use the much simpler HttpStatusPush in-
stead.

Changes for Developers

Worker changes described in below worker section will probably impact a buildbot developer who uses undoc-
umented ‘slave‘ API. Undocumented APIs have been replaced without failover, so any custom code that uses it
shall be updated with new undocumented API.

Worker

Package buildbot-slave is being renamed buildbot-worker. As the work is not completly finished, neither buildbot-
slave==0.9.0b8 or buildbot-worker==0.9.0b8 have been released.

You can safely use any version of buildbot-slave with buildbot==0.9.0b8, either buildbot-slave==0.8.12 or
buildbot-slave==0.9.0b7.

Transition to “worker” terminology

Since version 0.9.0 of Buildbot “slave”-based terminology is deprecated in favor of “worker”-based terminology.

For details about public API changes see Transition to “worker” terminology.

API changes done without providing fallback:

Old name New name
buildbot.buildslave.manager buildbot.worker.manager
buildbot.buildslave.manager.BuildslaveRegistration buildbot.worker.manager.WorkerRegistration
buildbot.buildslave.manager.BuildslaveRegistration.buildslave buildbot.worker.manager.WorkerRegistration.worker
buildbot.buildslave.manager.BuildslaveManager buildbot.worker.manager.WorkerManager
buildbot.buildslave.manager.BuildslaveManager.slaves buildbot.worker.manager.WorkerManager.workers
buildbot.buildslave.manager.BuildslaveManager.getBuildslaveByName buildbot.worker.manager.WorkerManager.getWorkerByName
buildbot.buildslave.docker.DockerLatentBuildSlave buildbot.worker.docker.DockerLatentWorker
buildbot.buildslave.local.LocalBuildSlave buildbot.worker.local.LocalWorker
buildbot.buildslave.local.LocalBuildSlave.LocalBuildSlaveFactory buildbot.worker.local.LocalWorker.LocalWorkerFactory
buildbot.buildslave.local.LocalBuildSlave.remote_slave buildbot.worker.local.LocalWorker.remote_worker
buildbot.buildslave.base module with all contents buildbot.worker.base
buildbot.buildslave.AbstractBuildSlave.updateSlave buildbot.worker.AbstractWorker.updateWorker
buildbot.buildslave.AbstractBuildSlave.slavebuilders buildbot.worker.AbstractWorker.workerforbuilders
buildbot.buildslave.AbstractBuildSlave.updateSlaveStatus buildbot.worker.AbstractWorker.updateWorkerStatus

Continued on next page

4.4. Older Versions 465

Buildbot Documentation, Release 0.9.1

Table 4.1 – continued from previous page
Old name New name
buildbot.buildslave.AbstractLatentBuildSlave.updateSlave buildbot.worker.AbstractLatentWorker.updateWorker
buildbot.buildslave.BuildSlave.slave_status buildbot.worker.Worker.worker_status
buildbot.config.MasterConfig.load_slaves load_workers
buildbot.master.BuildMaster.buildslaves buildbot.master.BuildMaster.workers
buildbot.process.build.Build.slavebuilder workerforbuilder
buildbot.process.build.Build.setSlaveEnvironment setWorkerEnvironment
buildbot.process.build.Build.slaveEnvironment workerEnvironment
buildbot.process.build.Build.getSlaveCommandVersion getWorkerCommandVersion
buildbot.process.build.Build.setupSlaveBuilder setupWorkerForBuilder
buildbot.process.builder.Build.canStartWithSlavebuilder canStartWithWorkerForBuilder
buildbot.process.slavebuilder.AbstractSlaveBuilder.getSlaveCommandVersion buildbot.process.workerforbuilder.AbstractWorkerForBuilder.getWorkerCommandVersion
buildbot.process.slavebuilder.AbstractSlaveBuilder.attached method argument slave was renamed worker
buildbot.buildslave.AbstractBuildSlave.slave_commands buildbot.worker.AbstractWorker.worker_commands
buildbot.buildslave.AbstractBuildSlave.slave_environ buildbot.worker.AbstractWorker.worker_environ
buildbot.buildslave.AbstractBuildSlave.slave_basedir buildbot.worker.AbstractWorker.worker_basedir
buildbot.buildslave.AbstractBuildSlave.slave_system buildbot.worker.AbstractWorker.worker_system
buildbot.buildslave.AbstractBuildSlave.buildslaveid buildbot.worker.AbstractWorker.workerid
buildbot.buildslave.AbstractBuildSlave.addSlaveBuilder buildbot.worker.AbstractWorker.addWorkerForBuilder
buildbot.buildslave.AbstractBuildSlave.removeSlaveBuilder buildbot.worker.AbstractWorker.removeWorkerForBuilder
buildbot.buildslave.AbstractBuildSlave.messageReceivedFromSlave buildbot.worker.AbstractWorker.messageReceivedFromWorker
buildbot.process.slavebuilder.LatentSlaveBuilder constructor positional argument slave was renamed worker
buildbot.process.buildrequestdistributor.BasicBuildChooser.nextSlave nextWorker
buildbot.process.buildrequestdistributor.BasicBuildChooser.slavepool workerpool
buildbot.process.buildrequestdistributor.BasicBuildChooser.preferredSlaves preferredWorkers
buildbot.process.buildrequestdistributor.BasicBuildChooser.rejectedSlaves rejectedSlaves
buildbot.steps.shell.ShellCommand.slaveEnvironment (Note: this variable is renderable) buildbot.steps.shell.ShellCommand.workerEnvironment
buildbot.status.slave buildbot.status.worker
buildbot.status.slave.SlaveStatus buildbot.status.worker.WorkerStatus
buildbot.interfaces.IStatusReceiver.slaveConnected with all implementations buildbot.interfaces.IStatusReceiver.workerConnected
buildbot.interfaces.IStatusReceiver.slaveDisconnected with all implementations buildbot.interfaces.IStatusReceiver.workerDisconnected
buildbot.status.master.Status.slaveConnected buildbot.status.master.Status.workerConnected
buildbot.status.master.Status.slaveDisconnected buildbot.status.master.Status.workerDisconnected
buildbot.status.master.Status.slavePaused buildbot.status.master.Status.workerPaused
buildbot.status.master.Status.slaveUnpaused buildbot.status.master.Status.workerUnpaused
buildbot.status.master.Status.buildslaves buildbot.status.master.Status.workers
buildbot.status.base.StatusReceiverBase.slavePaused buildbot.status.base.StatusReceiverBase.workerPaused
buildbot.status.base.StatusReceiverBase.slaveUnpaused buildbot.status.base.StatusReceiverBase.workerUnpaused
buildbot.interfaces.IStatus.getSlaveNames with all implementations buildbot.interfaces.IStatus.getWorkerNames
buildbot.interfaces.IStatus.getSlave with all implementations buildbot.interfaces.IStatus.getWorker
buildbot.interfaces.IBuildStatus.getSlavename with all implementations buildbot.interfaces.IBuildStatus.getWorkername
buildbot.status.build.BuildStatus.setSlavename buildbot.status.build.BuildStatus.setWorkername
buildbot.status.build.BuildStatus.slavename buildbot.status.build.BuildStatus.workername (also it was moved from class static attribute to instance attribute)
buildbot.interfaces.IBuilderStatus.getSlaves with all implementations buildbot.interfaces.IBuilderStatus.getWorkers
buildbot.status.builder.BuilderStatus.slavenames buildbot.status.builder.BuilderStatus.workernames
buildbot.status.builder.BuilderStatus.setSlavenames buildbot.status.builder.BuilderStatus.setWorkernames
buildbot.process.botmaster.BotMaster.slaveLost buildbot.process.botmaster.BotMaster.workerLost
buildbot.process.botmaster.BotMaster.getBuildersForSlave buildbot.process.botmaster.BotMaster.getBuildersForWorker
buildbot.process.botmaster.BotMaster.maybeStartBuildsForSlave buildbot.process.botmaster.BotMaster.maybeStartBuildsForWorker
buildbot.locks.RealSlaveLock buildbot.locks.RealWorkerLock
buildbot.locks.RealSlaveLock.maxCountForSlave buildbot.locks.RealWorkerLock.maxCountForWorker
buildbot.protocols.base.Connection constructor positional argument buildslave was renamed worker
buildbot.protocols.base.Connection.buidslave buildbot.protocols.base.Connection.worker
buildbot.protocols.base.Connection.remoteGetSlaveInfo buildbot.protocols.base.Connection.remoteGetWorkerInfo

Continued on next page

466 Chapter 4. Release Notes for Buildbot |version|

Buildbot Documentation, Release 0.9.1

Table 4.1 – continued from previous page
Old name New name
buildbot.protocols.pb.Connection constructor positional argument buildslave was renamed worker

Other changes done without providing fallback:

• Functions argument buildslaveName renamed to workerName.

• Loop variables, local variables, helper functions:

Old name New name
s w or worker
sl w or worker
bs (“buildslave”) w
sb wfb (“worker for builder”)
bs1(), bs2() w1(), w2()
bslave worker
BS1_NAME, BS1_ID, BS1_INFO W1_NAME, W1_ID, W1_INFO

• In buildbot.config.BuilderConfig.getConfigDict result 'slavenames' key changed to
'workernames'; 'slavebuilddir' key changed to 'workerbuilddir'; 'nextSlave' key
changed to 'nextWorker'.

• buildbot.process.builder.BuilderControl.ping now generates ["ping","no
worker"] event, instead of ["ping","no slave"].

• buildbot.plugins.util.WorkerChoiceParameter (previously
BuildslaveChoiceParameter) label was changed from Build slave to Worker.

• buildbot.plugins.util.WorkerChoiceParameter (previously
BuildslaveChoiceParameter) default name was changed from slavename to workername.

• buildbot.status.builder.SlaveStatus fallback was removed. SlaveStatus
was moved to buildbot.status.builder.slave previously, and now it’s
buildbot.status.worker.WorkerStatus.

• buildbot.status.status_push.StatusPush events generation changed (this module will be
completely removed in 0.9.x):

– instead of slaveConnected with data slave=... now generated workerConnected event
with data worker=...;

– instead of slaveDisconnected with data slavename=... now generated
workerDisconnected with data workername=...;

– instead of slavePaused with data slavename=... now generated workerPaused event with
data workername=...;

– instead of slaveUnpaused with data slavename=... now generated workerUnpaused
event with data workername=...;

• buildbot.status.build.BuildStatus.asDict returns worker name under 'worker' key,
instead of 'slave' key.

• buildbot.status.builder.BuilderStatus.asDict returns worker names under
'workers' key, instead of 'slaves' key.

• Definitely privately used “slave”-named variables and attributes were renamed, including tests modules,
classes and methods.

Database

Database API changes done without providing fallback.

4.4. Older Versions 467

Buildbot Documentation, Release 0.9.1

Old name New name
buildbot.db.buildslaves.BuildslavesConnectorComponent.getBuildslaves
(rewritten in nine) and
buildbot.db.buildslaves.BuildslavesConnectorComponent.getBuildslave
(introduced in nine) results uses instead of 'slaveinfo' key

'workerinfo' key

buildbot.db.model.Model.buildslaves buildbot.db.model.Model.workers
buildbot.db.model.Model.configured_buildslavesbuildbot.db.model.Model.configured_workers
buildbot.db.model.Model.connected_buildslavesbuildbot.db.model.Model.connected_workers
buildbot.db.buildslaves.BuildslavesConnectorComponent.findBuildslaveId
(introduced in nine)

buildbot.db.workers.WorkersConnectorComponent.findWorkerId

buildbot.db.buildslaves.BuildslavesConnectorComponent.deconfigureAllBuidslavesForMaster
(introduced in nine, note typo Buidslaves)

buildbot.db.workers.WorkersConnectorComponent.deconfigureAllWorkersForMaster

buildbot.db.buildslaves.BuildslavesConnectorComponent.buildslaveConfigured
(introduced in nine)

buildbot.db.workers.WorkersConnectorComponent.workerConfigured

buildbot.db.buildslaves.BuildslavesConnectorComponent.buildslaveConfigured
method argument buildslaveid was renamed (introduced
in nine)

workerid

buildbot.db.buildslaves.BuildslavesConnectorComponent.getBuildslavebuildbot.db.workers.WorkersConnectorComponent.getWorker
buildbot.db.buildslaves.BuildslavesConnectorComponent.getBuildslaves
method argument _buildslaveid was renamed (introduced
in nine)

_workerid

buildbot.db.buildslaves.BuildslavesConnectorComponent.buildslaveConnected
(introduced in nine)

buildbot.db.workers.WorkersConnectorComponent.workerConnected

buildbot.db.buildslaves.BuildslavesConnectorComponent.buildslaveConnected
method argument slaveinfo was renamed (introduced in
nine)

workerinfo

buildbot.db.buildslaves.BuildslavesConnectorComponent.buildslaveConnected
method argument buildslaveid was renamed (introduced
in nine)

workerid

buildbot.db.buildslaves.BuildslavesConnectorComponent.buildslaveDisconnected
(introduced in nine)

buildbot.db.workers.WorkersConnectorComponent.workerDisconnected

buildbot.db.buildslaves.BuildslavesConnectorComponent.buildslaveDisconnected
method argument buildslaveid was renamed (introduced
in nine)

workerid

buildbot.db.builds.BuildsConnectorComponent.getBuilds
method argument buildslaveid was renamed (introduced
in nine)

workerid

buildbot.db.builds.BuildsConnectorComponent.addBuild
method argument buildslaveid was renamed (introduced
in nine)

workerid

buildbot.reporters.message.MessageFormatter
template variable slavename

workername

Data API

Python API changes:

468 Chapter 4. Release Notes for Buildbot |version|

Buildbot Documentation, Release 0.9.1

Old name New name
buildbot.data.buildslaves workers
buildbot.data.buildslaves.BuildslaveEndpoint WorkerEndpoint
buildbot.data.buildslaves.BuildslavesEndpoint WorkersEndpoint
buildbot.data.buildslaves.Buildslave Worker
buildbot.data.buildslaves.Buildslave.buildslaveConfiguredworkerConfigured
buildbot.data.buildslaves.Buildslave.findBuildslaveIdfindWorkerId
buildbot.data.buildslaves.Buildslave.buildslaveConnectedworkerConnected
buildbot.data.buildslaves.Buildslave.buildslaveDisconnectedworkerDisconnected
buildbot.data.buildslaves.Buildslave.deconfigureAllBuidslavesForMasterdeconfigureAllWorkersForMaster
buildslaveid in function arguments and API specification workerid
slaveinfo in function arguments and API specification workerinfo

Changed REST endpoints:

Old name New name
/buildslaves /workers
/buildslaves/n:buildslaveid /workers/n:workerid
/buildslaves/n:buildslaveid/builds /workers/n:workerid/builds
/buildslaves/:buildslaveid/builds/:buildid/workers/:workerid/builds/:buildid
/masters/n:masterid/buildslaves /masters/n:masterid/workers
/masters/n:masterid/buildslaves/n:buildslaveid/masters/n:masterid/workers/n:workerid
/masters/n:masterid/builders/n:builderid/buildslaves/masters/n:masterid/builders/n:builderid/workers
/masters/n:masterid/builders/n:builderid/buildslaves/n:buildslaveid/masters/n:masterid/builders/n:builderid/workers/n:workerid
/builders/n:builderid/buildslaves /builders/n:builderid/workers
/builders/n:builderid/buildslaves/n:buildslaveid/builders/n:builderid/workers/n:workerid

Changed REST object keys:

Old name New name
buildslaveid workerid
slaveinfo workerinfo
buildslave worker
buildslaves workers

data_module version bumped from 1.2.0 to 2.0.0.

Web UI

In base web UI (www/base) and Material Design web UI (www/md_base) all “slave”-named messages and
identifiers were renamed to use “worker” names and new REST API endpoints.

MQ layer

buildslaveid key in messages were replaced with workerid.

Details

For a more detailed description of the changes made in this version, see the git log itself:

git log v0.9.0b7..v0.9.0b8

4.4.9 Release Notes for Buildbot 0.9.0b7

The following are the release notes for Buildbot 0.9.0b7 This version was released on February 14, 2016.

See Upgrading to Nine for a guide to upgrading from 0.8.x to 0.9.x

4.4. Older Versions 469

Buildbot Documentation, Release 0.9.1

Master

Features

Fixes

• Fix incompatibility with MySQL-5.7 (bug #3421 (http://trac.buildbot.net/ticket/3421))

• Fix incompatibility with postgresql driver psycopg2 (bug #3419 (http://trac.buildbot.net/ticket/3419), fur-
ther regressions will be catched by travis)

• Fix regressions in forcescheduler UI (bug #3416 (http://trac.buildbot.net/ticket/3416), bug #3418
(http://trac.buildbot.net/ticket/3418), bug #3422 (http://trac.buildbot.net/ticket/3422))

Deprecations, Removals, and Non-Compatible Changes

• The buildbot Python dist now (finally) requires SQLAlchemy-0.8.0 or later and SQLAlchemy-Migrate-
0.9.0 or later. While the old pinned versions (0.7.10 and 0.7.2, respectively) still work, this compatibility is
no longer tested and this configuration should be considered deprecated.

Changes for Developers

Slave

Features

Fixes

Deprecations, Removals, and Non-Compatible Changes

Details

For a more detailed description of the changes made in this version, see the git log itself:

git log v0.9.0b6..v0.9.0b7

4.4.10 Release Notes for Buildbot 0.9.0b6

The following are the release notes for Buildbot 0.9.0b6 This version was released on January 20, 2016.

See Upgrading to Nine for a guide to upgrading from 0.8.x to 0.9.x

Master

Features

• Builders ui page has improved tag filtering capabilities

• Home page enhanced with the list of recent builds sorted by builder

• IRC reporter has been partially ported to work on data api.

470 Chapter 4. Release Notes for Buildbot |version|

http://trac.buildbot.net/ticket/3421
http://trac.buildbot.net/ticket/3419
http://trac.buildbot.net/ticket/3416
http://trac.buildbot.net/ticket/3418
http://trac.buildbot.net/ticket/3422

Buildbot Documentation, Release 0.9.1

Fixes

• better stability and reliability in the UI thanks to switch to buildbot data-module

• fix irc

Changes for Developers

• properties object is now directly present in build, and not in build_status. This should not change much
unless you try to access your properties via step.build.build_status. Remember that with PropertiesMixin,
you can access properties via getProperties on the steps, and on the builds objects.

• Javascript Data Module is now integrated, which sets a definitive API for accessing buildbot data in angu-
larJS UI.

Slave

Features

• The DockerLatentBuildSlave image attribute is now renderable (can take properties in account).

• The DockerLatentBuildSlave sets environment variables describing how to connect to the master.
Example dockerfiles can be found in master/contrib/docker.

Details

For a more detailed description of the changes made in this version, see the git log itself:

git log v0.9.0b5..v0.9.0b6

4.4.11 Release Notes for Buildbot 0.9.0b5

The following are the release notes for Buildbot 0.9.0b5. This version was released on October 21, 2015.

See Upgrading to Nine for a guide to upgrading from 0.8.x to 0.9.x

Master

This version addresses http://trac.buildbot.net/wiki/SecurityAlert090b4 by preventing dissemination of hook in-
formation via the web UI.

This also reverts the addition of the frontend data service in 0.9.0b4, as that contained many bugs. It will be
re-landed in a subsequent release.

Slave

No changes.

For a more detailed description of the changes made in this version, see the git log itself:

git log v0.9.0b4..0.9.0b5

4.4. Older Versions 471

http://trac.buildbot.net/wiki/SecurityAlert090b4

Buildbot Documentation, Release 0.9.1

4.4.12 Release Notes for Buildbot 0.9.0b4

The following are the release notes for Buildbot 0.9.0b4 This version was released on October 20, 2015.

See Upgrading to Nine for a guide to upgrading from 0.8.x to 0.9.x

Master

This version is very similar to 0.9.0b3, re-released due to issues with PyPI uploads.

Changes for Developers

• The data API’s startConsuming method has been removed. Instead of calling this method with a data
API path, call self.master.mq.startConsuming with an appropriate message routing pattern.

Slave

No changes since 0.9.0b3.

Details

For a more detailed description of the changes made in this version, see the git log itself:

git log v0.9.0b3..v0.9.0b4

4.4.13 Release Notes for Buildbot 0.9.0b3

The following are the release notes for Buildbot 0.9.0b3. This version was released on October 18, 2015.

See Upgrading to Nine for a guide to upgrading from 0.8.x to 0.9.x

Master

Features

• The irc command hello now returns ‘Hello’ in a random language if invoked more than once.

• Triggerable now accepts a reason parameter.

• GerritStatusPush now accepts a builders parameter.

• StatusPush callback now receives build results (success/failure/etc) with the buildFinished event.

• There’s a new renderable type, Transform.

• Buildbot now supports wamp as a mq backend. This allows to run a multi-master configuration. See MQ
Specification.

Fixes

• The PyFlakes and PyLint steps no longer parse output in Buildbot log headers (bug #3337
(http://trac.buildbot.net/ticket/3337)).

• GerritChangeSource is now less verbose by default, and has a debug option to enable the logs.

• P4Source no longer relies on the perforce server time to poll for new changes.

472 Chapter 4. Release Notes for Buildbot |version|

http://trac.buildbot.net/ticket/3337

Buildbot Documentation, Release 0.9.1

• The commit message for a change from P4Source now matches what the user typed in.

Deprecations, Removals, and Non-Compatible Changes

• The buildbot.status.results module no longer exists and has been renamed to
buildbot.process.results.

Slave

Features

• The Buildbot slave now includes the number of CPUs in the information it supplies to the master on connec-
tion. This value is autodetected, but can be overridden with the --numcpus argument to buildslave
create-slave.

Details

For a more detailed description of the changes made in this version, see the git log itself:

git log v0.9.0b2..v0.9.0b3

4.4.14 Release Notes for Buildbot 0.9.0b2

The following are the release notes for Buildbot 0.9.0b2. Buildbot 0.9.0b2 was released on August, 2 2015.

Master

Features

• Mercurial hook was updated and modernized. It is no longer necessary to fork. One can now extend
PYTHONPATH via the hook configuration. Among others, it permits to use a buildbot virtualenv instead
of installing buildbot in all the system. Added documentation inside the hook. Misc. clean-up and reorga-
nization in order to make the code a bit more readable.

• UI templates can now be customizable. You can provide html or jade overrides to the www plugins, to
customize the UI

• UI side bar is now fixed by default for large screens.

Fixes

• Fix setup for missing www.hooks module

• Fix setup to install only on recents version of pip (>=1.4). This prevents unexpected upgrade to nine from
people who just use pip install -U buildbot

• Fix a crash in the git hook.

• Add checks to enforce slavenames are identifiers.

4.4. Older Versions 473

Buildbot Documentation, Release 0.9.1

Deprecations, Removals, and Non-Compatible Changes

Changes for Developers

• The BuilderConfig nextSlave keyword argument takes a callable. This callable now receives
BuildRequest instance in its signature as 3rd parameter. For retro-compatibility, all callable taking
only 2 parameters will still work.

• Data api provides a way to query the build list per slave.

• Data api provides a way to query some build properties in a build list.

Slave

• buildbot-slave now requires Python 2.6

Features

• Schedulers: the codebases parameter can now be specified in a simple list-of-strings form.

Fixes

• Fix two race conditions in the integration tests

Deprecations, Removals, and Non-Compatible Changes

• Providing Latent AWS EC2 credentails by the .ec2/aws_id file is deprecated: Use the standard
.aws/credentials file, instead.

Details

For a more detailed description of the changes made in this version, see the git log itself:

git log v0.9.0b1..v0.9.0b2

4.4.15 Release Notes for Buildbot 0.9.0b1

The following are the release notes for Buildbot 0.9.0b1. Buildbot 0.9.0b1 was released on the 25th of June, 2015.

Master

This version represents a refactoring of Buildbot into a consistent, well-defined application composed of loosely
coupled components. The components are linked by a common database backend and a messaging system. This
allows components to be distributed across multiple build masters. It also allows the rendering of complex web
status views to be performed in the browser, rather than on the buildmasters.

The branch looks forward to committing to long-term API compatibility, but does not reach that goal. The
Buildbot-0.9.x series of releases will give the new APIs time to “settle in” before we commit to them. Com-
mitment will wait for Buildbot-1.0.0 (as per http://semver.org). Once Buildbot reaches version 1.0.0, upgrades
will become much easier for users.

To encourage contributions from a wider field of developers, the web application is designed to look like a normal
AngularJS application. Developers familiar with AngularJS, but not with Python, should be able to start hacking

474 Chapter 4. Release Notes for Buildbot |version|

http://semver.org

Buildbot Documentation, Release 0.9.1

on the web application quickly. The web application is “pluggable”, so users who develop their own status displays
can package those separately from Buildbot itself.

Other goals:

• An approachable HTTP REST API, used by the web application but available for any other purpose.

• A high degree of coverage by reliable, easily-modified tests.

• “Interlocking” tests to guarantee compatibility. For example, the real and fake DB implementations must
both pass the same suite of tests. Then no unseen difference between the fake and real implementations can
mask errors that will occur in production.

Requirements

The buildbot package requires Python 2.6 or higher – Python 2.5 is no longer supported. The
buildbot-slave package requires Python 2.5 or higher – Python 2.4 is no longer supported.

No additional software or systems, aside from some minor Python packages, are required.

But the devil is in the details:

• If you want to do web development, or build the buildbot-www package, you’ll need Node. It’s an
Angular app, and that’s how such apps are developed. We’ve taken pains to not make either a requirement
for users - you can simply ‘pip install’ buildbot-www and be on your way. This is the case even if you’re
hacking on the Python side of Buildbot.

• For a single master, nothing else is required.

Minor Python Packages

• Buildbot requires at least Twisted-11.0.0.

• Buildbot works python-dateutil >= 1.5

Known Limitations of 0.9.0b1

The following feature will be implemented for Buildbot 0.9.1 Milestone.

• Multimaster is not supported as of Buildbot 0.9.0. http://trac.buildbot.net/ticket/2644

• Not all status plugin are converted to the new reporter API. Only email and Gerrit reporters are fully sup-
ported. Irc support is limited, and not converted to reporter api http://trac.buildbot.net/ticket/2648

Features

Buildbot-0.9.0 introduces the Data API, a consistent and scalable method for accessing and updating the state of
the Buildbot system. This API replaces the existing, ill-defined Status API, which has been removed. Buildbot-
0.9.0 introduces new WWW Server Interface using websocket for realtime updates. Buildbot code that interacted
with the Status API (a substantial portion!) has been rewritten to use the Data API. Individual features and
improvements to the Data API are not described on this page.

• Buildbot now supports plugins. They allow Buildbot to be extended by using components distributed in-
dependently from the main code. They also provide for a unified way to access all components. When
previously the following construction was used:

from buildbot.kind.other.bits import ComponentClass

... ComponentClass ...

4.4. Older Versions 475

http://trac.buildbot.net/ticket/2644
http://trac.buildbot.net/ticket/2648

Buildbot Documentation, Release 0.9.1

the following construction achieves the same result:

from buildbot.plugins import kind

... kind.ComponentClass ...

Kinds of components that are available this way are described in Plugin Infrastructure in Buildbot.

Note: While the components can be still directly imported as buildbot.kind.other.bits, this
might not be the case after Buildbot v1.0 is released.

• Both the P4 source step and P4 change source support ticket-based authentication.

• OpenStack latent slaves now support block devices as a bootable volume.

• Add new Cppcheck step.

• Add a new Docker latent BuildSlave.

• Add a new configuration for creating custom services in out-of-tree CI systems or plugins. See
buildbot.util.service.BuildbotService

• Add try_ssh configuration file setting and --ssh command line option for the try tool to specify the
command to use for connecting to the build master.

• GitHub change hook now supports application/json format.

• Add support for dynamically adding steps during a build. See Dynamic Build Factories.

• GitPoller now supports detecting new branches

• Git supports an “origin” option to give a name to the remote repo.

Reporters

Status plugins have been moved into the reporters namespace. Their API has slightly to changed in order to
adapt to the new data API. See respective documentation for details.

• GerritStatusPush renamed to GerritStatusPush

• MailNotifier renamed to MailNotifier

• MailNotifier argument messageFormatter should now be a MessageFormatter, due to re-
moval of data api, custom message formaters need to be rewritten.

• MailNotifier argument previousBuildGetter is not supported anymore

• Gerrit supports specifying an SSH identity file explicitly.

• Added StashStatusPush status hook for Atlassian Stash

• MailNotifier no longer forces SSL 3.0 when useTls is true.

• GerritStatusPush callbacks slightly changed signature, and include a master reference instead of a
status reference.

• GitHubStatus now accepts a context parameter to be passed to the GitHub Status API.

• Buildbot UI introduces branch new Authentication, and Authorizations framework.

Please look at their respective guide in WWW Server

476 Chapter 4. Release Notes for Buildbot |version|

Buildbot Documentation, Release 0.9.1

Fixes

• Buildbot is now compatible with SQLAlchemy 0.8 and higher, using the newly-released SQLAlchemy-
Migrate.

• The version check for SQLAlchemy-Migrate was fixed to accept more version string formats.

• The HTTPStep step’s requeset parameters are now renderable.

• With Git(), force the updating submodules to ensure local changes by the build are overwitten. This both
ensures more consistent builds and avoids errors when updating submodules.

• Buildbot is now compatible with Gerrit v2.6 and higher.

To make this happen, the return result of reviewCB and summaryCB callback has changed from

(message, verified, review)

to

{'message': message,
'labels': {'label-name': value,

...
}

}

The implications are:

– there are some differences in behaviour: only those labels that were provided will be updated

– Gerrit server must be able to provide a version, if it can’t the GerritStatusPush will not work

Note: If you have an old style reviewCB and/or summaryCB implemented, these will still work, however
there could be more labels updated than anticipated.

More detailed information is available in GerritStatusPush section.

• P4Source‘s server_tz parameter now works correctly.

• The revlink in changes broduced by the Bitbucket hook now correctly includes the changes/ portion
of the URL.

• PBChangeSource‘s git hook contrib/git_buildbot.py now supports git tags

A pushed git tag generates a change event with the branch property equal to the tag name. To schedule
builds based on buildbot tags, one could use something like this:

c['schedulers'].append(
SingleBranchScheduler(name='tags',

change_filter=filter.ChangeFilter(
branch_re='v[0-9]+\.[0-9]+\.[0-9]+(?:-pre|rc[0-9]+|p[0-9]+)?')

treeStableTimer=None,
builderNames=['tag_build']))

• Missing “name” and “email” properties received from Gerrit are now handled properly

• Fixed bug which made it impossible to specify the project when using the BitBucket dialect.

• The PyLint step has been updated to understand newer output.

• Fixed SVN master-side source step: if a SVN operation fails, the repository end up in a situation when a
manual intervention is required. Now if SVN reports such a situation during initial check, the checkout will
be clobbered.

• The build properties are now stored in the database in the build_properties table.

4.4. Older Versions 477

Buildbot Documentation, Release 0.9.1

• The list of changes in the build page now displays all the changes since the last sucessful build.

• GitHub change hook now correctly responds to ping events.

• buildbot.steps.http steps now correctly have url parameter renderable

• When no arguments are used buildbot checkconfig now uses buildbot.tac to locate the master
config file.

• buildbot.util.flatten now correctly flattens arbitrarily nested lists. buildbot.util.flattened_iterator provides an
iterable over the collection which may be more efficient for extremely large lists.

Deprecations, Removals, and Non-Compatible Changes

• BonsaiPoller is removed.

• buildbot.ec2buildslave is removed; use buildbot.buildslave.ec2 instead.

• buildbot.libvirtbuildslave is removed; use buildbot.buildslave.libvirt instead.

• buildbot.util.flatten falttens lists and tuples by default (previously only lists). Additionally, flattening some-
thing that isn’t the type to flatten has different behaviour. Previously, it would return the original value.
Instead, it now returns an array with the original value as the sole element.

• buildbot.tac does not support print statements anymore. Such files should now use print as a
function instead (see https://docs.python.org/3.0/whatsnew/3.0.html#print-is-a-function for more details).
Note that this applies to both python2.x and python3.x runtimes.

WebStatus

The old, clunky WebStatus has been removed. You will like the new interface! RIP WebStatus, you were a good
friend.

remove it and replace it with www configuration.

Requirements

• Buildbot’s tests now require at least Mock-0.8.0.

• SQLAlchemy-Migrate-0.6.1 is no longer supported.

• Builder names are now restricted to unicode strings or ASCII bytestrings. Encoded bytestrings are not
accepted.

Steps

• New-style steps are now the norm, and support for old-style steps is deprecated. Such support will be
removed in the next release.

– Status strings for old-style steps could be supplied through a wide variety of conflicting means
(describe, description, descriptionDone, descriptionSuffix, getText, and
setText, to name just a few). While all attempts have been made to maintain compatibility, you
may find that the status strings for old-style steps have changed in this version. To fix steps that call
setText, try setting the descriptionDone attribute directly, instead – or just rewrite the step in
the new style.

• Old-style source steps (imported directly from buildbot.steps.source) are no longer supported on
the master.

478 Chapter 4. Release Notes for Buildbot |version|

https://docs.python.org/3.0/whatsnew/3.0.html#print-is-a-function

Buildbot Documentation, Release 0.9.1

• The monotone source step got an overhaul and can now better manage its database (initialize and/or migrate
it, if needed). In the spirit of monotone, buildbot now always keeps the database around, as it’s an append-
only database.

Changes and Removals

• Buildslave names must now be 50-character identifier. Note that this disallows some common characters in
bulidslave names, including spaces, /, and ..

• Builders now have “tags” instead of a category. Builders can have multiple tags, allowing more flexible
builder displays.

• ForceScheduler has the following changes:

– The default configuration no longer contains four AnyPropertyParameter instances.

– Configuring codebases is now mandatory, and the deprecated branch, repository, project,
revision are not supported anymore in ForceScheduler

– buildbot.schedulers.forcesched.BaseParameter.updateFromKwargs now
takes a collector parameter used to collect all validation errors

• Periodic, Nightly and NightlyTriggerable have the following changes:

– The Periodic and Nightly schedulers can now consume changes and use onlyIfChanged
and createAbsoluteTimestamps.

– All “timed” schedulers now handle codebases the same way. Configuring codebases is strongly
recommended. Using the branch parameter is discouraged.

• Logs are now stored as Unicode strings, and thus must be decoded properly from the bytestrings provided
by shell commands. By default this encoding is assumed to be UTF-8, but the logEncoding parameter
can be used to select an alternative. Steps and individual logfiles can also override the global default.

• The PB status service uses classes which have now been removed, and anyway is redundant to the REST
API, so it has been removed. It has taken the following with it:

– buildbot statuslog

– buildbot statusgui (the GTK client)

– buildbot debugclient

The PBListener status listener is now deprecated and does nothing. Accordingly, there is no external
access to status objects via Perspective Broker, aside from some compatibility code for the try scheduler.

The debugPassword configuration option is no longer needed and is thus deprecated.

• The undocumented and un-tested TinderboxMailNotifier, designed to send emails suitable for the
abandoned and insecure Tinderbox tool, has been removed.

• Buildslave info is no longer available via Interpolate and the SetSlaveInfo buildstep has been removed.

• The undocumented path parameter of the MasterShellCommand buildstep has been renamed
workdir for better consistency with the other steps.

• The name and source of a Property have to be unicode or ascii string.

• Property values must be serializable in JSON.

• IRC has the following changes:

– categories parameter is deprecated and removed. It should be replaced with tags=[cat]

– noticeOnChannel parameter is deprecated and removed.

• workdir behavior has been unified:

– workdir attribute of steps is now a property in BuildStep, and choose the workdir given following
priority:

4.4. Older Versions 479

Buildbot Documentation, Release 0.9.1

* workdir of the step, if defined

* workdir of the builder (itself defaults to ‘build’)

* setDefaultWorkdir() has been deprecated, but is now behaving the same for all the steps: Setting
self.workdir if not already set

• Trigger now has a getSchedulersAndProperties method that can ve overriden to support dy-
namic triggering.

• `master.cfg is now parsed from a thread. Previously it was run in the main thread, and thus slowing
down the master in case of big config, or network access done to generate the config.

• SVNPoller‘s svnurl parameter has been changed to repourl.

Changes for Developers

• Botmaster no longer service parent for buildslaves. Service parent functionality has been transferred to
BuildslaveManager. It should be noted Botmaster no longer has a slaves field as it was moved to Build-
slaveManager.

• The sourcestamp DB connector now returns a patchid field.

• Buildbot no longer polls the database for jobs. The db_poll_interval configuration parameter and
the db key of the same name are deprecated and will be ignored.

• The interface for adding changes has changed. The new method is
master.data.updates.addChange (implemented by addChange), although the old inter-
face (master.addChange) will remain in place for a few versions. The new method:

– returns a change ID, not a Change instance;

– takes its when_timestamp argument as epoch time (UNIX time), not a datetime instance; and

– does not accept the deprecated parameters who, isdir, is_dir, and when.

– requires that all strings be unicode, not bytestrings.

Please adjust any custom change sources accordingly.

• A new build status, CANCELLED, has been added. It is used when a step or build is deliberately cancelled
by a user.

• This upgrade will delete all rows from the buildrequest_claims table. If you are using this table
for analytical purposes outside of Buildbot, please back up its contents before the upgrade, and restore it
afterward, translating object IDs to scheduler IDs if necessary. This translation would be very slow and is
not required for most users, so it is not done automatically.

• All of the schedulers DB API methods now accept a schedulerid, rather than an objectid. If you have custom
code using these methods, check your code and make the necessary adjustments.

• The addBuildsetForSourceStamp method has become addBuildsetForSourceStamps,
and its signature has changed. The addBuildsetForSourceStampSetDetails
method has become addBuildsetForSourceStampsWithDefaults, and its signa-
ture has changed. The addBuildsetForSourceStampDetails method has been re-
moved. The addBuildsetForLatest method has been removed. It is equivalent to
addBuildsetForSourceStampDetails with sourcestamps=None. These methods are
not yet documented, and their interface is not stable. Consult the source code for details on the changes.

• The preStartConsumingChanges and startTimedSchedulerService hooks have been re-
moved.

• The triggerable schedulers‘ trigger method now requires a list of sourcestamps, rather than a dictionary.

• The SourceStamp class is no longer used. It remains in the codebase to support loading data from pickles
on upgrade, but should not be used in running code.

480 Chapter 4. Release Notes for Buildbot |version|

Buildbot Documentation, Release 0.9.1

• The BuildRequest class no longer has full source or sources attributes. Use the data API to get
this information (which is associated with the buildset, not the build request) instead.

• The undocumented BuilderControl method submitBuildRequest has been removed.

• The debug client no longer supports requesting builds (the requestBuild method has been removed).
If you have been using this method in production, consider instead creating a new change source, using the
ForceScheduler, or using one of the try schedulers.

• The buildbot.misc.SerializedInvocation class has been removed; use
buildbot.util.debounce.method instead.

• The progress attributes of both buildbot.process.buildstep.BuildStep`
and buildbot.process.build.Build have been removed. Sub-
classes should only be accessing the progress-tracking mechanics via the
buildbot.process.buildstep.BuildStep.setProgress method.

Slave

Features

Fixes

Deprecations, Removals, and Non-Compatible Changes

• buildmaster and buildslave no longer supports old-style source steps.

• On Windows, if a ShellCommand step in which command was specified as a list is executed, and a list
element is a string consisting of a single pipe character, it no longer creates a pipeline. Instead, the pipe
character is passed verbatim as an argument to the program, like any other string. This makes command
handling consistent between Windows and Unix-like systems. To have a pipeline, specify command as a
string.

Details

For a more detailed description of the changes made in this version, see the git log itself:

git log v0.8.10..v0.9.0b1

4.4.16 Release Notes for Buildbot 0.8.11

The following are the release notes for Buildbot 0.8.11. This version was released on the 20th of April, 2015.

Master

Requirements:

• Buildbot works python-dateutil >= 1.5

Features

• GitHub change hook now supports application/json format.

• Buildbot is now compatible with Gerrit v2.6 and higher.

To make this happen, the return result of reviewCB and summaryCB callback has changed from

4.4. Older Versions 481

Buildbot Documentation, Release 0.9.1

(message, verified, review)

to

{'message': message,
'labels': {'label-name': value,

...
}

}

The implications are:

– there are some differences in behaviour: only those labels that were provided will be updated

– Gerrit server must be able to provide a version, if it can’t the GerritStatusPush will not work

Note: If you have an old style reviewCB and/or summaryCB implemented, these will still work, however
there could be more labels updated than anticipated.

More detailed information is available in GerritStatusPush section.

• Buildbot now supports plugins. They allow Buildbot to be extended by using components distributed in-
dependently from the main code. They also provide for a unified way to access all components. When
previously the following construction was used:

from buildbot.kind.other.bits import ComponentClass

... ComponentClass ...

the following construction achieves the same result:

from buildbot.plugins import kind

... kind.ComponentClass ...

Kinds of components that are available this way are described in Plugin Infrastructure in Buildbot.

Note: While the components can be still directly imported as buildbot.kind.other.bits, this
might not be the case after Buildbot v1.0 is released.

• GitPoller now supports detecting new branches

• MasterShellCommand now renders the path argument.

• ShellMixin: the workdir can now be overridden in the call to makeRemoteShellCommand.

• GitHub status target now allows to specify a different base URL for the API (usefule for GitHub enterprise
installations). This feature requires txgithub of version 0.2.0 or better.

• GitHub change hook now supports payload validation using shared secret, see the GitHub hook documen-
tation for details.

• Added StashStatusPush status hook for Atlassian Stash

• Builders can now have multiple “tags” associated with them. Tags can be used in various status classes as
filters (eg, on the waterfall page).

• MailNotifier no longer forces SSL 3.0 when useTls is true.

• GitHub change hook now supports function as codebase argument.

• GitHub change hook now supports pull_request events.

482 Chapter 4. Release Notes for Buildbot |version|

Buildbot Documentation, Release 0.9.1

• Trigger: the getSchedulersAndProperties customization method has been backported from
Nine. This provides a way to dynamically specify which schedulers (and the properties for that scheduler)
to trigger at runtime.

Fixes

• GitHub change hook now correctly responds to ping events.

• buildbot.steps.http steps now correctly have url parameter renderable

• MasterShellCommand now correctly logs the working directory where it was run.

• With Git(), force the updating submodules to ensure local changes by the build are overwitten. This both
ensures more consistent builds and avoids errors when updating submodules.

• With Git(), make sure ‘git submodule sync’ is called before ‘git submodule update’ to update stale remote
urls (bug #2155 (http://trac.buildbot.net/ticket/2155)).

Deprecations, Removals, and Non-Compatible Changes

• The builder parameter “category” is deprecated and is replaced by a parameter called “tags”.

Changes for Developers

• Trigger: createTriggerProperties now takes one argument (the properties to generate).

• Trigger: getSchedulers method is no longer used and was removed.

Slave

Features

Fixes

Deprecations, Removals, and Non-Compatible Changes

Details

For a more detailed description of the changes made in this version, see the git log itself:

git log v0.8.10..532cf49

4.4.17 Release Notes for Buildbot 0.8.10

The following are the release notes for Buildbot 0.8.10. Buildbot 0.8.10 was released on the 2nd of December,
2014.

Master

Features

• Both the P4 source step and P4 change source support ticket-based authentication.

• Clickable ‘categories’ links added in ‘Waterfall’ page (web UI).

4.4. Older Versions 483

http://trac.buildbot.net/ticket/2155

Buildbot Documentation, Release 0.9.1

Fixes

• Buildbot is now compatible with SQLAlchemy 0.8 and higher, using the newly-released SQLAlchemy-
Migrate.

• The HTTPStep step’s request parameters are now renderable.

• Fixed content spoofing vulnerabilities (bug #2589 (http://trac.buildbot.net/ticket/2589)).

• Fixed cross-site scripting in status_json (bug #2943 (http://trac.buildbot.net/ticket/2943)).

• GerritStatusPush supports specifying an SSH identity file explicitly.

• Fixed bug which made it impossible to specify the project when using the BitBucket dialect.

• Fixed SVN master-side source step: if a SVN operation fails, the repository end up in a situation when a
manual intervention is required. Now if SVN reports such a situation during initial check, the checkout will
be clobbered.

• Fixed master-side source steps to respect the specified timeout when removing files.

Deprecations, Removals, and Non-Compatible Changes

Changes for Developers

Slave

Features

Fixes

Deprecations, Removals, and Non-Compatible Changes

Details

For a more detailed description of the changes made in this version, see the git log itself:

git log v0.8.9..eight

4.4.18 Release Notes for Buildbot 0.8.9

The following are the release notes for Buildbot 0.8.9. Buildbot 0.8.9 was released on 14 June, 2014.

Master

Features

• The following optional parameters have been added to EC2LatentBuildSlave

– Boolean parameter spot_instance, default False, creates a spot instance.

– Float parameter max_spot_price defines the maximum bid for a spot instance.

– List parameter volumes, takes a list of (volume_id, mount_point) tuples.

– String parameter placement is appended to the region parameter, e.g.
region='us-west-2',placement='b' will result in the spot request being placed
in us-west-2b.

484 Chapter 4. Release Notes for Buildbot |version|

http://trac.buildbot.net/ticket/2589
http://trac.buildbot.net/ticket/2943

Buildbot Documentation, Release 0.9.1

– Float parameter price_multiplier specifies the percentage bid above the 24-hour average
spot price.

– Dict parameter tags specifies AWS tags as key/value pairs to be applied to new instances.

With spot_instance=True, an EC2LatentBuildSlave will attempt to create a spot instance with
the provided spot price, placement, and so on.

• The web hooks now include support for Bitbucket, GitLab and Gitorious.

• The GitHub webhook has been updated to work with v3 of the GitHub webhook API.

• The GitHub webhook can now optionally ignore non-distinct commits (bug #1861
(http://trac.buildbot.net/ticket/1861)).

• The HgPoller and GitPoller now split filenames on newlines, rather than whitespace, so files con-
taining whitespace are handled correctly.

• Add ‘pollAtLaunch’ flag for polling change sources. This allows a poller to poll immediately on launch and
get changes that occurred while it was down.

• Added the BitbucketPullrequestPoller changesource.

• The GitPoller can now be configured to poll all available branches (pull request 1010
(https://github.com/buildbot/buildbot/pull/1010)).

• The P4Source changesource now supports Perforce servers in a different timezone than the buildbot
master (pull request 728 (https://github.com/buildbot/buildbot/pull/728)).

• Each Scheduler type can now take a ‘reason’ argument to customize the reason it uses for triggered builds.

• A new argument createAbsoluteSourceStamps has been added to SingleBranchScheduler
for use with multiple codebases.

• A new argument createAbsoluteSourceStamps has been added to Nightly for use with multiple
codebases.

• The Periodic scheduler now supports codebases.

• The ForceScheduler now takes a buttonName argument to specify the name of the button on the
force-build form.

• Master side source checkout steps now support patches (bug #2098 (http://trac.buildbot.net/ticket/2098)).
The Git and Mercurial steps use their inbuilt commands to apply patches (bug #2563
(http://trac.buildbot.net/ticket/2563)).

• Master side source checkout steps now support retry option (bug #2465
(http://trac.buildbot.net/ticket/2465)).

• Master-side source checkout steps now respond to the “stop build” button (bug #2356
(http://trac.buildbot.net/ticket/2356)).

• Git source checkout step now supports reference repositories.

• The Git step now uses the git clean option -f twice, to also remove untracked directories managed by
another git repository. See bug #2560 (http://trac.buildbot.net/ticket/2560).

• The branch and codebase arguments to the Git step are now renderable.

• Gerrit integration with Git Source step on master side (bug #2485 (http://trac.buildbot.net/ticket/2485)).

• P4 source step now supports more advanced options.

• The master-side SVN step now supports authentication for mode=export, fixing bug #2463
(http://trac.buildbot.net/ticket/2463).

• The SVN step will now canonicalize URL’s before matching them for better accuracy.

• The SVN step now obfuscates the password in status logs, fixing bug #2468
(http://trac.buildbot.net/ticket/2468).

4.4. Older Versions 485

http://trac.buildbot.net/ticket/1861
https://github.com/buildbot/buildbot/pull/1010
https://github.com/buildbot/buildbot/pull/728
http://trac.buildbot.net/ticket/2098
http://trac.buildbot.net/ticket/2563
http://trac.buildbot.net/ticket/2465
http://trac.buildbot.net/ticket/2356
http://trac.buildbot.net/ticket/2560
http://trac.buildbot.net/ticket/2485
http://trac.buildbot.net/ticket/2463
http://trac.buildbot.net/ticket/2468

Buildbot Documentation, Release 0.9.1

• SVN source step and ShellCommand now support password obfuscation. (bug #2468
(http://trac.buildbot.net/ticket/2468) and bug #1748 (http://trac.buildbot.net/ticket/1748)).

• CVS source step now checks for “sticky dates” from a previous checkout before updating an existing source
directory.

• :Repo now supports a depth flag when initializing the repo. This controls the amount of git history to
download.

• The manifestBranch of the bb:step:Repo step is now renderable

• New source step Monotone added on master side.

• New source step Darcs added on master side.

• A new Robocopy step is available for Windows builders (pull request 728
(https://github.com/buildbot/buildbot/pull/728)).

• The attributes description, descriptionDone and descriptionSuffix have been moved
from ShellCommand to its superclass BuildStep so that any class that inherits from BuildStep
can provide a suitable description of itself.

• A new FlattenList Renderable has been added which can flatten nested lists.

• Added new build steps for VC12, VS2013 and MsBuild12.

• The mode parameter of the VS steps is now renderable (bug #2592 (http://trac.buildbot.net/ticket/2592)).

• The HTTPStep step can make arbitrary HTTP requests from the master, allowing communication with
external APIs. This new feature requires the optional txrequests and requests Python packages.

• A new MultipleFileUpload step was added to allow uploading several files (or directories) in a single
step.

• Information about the buildslaves (admin, host, etc) is now persisted in the database and available even if
the slave is not connected.

• Buildslave info can now be retrieved via Interpolate and a new SetSlaveInfo buildstep.

• The GNUAutotools factory now has a reconf option to run autoreconf before ./configure.

• Builder configurations can now include a description, which will appear in the web UI to help humans
figure out what the builder does.

• The WebStatus builder page can now filter pending/current/finished builds by property parameters of the
form ?property.<name>=<value>.

• The WebStatus StatusResourceBuilder page can now take the maxsearch argument

• The WebStatus has a new authz “view” action that allows you to require users to logged in to view the
WebStatus.

• The WebStatus now shows revisions (+ codebase) where it used to simply say “multiple rev”.

• The Console view now supports codebases.

• The web UI for Builders has been updated:

– shows the build ‘reason’ and ‘interested users’

– shows sourcestamp information for builders that use multiple codebases (instead of the generic
“multiple rev” placeholder that was shown before).

• The waterfall and atom/rss feeds can be filtered with the project url paramter.

• The WebStatus Authorization support now includes a view action which can be used to restrict read-
only access to the Buildbot instance.

• The web status now has options to cancel some or all pending builds.

• The WebStatus now interprets ANSI color codes in stdio output.

• It is now possible to select categories to show in the waterfall help

486 Chapter 4. Release Notes for Buildbot |version|

http://trac.buildbot.net/ticket/2468
http://trac.buildbot.net/ticket/1748
https://github.com/buildbot/buildbot/pull/728
http://trac.buildbot.net/ticket/2592

Buildbot Documentation, Release 0.9.1

• The web status now automatically scrolls output logs (pull request 1078
(https://github.com/buildbot/buildbot/pull/1078)).

• The web UI now supports a PNG Status Resource that can be accessed publicly from for example
README.md files or wikis or whatever other resource. This view produces an image in PNG format
with information about the last build for the given builder name or whatever other build number if is passed
as an argument to the view.

• Revision links for commits on SouceForge (Allura) are now automatically generated.

• The ‘Rebuild’ button on the web pages for builds features a dropdown to choose whether to rebuild from
exact revisions or from the same sourcestamps (ie, update branch references)

• Build status can be sent to GitHub. Depends on txgithub package. See GitHubStatusPush and GitHub
Commit Status (https://github.com/blog/1227-commit-status-api).

• The IRC bot of IRC will, unless useRevisions is set, shorten long lists of revisions printed when a build
starts; it will only show two, and the number of additional revisions included in the build.

• A new argument summaryCB has been added to GerritStatusPush, to allow sending one review per
buildset. Sending a single “summary” review per buildset is now the default if neither summaryCB nor
reviewCB are specified.

• The comments field of changes is no longer limited to 1024 characters on MySQL
and Postgres. See bug #2367 (http://trac.buildbot.net/ticket/2367) and pull request 736
(https://github.com/buildbot/buildbot/pull/736).

• HTML log files are no longer stored in status pickles (pull request 1077
(https://github.com/buildbot/buildbot/pull/1077))

• Builds are now retried after a slave is lost (pull request 1049
(https://github.com/buildbot/buildbot/pull/1049)).

• The buildbot status client can now access a build properties via the getProperties call.

• The start, restart, and reconfig commands will now wait for longer than 10 seconds as long as
the master continues producing log lines indicating that the configuration is progressing.

• Added new config option protocols which allows to configure multiple protocols on single master.

• RemoteShellCommands can be killed by SIGTERM with the sigtermTime parameter before resorting to
SIGKILL (bug #751 (http://trac.buildbot.net/ticket/751)). If the slave’s version is less than 0.8.9, the slave
will kill the process with SIGKILL regardless of whether sigtermTime is supplied.

• Introduce an alternative way to deploy Buildbot and try the pyflakes tutorial using Docker.

• Added zsh and bash tab-completions support for ‘buildbot’ command.

• An example of a declarative configuration is included in https://github.com/buildbot/buildbot/blob/master/
master/contrib/SimpleConfig.py, with copious comments.

• Systemd unit files for Buildbot are available in the https://github.com/buildbot/buildbot/blob/master/master/
contrib/ directory.

• We’ve added some extra checking to make sure that you have a valid locale before starting buildbot (#2608).

Forward Compatibility

In preparation for a more asynchronous implementation of build steps in Buildbot 0.9.0, this version introduces
support for new-style steps. Existing old-style steps will continue to function correctly in Buildbot 0.8.x releases
and in Buildbot 0.9.0, but support will be dropped soon afterward. See New-Style Build Steps, below, for guidance
on rewriting existing steps in this new style. To eliminate ambiguity, the documentation for this version only
reflects support for new-style steps. Refer to the documentation for previous versions for infrormation on old-
style steps.

4.4. Older Versions 487

https://github.com/buildbot/buildbot/pull/1078
https://github.com/blog/1227-commit-status-api
https://github.com/blog/1227-commit-status-api
http://trac.buildbot.net/ticket/2367
https://github.com/buildbot/buildbot/pull/736
https://github.com/buildbot/buildbot/pull/1077
https://github.com/buildbot/buildbot/pull/1049
http://trac.buildbot.net/ticket/751
https://github.com/buildbot/buildbot/blob/master/master/contrib/SimpleConfig.py
https://github.com/buildbot/buildbot/blob/master/master/contrib/SimpleConfig.py
https://github.com/buildbot/buildbot/blob/master/master/contrib/
https://github.com/buildbot/buildbot/blob/master/master/contrib/

Buildbot Documentation, Release 0.9.1

Fixes

• Fixes an issue where GitPoller sets the change branch to refs/heads/master - which isn’t com-
patible with Git (pull request 1069 (https://github.com/buildbot/buildbot/pull/1069)).

• Fixed an issue where the Git and CVS source steps silently changed the workdir to 'build' when the
‘copy’ method is used.

• The CVS source step now respects the timeout parameter.

• The Git step now uses the git submodule update option –init when updating the submodules of an existing
repository, so that it will receive any newly added submodules.

• The web status no longer relies on the current working directory, which is not set correctly by some
initscripts, to find the templates/ directory (bug #2586 (http://trac.buildbot.net/ticket/2586)).

• The Perforce source step uses the correct path separator when the master is on Windows and the build slave
is on a POSIX OS (pull request 1114 (https://github.com/buildbot/buildbot/pull/1114)).

• The source steps now correctly interpolate properties in env.

• GerritStatusPush now supports setting scores with Gerrit 2.6 and newer

• The change hook no longer fails when passing unicode to change_hook_auth (pull request 996
(https://github.com/buildbot/buildbot/pull/996)).

• The source steps now correctly interpolate properties in env.

• Whitespace is properly handled for StringParameter, so that appropriate validation errors are raised for
required parameters (pull request 1084 (https://github.com/buildbot/buildbot/pull/1084)).

• Fix a rare case where a buildtep might fail from a GeneratorExit exception (pull request 1063
(https://github.com/buildbot/buildbot/pull/1063)).

• Fixed an issue where UTF-8 data in logs caused RSS feed exceptions (bug #951
(http://trac.buildbot.net/ticket/951)).

• Fix an issue with unescaped author names causing invalid RSS feeds (bug #2596
(http://trac.buildbot.net/ticket/2596)).

• Fixed an issue with pubDate format in feeds.

• Fixed an issue where the step text value could cause a TypeError in the build detail page (pull request
1061 (https://github.com/buildbot/buildbot/pull/1061)).

• Fix failures where git clean fails but could be clobbered (pull request 1058
(https://github.com/buildbot/buildbot/pull/1058)).

• Build step now correctly fails when the git clone step fails (pull request 1057
(https://github.com/buildbot/buildbot/pull/1057)).

• Fixed a race condition in slave shutdown (pull request 1019 (https://github.com/buildbot/buildbot/pull/1019)).

• Now correctly unsubscribes StatusPush from status updates when reconfiguring (pull request 997
(https://github.com/buildbot/buildbot/pull/997)).

• Fixes parsing git commit messages that are blank.

• Git no longer fails when work dir exists but isn’t a checkout (bug #2531
(http://trac.buildbot.net/ticket/2531)).

• The haltOnFailure and flunkOnFailure attricutes of ShellCommand are now renderable. (bug #2486
(http://trac.buildbot.net/ticket/2486)).

• The rotateLength and maxRotatedFile arguments are no longer treated as strings in buildbot.tac. This
fixes log rotation. The upgrade_master command will notify users if they have this problem.

• Builbot no longer specifies a revision when pulling from a mercurial (bug #438
(http://trac.buildbot.net/ticket/438)).

488 Chapter 4. Release Notes for Buildbot |version|

https://github.com/buildbot/buildbot/pull/1069
http://trac.buildbot.net/ticket/2586
https://github.com/buildbot/buildbot/pull/1114
https://github.com/buildbot/buildbot/pull/996
https://github.com/buildbot/buildbot/pull/1084
https://github.com/buildbot/buildbot/pull/1063
http://trac.buildbot.net/ticket/951
http://trac.buildbot.net/ticket/2596
https://github.com/buildbot/buildbot/pull/1061
https://github.com/buildbot/buildbot/pull/1061
https://github.com/buildbot/buildbot/pull/1058
https://github.com/buildbot/buildbot/pull/1057
https://github.com/buildbot/buildbot/pull/1019
https://github.com/buildbot/buildbot/pull/997
http://trac.buildbot.net/ticket/2531
http://trac.buildbot.net/ticket/2486
http://trac.buildbot.net/ticket/438

Buildbot Documentation, Release 0.9.1

• The WebStatus no longer incorrectly refers to fields that might not be visible.

• The GerritChangeSource now sets a default author, fixing an exception that occured when Gerrit didn’t
report an owner name/email.

• Respects the RETRY status when an interrupt occurs.

• Fixes an off-by-one error when the tryclient is finding the current git branch.

• Improve the Mercurial source stamp extraction in the try client.

• Fixes some edge cases in timezone handling for python < 2.7.4 (bug #2522
(http://trac.buildbot.net/ticket/2522)).

• The EC2LatentBuildSlave will now only consider available AMI’s.

• Fixes a case where the first build runs on an old slave instead of a new one after reconfig (bug #2507
(http://trac.buildbot.net/ticket/2507)).

• The e-mail address validation for the MailNotifier status receiver has been improved.

• The --db parameter of buildbot create-master is now validated.

• No longer ignores default choice for ForceScheduler list parameters

• Now correctly handles BuilderConfig(...,mergeRequests=False) (bug #2555
(http://trac.buildbot.net/ticket/2555)).

• Now excludes changes from sourcestamps when they aren’t in the DB (bug #2554
(http://trac.buildbot.net/ticket/2554)).

• Fixes a compatibility issue with HPCloud in the OpenStack latent slave.

• Allow _ as a valid character in JSONP callback names.

• Fix build start time retrieval in the WebStatus grid view.

• Increase the length of the DB fields changes.comments and
buildset_properties.property_value.

Deprecations, Removals, and Non-Compatible Changes

• The slave-side source steps are deprecated in this version of Buildbot, and master-side sup-
port will be removed in a future version. Please convert any use of slave-side steps (im-
ported directly from buildbot.steps.source, rather than from a specific module like
buildbot.steps.source.svn) to use master-side steps.

• Both old-style and new-style steps are supported in this version of Buildbot. Upgrade your steps to new-
style now, as support for old-style steps will be dropped after Buildbot-0.9.0. See New-Style Build Steps for
details.

– The LoggingBuildStep class has been deprecated, and support will be removed along with sup-
port for old-style steps after the Buildbot-0.9.0 release. Instead, subclass BuildStep and mix in
ShellMixin to get similar behavior.

• slavePortnum option deprecated, please use c['protocols']['pb']['port'] to set up PB port

• The buildbot.process.mtrlogobserver module have been renamed to
buildbot.steps.mtrlogobserver.

• The buildmaster now requires at least Twisted-11.0.0.

• The buildmaster now requires at least sqlalchemy-migrate 0.6.1.

• The hgbuildbot Mercurial hook has been moved to contrib/, and does not work with recent versions
of Mercurial and Twisted. The runtimes for these two tools are incompatible, yet hgbuildbot attempts
to run both in the same Python interpreter. Mayhem ensues.

• The try scheduler’s --connect=ssh method no longer supports waiting for results (--wait).

4.4. Older Versions 489

http://trac.buildbot.net/ticket/2522
http://trac.buildbot.net/ticket/2507
http://trac.buildbot.net/ticket/2555
http://trac.buildbot.net/ticket/2554

Buildbot Documentation, Release 0.9.1

• The former buildbot.process.buildstep.RemoteCommand class and its subclasses are now
in buildbot.process.remotecommand, although imports from the previous path will continue
to work. Similarly, the former buildbot.process.buildstep.LogObserver class and its sub-
classes are now in buildbot.process.logobserver, although imports from the previous path will
continue to work.

• The undocumented BuildStep method checkDisconnect is deprecated and now does nothing as the
handling of disconnects is now handled in the failed method. Any custom steps adding this method as a
callback or errback should no longer do so.

• The build step MsBuild is now called MsBuild4 as multiple versions are now supported. An alias is
provided so existing setups will continue to work, but this will be removed in a future release.

Changes for Developers

• The CompositeStepMixin now provides a runGlob method to check for files on the slave that match
a given shell-style pattern.

• The BuilderStatus now allows you to pass a filter_fn argument to generateBuilds.

Slave

Features

• Added zsh and bash tab-completions support for ‘buildslave’ command.

• RemoteShellCommands accept the new sigtermTime parameter from master. This allows processes to be
killed by SIGTERM before resorting to SIGKILL (bug #751 (http://trac.buildbot.net/ticket/751))

• Commands will now throw a ValueError if mandatory args are not present.

• Added a new remote command GlobPath that can be used to call Python’s glob.glob on the slave.

Fixes

• Fixed an issue when buildstep stop() was raising an exception incorrectly if timeout for buildstep wasn’t set
or was None (see pull request 753 (https://github.com/buildbot/buildbot/pull/753)) thus keeping watched
logfiles open (this prevented their removal on Windows in subsequent builds).

• Fixed a bug in P4 source step where the timeout parameter was ignored.

• Fixed a bug in P4 source step where using a custom view-spec could result in failed syncs due to incorrectly
generated command-lines.

• The logwatcher will use /usr/xpg4/bin/tail on Solaris, it if is available (pull request 1065
(https://github.com/buildbot/buildbot/pull/1065)).

Deprecations, Removals, and Non-Compatible Changes

Details

For a more detailed description of the changes made in this version, see the git log itself:

git log v0.8.8..v0.8.9

4.4.19 Release Notes for Buildbot v0.8.8

The following are the release notes for Buildbot v0.8.8 Buildbot v0.8.8 was released on August 22, 2013

490 Chapter 4. Release Notes for Buildbot |version|

http://trac.buildbot.net/ticket/751
https://github.com/buildbot/buildbot/pull/753
https://github.com/buildbot/buildbot/pull/1065

Buildbot Documentation, Release 0.9.1

Master

Features

• The MasterShellCommand step now correctly handles environment variables passed as list.

• The master now poll the database for pending tasks when running buildbot in multi-master mode.

• The algorithm to match build requests to slaves has been rewritten pull request 615
(https://github.com/buildbot/buildbot/pull/615). The new algorithm automatically takes locks into ac-
count, and will not schedule a build only to have it wait on a lock. The algorithm also introduces a
canStartBuild builder configuration option which can be used to prevent a build request being
assigned to a slave.

• buildbot stop and buildbot restart now accept --clean to stop or restart the master cleanly
(allowing all running builds to complete first).

• The IRC bot now supports clean shutdown and immediate shutdown by using the command ‘shutdown’.
To allow the command to function, you must provide allowShutdown=True.

• CopyDirectory has been added.

• BuildslaveChoiceParameter has been added to provide a way to explicitly choose a buildslave for
a given build.

• default.css now wraps preformatted text by default.

• Slaves can now be paused through the web status.

• The latent buildslave support is less buggy, thanks pull request 646
(https://github.com/buildbot/buildbot/pull/646).

• The treeStableTimer for AnyBranchScheduler now maintains separate timers for separate
branches, codebases, projects, and repositories.

• SVN has a new option preferLastChangedRev=True to use the last changed revision for got_revision

• The build request DB connector method getBuildRequests can now filter by branch and repository.

• A new SetProperty step has been added in buildbot.steps.master which can set a property
directly without accessing the slave.

• The new LogRenderable step logs Python objects, which can contain renderables, to the logfile. This is
helpful for debugging property values during a build.

• ‘buildbot try’ now has an additional option –property option to set properties. Unlike the existing option
–properties option, this new option supports setting only a single property and therefore allows commas to
be included in the property name and value.

• The Git step has a new config option, which accepts a dict of git configuration options to pass to the
low-level git commands. See Git for details.

• In ShellCommand ShellCommand now validates its arguments during config and will identify any invalid
arguments before a build is started.

• The list of force schedulers in the web UI is now sorted by name.

• OpenStack-based Latent Buildslave support was added. See pull request 666
(https://github.com/buildbot/buildbot/pull/666).

• Master-side support for P4 is available, and provides a great deal more flexibility than the old slave-side
step. See pull request 596 (https://github.com/buildbot/buildbot/pull/596).

• Master-side support for Repo is available. The step parameters changed to camelCase.
repo_downloads, and manifest_override_url properties are no longer hardcoded, but in-
stead consult as default values via renderables. Renderable are used in favor of callables for
syncAllBranches and updateTarball.

4.4. Older Versions 491

https://github.com/buildbot/buildbot/pull/615
https://github.com/buildbot/buildbot/pull/646
https://github.com/buildbot/buildbot/pull/666
https://github.com/buildbot/buildbot/pull/596

Buildbot Documentation, Release 0.9.1

• Builder configurations can now include a description, which will appear in the web UI to help humans
figure out what the builder does.

• GNUAutoconf and other pre-defined factories now work correctly (bug #2402
(http://trac.buildbot.net/ticket/2402))

• The pubDate in RSS feeds is now rendered correctly (bug #2530 (http://trac.buildbot.net/ticket/2530))

Deprecations, Removals, and Non-Compatible Changes

• The split_file function for SVNPoller may now return a dictionary instead of a tuple. This allows
it to add extra information about a change (such as project or repository).

• The workdir build property has been renamed to builddir. This change accurately reflects its con-
tent; the term “workdir” means something different. workdir is currently still supported for backwards
compatability, but will be removed eventually.

• The Blocker step has been removed.

• Several polling ChangeSources are now documented to take a pollInterval argument, instead of
pollinterval. The old name is still supported.

• StatusReceivers’ checkConfig method should no longer take an errors parameter. It should indicate errors
by calling error.

• Build steps now require that their name be a string. Previously, they would accept anything, but not behave
appropriately.

• The web status no longer displays a potentially misleading message, indicating whether the build can be
rebuilt exactly.

• The SetProperty step in buildbot.steps.shell has been renamed to
SetPropertyFromCommand.

• The EC2 and libvirt latent slaves have been moved to buildbot.buildslave.ec2 and
buildbot.buildslave.libirt respectively.

• Pre v0.8.7 versions of buildbot supported passing keyword arguments to
buildbot.process.BuildFactory.addStep, but this was dropped. Support was added
again, while still being deprecated, to ease transition.

Changes for Developers

• Added an optional build start callback to buildbot.status.status_gerrit.GerritStatusPush
This release includes the fix for bug #2536 (http://trac.buildbot.net/ticket/2536).

• An optional startCB callback to GerritStatusPush can be used to send a message back to the
committer. See the linked documentation for details.

• bb:sched:ChoiceStringParameter has a new method getChoices that can be used to generate content
dynamically for Force scheduler forms.

Slave

Features

• The fix for Twisted bug #5079 is now applied on the slave side, too. This fixes a perspective broker memory
leak in older versions of Twisted. This fix was added on the master in Buildbot-0.8.4 (see bug #1958
(http://trac.buildbot.net/ticket/1958)).

• The --nodaemon option to buildslave start now correctly prevents the slave from forking before
running.

492 Chapter 4. Release Notes for Buildbot |version|

http://trac.buildbot.net/ticket/2402
http://trac.buildbot.net/ticket/2530
http://trac.buildbot.net/ticket/2536
http://trac.buildbot.net/ticket/1958

Buildbot Documentation, Release 0.9.1

Deprecations, Removals, and Non-Compatible Changes

Details

For a more detailed description of the changes made in this version, see the git log itself:

git log v0.8.7..v0.8.8

4.4.20 Release Notes for Buildbot v0.8.7

The following are the release notes for Buildbot v0.8.7. Buildbot v0.8.7 was released on September 22, 2012.
Buildbot 0.8.7p1 was released on November 21, 2012.

0.8.7p1

In addition to what’s listed below, the 0.8.7p1 release adds the following.

• The SetPropertiesFromEnv step now correctly gets environment variables from the slave, rather than
those set on the master. Also, it logs the changes made to properties.

• The master-side Git source step now doesn’t try to clone a branch called HEAD. This is what git does by
default, and specifying it explicitly doesn’t work as expected.

• The Git step properly deals with the case when there is a file called FETCH_HEAD in the checkout.

• Buildbot no longer forks when told not to daemonize.

• Buildbot’s startup is now more robust. See bug #1992 (http://trac.buildbot.net/ticket/1992).

• The Trigger step uses the provided list of source stamps exactly, if given, instead of adding them to the
sourcestamps of the current build. In 0.8.7, they were combined with the source stamps for the current build.

• The Trigger step again completely ignores the source stamp of the current build, if alwaysUseLatest
is set. In 0.8.7, this was mistakenly changed to only ignore the specified revision of the source stamp.

• The Triggerable scheduler is again properly passing changes through to the scheduled builds. See bug
#2376 (http://trac.buildbot.net/ticket/2376).

• Web change hooks log errors, allowing debugging.

• The base change hook now properly decodes the provided date.

• CVSMailDir has been fixed.

• Importing buildbot.test no longer causes python to exit, if mock insn’t installed. The fixes pydoc
-k when buildbot is installed.

• Mercurial properly updates to the correct branch, when using inrepo branches.

• Buildbot now doesn’t fail on invalid UTF-8 in a number of places.

• Many documenation updates and fixes.

Master

Features

• Buildbot now supports building projects composed of multiple codebases. New schedulers can aggregate
changes to multiple codebases into source stamp sets (with one source stamp for each codebase). Source
steps then check out each codebase as required, and the remainder of the build process proceeds normally.
See the Multiple-Codebase Builds for details.

4.4. Older Versions 493

http://trac.buildbot.net/ticket/1992
http://trac.buildbot.net/ticket/2376
http://trac.buildbot.net/ticket/2376

Buildbot Documentation, Release 0.9.1

– The format of the got_revision property has changed for multi-codebase builds. It is now a
dictionary keyed by codebase.

• Source and ShellCommand steps now have an optional descriptionSuffix, a suffix to the
description/descriptionDone values. For example this can help distinguish between multiple
Compile steps that are applied to different codebases.

• The Git step has a new getDescription option, which will run git describe after checkout
normally. See Git for details.

• A new interpolation placeholder Interpolate, with more regular syntax, is available.

• A new ternary substitution operator :? and :#? is available with the Interpolate class.

• IRenderable.getRenderingFor can now return a deferred.

• The Mercurial hook now supports multiple masters. See pull request 436
(https://github.com/buildbot/buildbot/pull/436).

• There’s a new poller for Mercurial: HgPoller.

• The new HTPasswdAprAuth uses libaprutil (through ctypes) to validate the password against the hash
from the .htpasswd file. This adds support for all hash types htpasswd can generate.

• GitPoller has been rewritten. It now supports multiple branches and can share a directory between
multiple pollers. It is also more resilient to changes in configuration, or in the underlying repository.

• Added a new property httpLoginUrl to buildbot.status.web.authz.Authz to render a nice
Login link in WebStatus for unauthenticated users if useHttpHeader and httpLoginUrl are set.

• ForceScheduler has been updated:

– support for multiple codebases via the codebases parameter

– NestedParameter to provide a logical grouping of parameters.

– CodebaseParameter to set the branch/revision/repository/project for a codebase

– new HTML/CSS customization points. Each parameter is contained in a row with multiple ‘class’
attributes associated with them (eg, ‘force-string’ and ‘force-nested’) as well as a unique id to use with
Javascript. Explicit line-breaks have been removed from the HTML generator and are now controlled
using CSS.

• The SVNPoller now supports multiple projects and codebases. See pull request 443
(https://github.com/buildbot/buildbot/pull/443).

• The MailNotifier now takes a callable to calculate the “previous” build for purposes of determining
status changes. See pull request 489 (https://github.com/buildbot/buildbot/pull/489).

• The copy_properties parameter, given a list of properties to copy into the new build request, has been
deprecated in favor of explicit use of set_properties.

Deprecations, Removals, and Non-Compatible Changes

• Buildbot master now requires at least Python-2.5 and Twisted-9.0.0.

• Passing a BuildStep subclass (rather than instance) to addStep is no longer supported. The addStep
method now takes exactly one argument.

• Buildbot master requires python-dateutil version 1.5 to support the Nightly scheduler.

• ForceScheduler has been updated to support multiple codebases. The
branch/revision/repository/project are deprecated; if you have customized these values, simply pro-
vide them as codebases=[CodebaseParameter(name='',...)].

– The POST URL names for AnyPropertyParameter fields have changed. For example, ‘prop-
erty1name’ is now ‘property1_name’, and ‘property1value’ is now ‘property1_value’. Please update
any bookmarked or saved URL’s that used these fields.

494 Chapter 4. Release Notes for Buildbot |version|

https://github.com/buildbot/buildbot/pull/436
https://github.com/buildbot/buildbot/pull/443
https://github.com/buildbot/buildbot/pull/489

Buildbot Documentation, Release 0.9.1

– forcesched.BaseParameter API has changed quite a bit and is no longer backwards compati-
ble. Updating guidelines:

* get_from_post is renamed to getFromKwargs

* update_from_post is renamed to updateFromKwargs. This function’s parameters are
now called via named parameters to allow subclasses to ignore values it doesnt use. Subclasses
should add **unused for future compatibility. A new parameter sourcestampset is pro-
vided to allow subclasses to modify the sourcestamp set, and will probably require you to add the
**unused field.

• The parameters to the callable version of build.workdir have changed. Instead of a single sourcestamp,
a list of sourcestamps is passed. Each sourcestamp in the list has a different codebase

• The undocumented renderable _ComputeRepositoryURL is no longer imported to
buildbot.steps.source. It is still available at buildbot.steps.source.oldsource.

• IProperties.render now returns a deferred, so any code rendering properties by hand will need to
take this into account.

• baseURL has been removed in SVN to use just repourl - see bug #2066
(http://trac.buildbot.net/ticket/2066). Branch info should be provided with Interpolate.

from buildbot.steps.source.svn import SVN
factory.append(SVN(baseURL="svn://svn.example.org/svn/"))

can be replaced with

from buildbot.process.properties import Interpolate
from buildbot.steps.source.svn import SVN
factory.append(SVN(repourl=Interpolate("svn://svn.example.org/svn/%(src::
→˓branch)s")))

and

from buildbot.steps.source.svn import SVN
factory.append(SVN(baseURL="svn://svn.example.org/svn/%%BRANCH%%/project"))

can be replaced with

from buildbot.process.properties import Interpolate
from buildbot.steps.source.svn import SVN
factory.append(SVN(repourl=Interpolate("svn://svn.example.org/svn/%(src::
→˓branch)s/project")))

and

from buildbot.steps.source.svn import SVN
factory.append(SVN(baseURL="svn://svn.example.org/svn/", defaultBranch=
→˓"branches/test"))

can be replaced with

from buildbot.process.properties import Interpolate
from buildbot.steps.source.svn import SVN
factory.append(SVN(repourl=Interpolate("svn://svn.example.org/svn/%(src::
→˓branch:-branches/test)s")))

• The P4Sync step, deprecated since 0.8.5, has been removed. The P4 step remains.

• The fetch_spec argument to GitPoller is no longer supported. GitPoller now only downloads
branches that it is polling, so specifies a refspec itself.

4.4. Older Versions 495

http://trac.buildbot.net/ticket/2066

Buildbot Documentation, Release 0.9.1

• The format of the changes produced by SVNPoller has changed: directory pathnames end with a forward
slash. This allows the split_file function to distinguish between files and directories. Customized split
functions may need to be adjusted accordingly.

• FlattenList has been deprecated in favor of Interpolate. Interpolate doesn’t handle functions as keyword
arguments. The following code using WithProperties

from buildbot.process.properties import WithProperties
def determine_foo(props):

if props.hasProperty('bar'):
return props['bar']

elif props.hasProperty('baz'):
return props['baz']

return 'qux'
WithProperties('%(foo)s', foo=determine_foo)

can be replaced with

from zope.interface import implementer
from buildbot.interfaces import IRenderable
from buildbot.process.properties import Interpolate
@implementer(IRenderable)
class determineFoo(object):

def getRenderingFor(self, props):
if props.hasProperty('bar'):

return props['bar']
elif props.hasProperty('baz'):

return props['baz']
return 'qux'

Interpolate('%s(kw:foo)s', foo=determineFoo())

Changes for Developers

• BuildStep.start can now optionally return a deferred and any errback will be handled gracefully. If
you use inlineCallbacks, this means that unexpected exceptions and failures raised will be captured
and logged and the build shut down normally.

• The helper methods getState and setState from BaseScheduler have been factored into
buildbot.util.state.StateMixin for use elsewhere.

Slave

Features

Deprecations, Removals, and Non-Compatible Changes

• The P4Sync step, deprecated since 0.8.5, has been removed. The P4 step remains.

Details

For a more detailed description of the changes made in this version, see the Git log itself:

git log v0.8.6..v0.8.7

496 Chapter 4. Release Notes for Buildbot |version|

Buildbot Documentation, Release 0.9.1

Older Versions

Release notes for older versions of Buildbot are available in the https://github.com/buildbot/buildbot/blob/master/
master/docs/relnotes/ directory of the source tree. Starting with version 0.8.6, they are also available under the
appropriate version at http://buildbot.net/buildbot/docs.

4.4.21 Release Notes for Buildbot v0.8.6p1

The following are the release notes for Buildbot v0.8.6p1. Buildbot v0.8.6 was released on March 11, 2012.
Buildbot v0.8.6p1 was released on March 25, 2012.

0.8.6p1

In addition to what’s listed below, the 0.8.6p1 release adds the following.

• Builders are no longer displayed in the order they were configured. This was never intended behavior, and
will become impossible in the distributed architecture planned for Buildbot-0.9.x. As of 0.8.6p1, builders
are sorted naturally: lexically, but with numeric segments sorted numerically.

• Slave properties in the configuration are now handled correctly.

• The web interface buttons to cancel individual builds now appear when configured.

• The ForceScheduler’s properties are correctly updated on reconfig - bug #2248
(http://trac.buildbot.net/ticket/2248).

• If a slave is lost while waiting for locks, it is properly cleaned up - bug #2247
(http://trac.buildbot.net/ticket/2247).

• Crashes when adding new steps to a factory in a reconfig are fixed - bug #2252
(http://trac.buildbot.net/ticket/2252).

• MailNotifier AttributeErrors are fixed - bug #2254 (http://trac.buildbot.net/ticket/2254).

• Cleanup from failed builds is improved - bug #2253 (http://trac.buildbot.net/ticket/2253).

Master

• If you are using the GitHub hook, carefully consider the security implications of allowing un-
authenticated change requests, which can potentially build arbitrary code. See bug #2186
(http://trac.buildbot.net/ticket/2186).

Deprecations, Removals, and Non-Compatible Changes

• Forced builds now require that a ForceScheduler be defined in the Buildbot configuration. For com-
patible behavior, this should look like:

from buildbot.schedulers.forcesched import ForceScheduler
c['schedulers'].append(ForceScheduler(

name="force",
builderNames=["b1", "b2", ...]))

Where all of the builder names in the configuration are listed. See the documentation for the much more
flexiblie configuration options now available.

• This is the last release of Buildbot that will be compatible with Python 2.4. The next version will minimally
require Python-2.5. See bug #2157 (http://trac.buildbot.net/ticket/2157).

• This is the last release of Buildbot that will be compatible with Twisted-8.x.y. The next version will mini-
mally require Twisted-9.0.0. See bug #2182 (http://trac.buildbot.net/ticket/2182).

4.4. Older Versions 497

https://github.com/buildbot/buildbot/blob/master/master/docs/relnotes/
https://github.com/buildbot/buildbot/blob/master/master/docs/relnotes/
http://buildbot.net/buildbot/docs
http://trac.buildbot.net/ticket/2248
http://trac.buildbot.net/ticket/2247
http://trac.buildbot.net/ticket/2252
http://trac.buildbot.net/ticket/2254
http://trac.buildbot.net/ticket/2253
http://trac.buildbot.net/ticket/2186
http://trac.buildbot.net/ticket/2157
http://trac.buildbot.net/ticket/2182

Buildbot Documentation, Release 0.9.1

• buildbot start no longer invokes make if a Makefile.buildbot exists. If you are using this
functionality, consider invoking make directly.

• The buildbot sendchange option --username has been removed as promised in bug #1711
(http://trac.buildbot.net/ticket/1711).

• StatusReceivers’ checkConfig method should now take an additional errors parameter and call its
addError method to indicate errors.

• The Gerrit status callback now gets an additional parameter (the master status). If you use this callback, you
will need to adjust its implementation.

• SQLAlchemy-Migrate version 0.6.0 is no longer supported. See Buildmaster Requirements.

• Older versions of SQLite which could limp along for previous versions of Buildbot are no longer supported.
The minimum version is 3.4.0, and 3.7.0 or higher is recommended.

• The master-side Git step now checks out ‘HEAD’ by default, rather than master, which
translates to the default branch on the upstream repository. See pull request 301
(https://github.com/buildbot/buildbot/pull/301).

• The format of the repository strings created by hgbuildbot has changed to contain the entire repos-
itory URL, based on the web.baseurl value in hgrc. To continue the old (incorrect) behavior, set
hgbuildbot.baseurl to an empty string as suggested in the Buildbot manual.

• Master Side SVN Step has been corrected to properly use --revision when alwaysUseLatest is set
to False when in the full mode. See bug #2194 (http://trac.buildbot.net/ticket/2194)

• Master Side SVN Step paramater svnurl has been renamed repourl, to be consistent with other master-side
source steps.

• Master Side Mercurial step parameter baseURL has been merged with repourl parameter. The
behavior of the step is already controled by branchType parameter, so just use a single argument to
specify the repository.

• Passing a buildbot.process.buildstep.BuildStep subclass (rather than instance) to
buildbot.process.factory.BuildFactory.addStep has long been deprecated, and will be
removed in version 0.8.7.

• The hgbuildbot tool now defaults to the ‘inrepo’ branch type. Users who do not explicitly set a branch type
would previously have seen empty branch strings, and will now see a branch string based on the branch in
the repository (e.g., default).

Changes for Developers

• The interface for runtime access to the master’s configuration has changed considerably. See Configuration
for more details.

• The DB connector methods completeBuildset, completeBuildRequest, and
claimBuildRequest now take an optional complete_at parameter to specify the completion
time explicitly.

• Buildbot now sports sourcestamp sets, which collect multiple sourcestamps used to generate a single build,
thanks to Harry Borkhuis. See pull request 287 (https://github.com/buildbot/buildbot/pull/287).

• Schedulers no longer have a schedulerid, but rather an objectid. In
a related change, the schedulers table has been removed, along with the
buildbot.db.schedulers.SchedulersConnectorComponent.getSchedulerId
method.

• The Dependent scheduler tracks its upstream buildsets using buildbot.db.schedulers.StateConnectorComponent,
so the scheduler_upstream_buildsets table has been removed, along with corresponding (un-
documented) buildbot.db.buildsets.BuildsetsConnector methods.

• Errors during configuration (in particular in BuildStep constructors), should be reported by calling
buildbot.config.error.

498 Chapter 4. Release Notes for Buildbot |version|

http://trac.buildbot.net/ticket/1711
https://github.com/buildbot/buildbot/pull/301
http://trac.buildbot.net/ticket/2194
https://github.com/buildbot/buildbot/pull/287

Buildbot Documentation, Release 0.9.1

Features

• The IRC status bot now display build status in colors by default. It is controllable and may be disabled with
useColors=False in constructor.

• Buildbot can now take advantage of authentication done by a front-end web server - see pull request 266
(https://github.com/buildbot/buildbot/pull/266).

• Buildbot supports a simple cookie-based login system, so users no longer need to enter a
username and password for every request. See the earlier commits in pull request 278
(https://github.com/buildbot/buildbot/pull/278).

• The master-side SVN step now has an export method which is similar to copy, but the build directory does
not contain Subversion metdata. (bug #2078 (http://trac.buildbot.net/ticket/2078))

• Property instances will now render any properties in the default value if necessary. This makes possible
constructs like

command=Property('command', default=Property('default-command'))

• Buildbot has a new web hook to handle push notifications from Google Code - see pull request 278
(https://github.com/buildbot/buildbot/pull/278).

• Revision links are now generated by a flexible runtime conversion configured by revlink - see pull request
280 (https://github.com/buildbot/buildbot/pull/280).

• Shell command steps will now “flatten” nested lists in the command argument. This allows substitution of
multiple command-line arguments using properties. See bug #2150 (http://trac.buildbot.net/ticket/2150).

• Steps now take an optional hideStepIf parameter to suppress the step from the waterfall and build details
in the web. (bug #1743 (http://trac.buildbot.net/ticket/1743))

• Trigger steps with waitForFinish=True now receive a URL to all the triggered builds. This URL
is displayed in the waterfall and build details. See bug #2170 (http://trac.buildbot.net/ticket/2170).

• The https://github.com/buildbot/buildbot/blob/master/master/contrib/fakemaster.py script allows you to run
arbitrary commands on a slave by emulating a master. See the file itself for documentation.

• MailNotifier allows multiple notification modes in the same instance. See bug #2205
(http://trac.buildbot.net/ticket/2205).

• SVNPoller now allows passing extra arguments via argument extra_args. See bug #1766
(http://trac.buildbot.net/ticket/1766)

Slave

Deprecations, Removals, and Non-Compatible Changes

• BitKeeper support is in the “Last-Rites” state, and will be removed in the next version unless a maintainer
steps forward.

Features

Details

For a more detailed description of the changes made in this version, see the Git log itself:

git log buildbot-0.8.5..buildbot-0.8.6

4.4. Older Versions 499

https://github.com/buildbot/buildbot/pull/266
https://github.com/buildbot/buildbot/pull/278
http://trac.buildbot.net/ticket/2078
https://github.com/buildbot/buildbot/pull/278
https://github.com/buildbot/buildbot/pull/280
https://github.com/buildbot/buildbot/pull/280
http://trac.buildbot.net/ticket/2150
http://trac.buildbot.net/ticket/1743
http://trac.buildbot.net/ticket/2170
https://github.com/buildbot/buildbot/blob/master/master/contrib/fakemaster.py
http://trac.buildbot.net/ticket/2205
http://trac.buildbot.net/ticket/1766

Buildbot Documentation, Release 0.9.1

Older Versions

Release notes for older versions of Buildbot are available in the https://github.com/buildbot/buildbot/blob/master/
master/docs/relnotes/ directory of the source tree, or in the archived documentation for those versions at http:
//buildbot.net/buildbot/docs.

Note that Buildbot-0.8.11 was never released.

500 Chapter 4. Release Notes for Buildbot |version|

https://github.com/buildbot/buildbot/blob/master/master/docs/relnotes/
https://github.com/buildbot/buildbot/blob/master/master/docs/relnotes/
http://buildbot.net/buildbot/docs
http://buildbot.net/buildbot/docs

CHAPTER 5

Indices and Tables

• genindex

• cfg

• sched

• chsrc

• step

• reporter

• cmdline

• msg

• event

• rtype

• rpath

• raction

• modindex

• search

501

Buildbot Documentation, Release 0.9.1

502 Chapter 5. Indices and Tables

CHAPTER 6

Copyright

This documentation is part of Buildbot.

Buildbot is free software: you can redistribute it and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation, version 2.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write to the
Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

Copyright Buildbot Team Members

503

Buildbot Documentation, Release 0.9.1

504 Chapter 6. Copyright

Buildmaster Configuration Index

B
buildbotNetUsageData, 67
buildbotURL, 59
buildCacheSize, 60
builders, 122
buildHorizon, 60

C
caches, 60
change_source, 73
changeCacheSize, 60
changeHorizon, 60
codebaseGenerator, 70
collapseRequests, 61

D
db, 56
db_url, 56
dbconfig, 208

L
logCompressionLimit, 59
logCompressionMethod, 59
logEncoding, 59
logHorizon, 60
logMaxSize, 59
logMaxTailSize, 59

M
manhole, 62
metrics, 64
mq, 57
multiMaster, 58

P
prioritizeBuilders, 61
properties, 62
protocols, 62

R
reporter, 177
revlink, 69

S
schedulers, 87

services, 207
stats-service, 64

T
title, 59
titleURL, 59

U
user_managers, 69

V
validation, 69

W
workers, 105
www, 193

505

Buildbot Documentation, Release 0.9.1

506 Buildmaster Configuration Index

Scheduler Index

A
AnyBranchScheduler, 91

C
ChoiceStringParameter, 103

D
Dependent, 92

F
ForceScheduler, 98

I
InheritBuildParameter, 104

N
Nightly, 93
NightlyTriggerable, 97

P
Periodic, 92

S
Scheduler, 90
SingleBranchScheduler, 90

T
Triggerable, 96
Try_Jobdir, 94
Try_Userpass, 94

W
WorkerChoiceParameter, 105

507

Buildbot Documentation, Release 0.9.1

508 Scheduler Index

Change Source Index

B
BitBucket, 205
BitbucketPullrequestPoller, 83
BzrLaunchpadEmailMaildirSource, 76
BzrPoller, 80

C
Change Hooks, 86
CVSMaildirSource, 75

G
GerritChangeSource, 84
GitHub, 203
GitLab, 206
Gitorious, 207
GitPoller, 81
GoogleCodeAtomPoller, 86

H
HgPoller, 82

M
Mercurial, 203

P
P4Source, 78
PBChangeSource, 76
Poller, 206

S
SVNCommitEmailMaildirSource, 76
SVNPoller, 79

509

Buildbot Documentation, Release 0.9.1

510 Change Source Index

Build Step Index

B
BuildEPYDoc, 162
Bzr, 145

C
CMake, 154
Compile, 155
Configure, 154
CopyDirectory, 161
Cppcheck, 158
CVS, 144

D
Darcs, 149
DebCowbuilder, 173
DebLintian, 173
DebPbuilder, 173
DELETE, 174
DirectoryUpload, 166

F
FileDownload, 164
FileExists, 161
FileUpload, 164

G
Gerrit, 148
GET, 174
Git, 141
GitHub, 149

H
HEAD, 174
HLint, 173
HTTPStep, 174

J
JSONPropertiesDownload, 167
JSONStringDownload, 167

L
LogRenderable, 168

M
MakeDirectory, 161

MasterShellCommand, 167
MaxQ, 174
Mercurial, 141
MockBuildSRPM, 172
MockRebuild, 172
Monotone, 149
MsBuild12, 156
MsBuild14, 156
MsBuild4, 156
MTR, 160
MultipleFileUpload, 166

O
OPTIONS, 174

P
P4, 146
PerlModuleTest, 159
POST, 174
PUT, 174
PyFlakes, 162
PyLint, 163

R
RemoveDirectory, 161
RemovePYCs, 164
Repo, 147
Robocopy, 158
RpmBuild, 171
RpmLint, 172

S
SetPropertiesFromEnv, 169
SetProperty, 168
SetPropertyFromCommand, 169
ShellCommand, 150
ShellSequence, 153
Sphinx, 163
StringDownload, 167
SubunitShellCommand, 160
SVN, 143

T
Test, 159
TreeSize, 159

511

Buildbot Documentation, Release 0.9.1

Trial, 163
Trigger, 170

V
VC10, 156
VC11, 156
VC12, 156
VC14, 156
VC6, 156
VC7, 156
VC8, 156
VC9, 156
VCExpress9, 156
VS2003, 156
VS2005, 156
VS2008, 156
VS2010, 156
VS2012, 156
VS2013, 156
VS2015, 156

512 Build Step Index

Reporter Target Index

B
BitbucketStatusPush, 189

G
GerritStatusPush, 185
GitHubStatusPush, 188
GitLabStatusPush, 190

H
HipchatStatusPush, 190
HttpStatusPush, 187

I
IRC, 182

M
MailNotifier, 178

513

Buildbot Documentation, Release 0.9.1

514 Reporter Target Index

Build Worker Index

D
DockerLatentWorker, 118

E
EC2LatentWorker, 108

L
LibVirtWorker, 113

O
OpenStackLatentWorker, 115

515

Buildbot Documentation, Release 0.9.1

516 Build Worker Index

Command Line Index

C
checkconfig, 237
cleanupdb, 237
create-master, 236
create-worker, 244

R
restart (buildbot), 236
restart (worker), 245

S
sendchange, 241
sighup, 237
start (buildbot), 236
start (worker), 245
stop (buildbot), 236
stop (worker), 245

T
try, 237

U
upgrade-master, 236
user, 242

517

Buildbot Documentation, Release 0.9.1

518 Command Line Index

Data API Event Index

B
build.$buildid.step.$number.log.$logid.complete,

340
build.$buildid.step.$number.log.$logid.newlog,

340

519

Buildbot Documentation, Release 0.9.1

520 Data API Event Index

REST/Data API Resource Type Index

B
build, 328
builder, 331
buildrequest, 332
buildset, 334

C
change, 336
changesource, 337
collection, 326

F
forcescheduler, 339

I
identifier, 340

L
log, 340
logchunk, 343

M
master, 345

P
patch, 346

R
rootlink, 347

S
scheduler, 347
sourcedproperties, 348
sourcestamp, 349
spec, 350
step, 350

W
worker, 353

521

Buildbot Documentation, Release 0.9.1

522 REST/Data API Resource Type Index

REST/Data API Path Index

/
/, 347
/application.spec, 350
/builders, 331
/builders/{builderid}, 331
/builders/{builderid}/buildrequests,

334
/builders/{builderid}/builds, 330
/builders/{builderid}/builds/{build_number},

330
/builders/{builderid}/builds/{build_number}/steps,

352
/builders/{builderid}/builds/{build_number}/steps/{step_name},

352
/builders/{builderid}/builds/{build_number}/steps/{step_name}/logs,

341
/builders/{builderid}/builds/{build_number}/steps/{step_name}/logs/{log_slug},

341
/builders/{builderid}/builds/{build_number}/steps/{step_name}/logs/{log_slug}/contents,

344
/builders/{builderid}/builds/{build_number}/steps/{step_name}/logs/{log_slug}/raw,

355
/builders/{builderid}/builds/{build_number}/steps/{step_number},

352
/builders/{builderid}/builds/{build_number}/steps/{step_number}/logs,

341
/builders/{builderid}/builds/{build_number}/steps/{step_number}/logs/{log_slug},

342
/builders/{builderid}/builds/{build_number}/steps/{step_number}/logs/{log_slug}/contents,

344
/builders/{builderid}/builds/{build_number}/steps/{step_number}/logs/{log_slug}/raw,

355
/builders/{builderid}/forceschedulers,

339
/builders/{builderid}/masters, 346
/builders/{builderid}/workers, 353
/builders/{builderid}/workers/{name},

353
/builders/{builderid}/workers/{workerid},

354
/builders/{builderid}/{masterid}, 346
/buildrequests, 334
/buildrequests/{buildrequestid}, 334
/buildrequests/{buildrequestid}/builds,

330
/builds, 330
/builds/{buildid}, 330
/builds/{buildid}/changes, 337
/builds/{buildid}/properties, 349
/builds/{buildid}/steps, 352
/builds/{buildid}/steps/{step_number_or_name},

353
/builds/{buildid}/steps/{step_number_or_name}/logs,

342
/builds/{buildid}/steps/{step_number_or_name}/logs/{log_slug},

342
/builds/{buildid}/steps/{step_number_or_name}/logs/{log_slug}/contents,

344
/builds/{buildid}/steps/{step_number_or_name}/logs/{log_slug}/raw,

356
/buildsets, 335
/buildsets/{bsid}, 335
/buildsets/{bsid}/properties, 349
/changes, 337
/changes/{changeid}, 337
/changesources, 338
/changesources/{changesourceid}, 338
/forceschedulers, 339
/forceschedulers/{schedulername}, 339
/logs/{logid}, 342
/logs/{logid}/contents, 344
/logs/{logid}/raw, 356
/masters, 346
/masters/{masterid}, 346
/masters/{masterid}/builders, 331
/masters/{masterid}/builders/{builderid},

332
/masters/{masterid}/builders/{builderid}/workers,

354
/masters/{masterid}/builders/{builderid}/workers/{name},

354
/masters/{masterid}/builders/{builderid}/workers/{workerid},

354
/masters/{masterid}/changesources, 338
/masters/{masterid}/changesources/{changesourceid},

338
/masters/{masterid}/schedulers, 348
/masters/{masterid}/schedulers/{schedulerid},

348

523

Buildbot Documentation, Release 0.9.1

/masters/{masterid}/workers, 354
/masters/{masterid}/workers/{name},

354
/masters/{masterid}/workers/{workerid},

355
/schedulers, 348
/schedulers/{schedulerid}, 348
/sourcestamps, 350
/sourcestamps/{ssid}, 350
/sourcestamps/{ssid}/changes, 337
/steps/{stepid}/logs, 342
/steps/{stepid}/logs/{log_slug}, 343
/steps/{stepid}/logs/{log_slug}/contents,

344
/steps/{stepid}/logs/{log_slug}/raw,

356
/workers, 355
/workers/{name_or_id}, 355

524 REST/Data API Path Index

REST/Data API Actions Index

/
/builders/{builderid}/builds/{build_number}:rebuild,

330
/builders/{builderid}/builds/{build_number}:stop,

330
/buildrequests/{buildrequestid}:cancel,

334
/builds/{buildid}:rebuild, 331
/builds/{buildid}:stop, 330
/forceschedulers/{schedulername}:force,

339

525

Buildbot Documentation, Release 0.9.1

526 REST/Data API Actions Index

Python Module Index

b
buildbot.changes.base, 413
buildbot.config, 264
buildbot.data.connector, 368
buildbot.data.exceptions, 370
buildbot.data.resultspec, 434
buildbot.data.types, 374
buildbot.db.base, 399
buildbot.db.builders, 398
buildbot.db.buildrequests, 377
buildbot.db.builds, 379
buildbot.db.buildsets, 385
buildbot.db.changes, 388
buildbot.db.changesources, 390
buildbot.db.connector, 399
buildbot.db.logs, 383
buildbot.db.masters, 397
buildbot.db.model, 401
buildbot.db.pool, 400
buildbot.db.schedulers, 391
buildbot.db.sourcestamps, 393
buildbot.db.state, 395
buildbot.db.steps, 381
buildbot.db.users, 396
buildbot.db.workers, 386
buildbot.mq.base, 405
buildbot.mq.simple, 407
buildbot.mq.wamp, 407
buildbot.process.build, 411
buildbot.process.buildstep, 417
buildbot.process.log, 438
buildbot.process.logobserver, 440
buildbot.process.results, 291
buildbot.schedulers.base, 428
buildbot.schedulers.forceshed, 431
buildbot.steps.source, 139
buildbot.util, 272
buildbot.util.bbcollections, 276
buildbot.util.debounce, 278
buildbot.util.eventual, 277
buildbot.util.identifiers, 283
buildbot.util.json, 279
buildbot.util.lineboundaries, 284
buildbot.util.lru, 275

buildbot.util.maildir, 279
buildbot.util.misc, 280
buildbot.util.netstrings, 281
buildbot.util.pathmatch, 281
buildbot.util.poll, 278
buildbot.util.sautils, 281
buildbot.util.service, 284
buildbot.util.state, 282
buildbot.util.topicmatch, 282
buildbot.wamp.connector, 407
buildbot.worker, 412
buildbot.worker.manager, 438
buildbot.worker.protocols.base, 435
buildbot.www.auth, 442
buildbot.www.avatar, 443
buildbot.www.oauth2, 442
buildbot.www.resource, 443

527

Buildbot Documentation, Release 0.9.1

528 Python Module Index

Index

Symbols
–allow-shutdown

buildbot-worker-create-worker command line op-
tion, 38

–config
buildbot-create-master command line option, 35

–db
buildbot-create-master command line option, 35

–force
buildbot-create-master command line option, 35

–keepalive
buildbot-worker-create-worker command line op-

tion, 38
–log-count

buildbot-create-master command line option, 35
buildbot-worker-create-worker command line op-

tion, 38
–log-size

buildbot-create-master command line option, 35
buildbot-worker-create-worker command line op-

tion, 38
–maxdelay

buildbot-worker-create-worker command line op-
tion, 38

–no-logrotate
buildbot-create-master command line option, 35
buildbot-worker-create-worker command line op-

tion, 38
–relocatable

buildbot-create-master command line option, 35
–umask

buildbot-worker-create-worker command line op-
tion, 38

__call__() (buildbot.util.poll.Poller method), 279
__init__() (DbConfig method), 208
__init__() (buildbot.config.FileLoader method), 266
__init__() (buildbot.schedulers.base.BaseScheduler

method), 428
__init__() (buildbot.util.service.BuildbotService

method), 286
__init__() (buildbot.util.service.SharedService

method), 285
_builder_name_matches() (build-

bot.statistics.capture.CaptureBuildDuration

method), 321
_builder_name_matches() (build-

bot.statistics.capture.CaptureBuildDurationAllBuilders
method), 321

_builder_name_matches() (build-
bot.statistics.capture.CaptureBuildEndTime
method), 321

_builder_name_matches() (build-
bot.statistics.capture.CaptureBuildEndTimeAllBuilders
method), 321

_builder_name_matches() (build-
bot.statistics.capture.CaptureBuildStartTime
method), 320

_builder_name_matches() (build-
bot.statistics.capture.CaptureBuildStartTimeAllBuilders
method), 320

_builder_name_matches() (build-
bot.statistics.capture.CaptureBuildTimes
method), 320

_builder_name_matches() (build-
bot.statistics.capture.CaptureData method),
322

_builder_name_matches() (build-
bot.statistics.capture.CaptureDataAllBuilders
method), 322

_builder_name_matches() (build-
bot.statistics.capture.CaptureDataBase
method), 322

_builder_name_matches() (build-
bot.statistics.capture.CaptureProperty
method), 319

_builder_name_matches() (build-
bot.statistics.capture.CapturePropertyAllBuilders
method), 319

_claimService() (buildbot.util.service.ClusteredService
method), 285

_err_msg() (buildbot.statistics.capture.CaptureBuildTimes
method), 320

_getServiceId() (buildbot.util.service.ClusteredService
method), 285

_retValParams() (build-
bot.statistics.capture.CaptureBuildDuration
method), 321

_retValParams() (build-
bot.statistics.capture.CaptureBuildEndTime

529

Buildbot Documentation, Release 0.9.1

method), 321
_retValParams() (build-

bot.statistics.capture.CaptureBuildStartTime
method), 320

_retValParams() (build-
bot.statistics.capture.CaptureBuildTimes
method), 320

_unclaimService() (build-
bot.util.service.ClusteredService method),
285

A
activate() (buildbot.schedulers.base.BaseScheduler

method), 431
activate() (buildbot.util.service.ClusteredService

method), 285
active (buildbot.process.remotecommand.RemoteCommand

attribute), 414
active (buildbot.schedulers.base.BaseScheduler at-

tribute), 431
addBuild() (buildbot.db.builds.BuildsConnectorComponent

method), 380
addBuilderMaster() (build-

bot.db.builders.BuildersConnectorComponent
method), 398

addBuildset() (buildbot.data.buildsets.Buildset
method), 335

addBuildset() (buildbot.db.buildsets.BuildsetsConnectorComponent
method), 385

addBuildsetForChanges() (build-
bot.schedulers.base.BaseScheduler method),
430

addBuildsetForSourceStamps() (build-
bot.schedulers.base.BaseScheduler method),
429

addBuildsetForSourceStampsWithDefaults() (build-
bot.schedulers.base.BaseScheduler method),
430

addChange() (buildbot.data.changes.Change method),
336

addChange() (buildbot.db.changes.ChangesConnectorComponent
method), 389

addCompleteLog() (build-
bot.process.buildstep.BuildStep method),
423

addError() (buildbot.config.ConfigErrors method), 267
addHeader() (buildbot.process.log.StreamLog method),

440
addHeader() (buildbot.process.remotecommand.RemoteCommand

method), 416
addHTMLLog() (buildbot.process.buildstep.BuildStep

method), 423
addLog() (buildbot.data.logs.Log method), 340
addLog() (buildbot.db.logs.LogsConnectorComponent

method), 384
addLog() (buildbot.process.buildstep.BuildStep

method), 423
addLogObserver() (build-

bot.process.buildstep.BuildStep method),
424

addLogWithException() (build-
bot.process.buildstep.BuildStep method),
424

addLogWithFailure() (build-
bot.process.buildstep.BuildStep method),
424

addStderr() (buildbot.process.log.StreamLog method),
439

addStderr() (buildbot.process.remotecommand.RemoteCommand
method), 416

addStdout() (buildbot.process.log.StreamLog method),
439

addStdout() (buildbot.process.remotecommand.RemoteCommand
method), 416

addStep() (buildbot.db.steps.StepsConnectorComponent
method), 382

addToLog() (buildbot.process.remotecommand.RemoteCommand
method), 416

addURL, 227
addURL() (buildbot.db.steps.StepsConnectorComponent

method), 383
addURL() (buildbot.process.buildstep.BuildStep

method), 424
allEndpoints() (buildbot.data.connector.DataConnector

method), 369
AlreadyClaimedError, 377
alwaysRun (buildbot.process.buildstep.BuildStep at-

tribute), 418
AnyBranchScheduler Scheduler, 91
append() (buildbot.util.lineboundaries.LineBoundaryFinder

method), 284
appendLog() (buildbot.db.logs.LogsConnectorComponent

method), 384
apply() (buildbot.data.resultspec.ResultSpec method),

435
AsyncMultiService (class in buildbot.util.service), 284
asyncRenderHelper() (build-

bot.www.resource.Resource method),
444

AsyncService (class in buildbot.util.service), 284
asyncSleep() (in module buildbot.util), 275
AuthBase (class in buildbot.www.auth), 442
AvatarBase (class in buildbot.www.avatar), 443
AWS EC2, 108

B
BaseParameter (class in buildbot.schedulers.forceshed),

431
BaseScheduler (class in buildbot.schedulers.base), 428
BasicBuildFactory, 127
BasicSVN, 127
bdict, 379
Binary (class in buildbot.data.types), 374
BitBucket Change Source, 205
BitbucketPullrequestPoller Change Source, 83
BitbucketStatusPush (built-in class), 190

530 Index

Buildbot Documentation, Release 0.9.1

BitbucketStatusPush Reporter Target, 189
Boolean (class in buildbot.data.types), 374
brdict, 377
brid, 377
bsdict, 385
bsid, 385
BufferLogObserver (class in build-

bot.process.logobserver), 441
build (buildbot.process.buildstep.BuildStep attribute),

419
Build (class in buildbot.process.build), 411
Build Factory, 124

BasicBuildFactory, 127
BasicSVN, 127
CPAN, 128
Distutils, 128
GNUAutoconf, 126
QuickBuildFactory, 127
Trial, 129

Build Steps
BuildEPYDoc, 162
Bzr, 145
CMake, 154
Compile, 155
Configure, 154
CopyDirectory, 161
Cppcheck, 158
CVS, 144
Darcs, 149
DebCowbuilder, 173
DebLintian, 173
DebPbuilder, 173
DELETE, 174
DirectoryUpload, 165
FileDownload, 164
FileExists, 161
FileUpload, 164
Gerrit, 148
GET, 174
Git, 141
GitHub, 148
HEAD, 174
HLint, 173
HTTPStep, 174
JSONPropertiesDownload, 167
JSONStringDownload, 167
LogRenderable, 168
MakeDirectory, 161
MasterShellCommand, 167
MaxQ, 174
Mercurial, 140
MockBuildSRPM, 172
MockRebuild, 172
Monotone, 149
MsBuild12, 156
MsBuild14, 156
MsBuild4, 156
MTR, 159

MultipleFileUpload, 166
OPTIONS, 174
P4, 146
PerlModuleTest, 159
POST, 174
PUT, 174
PyFlakes, 162
PyLint, 163
RemoveDirectory, 161
RemovePYCs, 164
Repo, 147
Robocopy, 158
RpmBuild, 171
RpmLint, 172
SetPropertiesFromEnv, 169
SetProperty, 168
SetPropertyFromCommand, 169
ShellCommand, 150
ShellSequence, 153
Sphinx, 162
StringDownload, 167
SubunitShellCommand, 160
SVN, 143
Test, 159
TreeSize, 159
Trial, 163
Trigger, 170
VC10, 156
VC11, 156
VC12, 156
VC14, 156
VC6, 156
VC7, 156
VC8, 156
VC9, 156
VCExpress9, 156
VS2003, 156
VS2005, 156
VS2008, 156
VS2010, 156
VS2012, 156
VS2013, 156
VS2015, 156

Build Workers
DockerLatentWorker, 117
EC2LatentWorker, 108
LibVirtWorker, 113
OpenStackLatentWorker, 115

buildAdditionalContext(), 181
buildbot-create-master command line option

–config, 35
–db, 35
–force, 35
–log-count, 35
–log-size, 35
–no-logrotate, 35
–relocatable, 35

buildbot-worker-create-worker command line option

Index 531

Buildbot Documentation, Release 0.9.1

–allow-shutdown, 38
–keepalive, 38
–log-count, 38
–log-size, 38
–maxdelay, 38
–no-logrotate, 38
–umask, 38

buildbot.changes.base (module), 413
buildbot.changes.bitbucket.BitbucketPullrequestPoller

(built-in class), 83
buildbot.changes.gerritchangesource.GerritChangeFilter

(built-in class), 86
buildbot.changes.gerritchangesource.GerritChangeSource

(built-in class), 84
buildbot.changes.mail.BzrLaunchpadEmailMaildirSource

(built-in class), 76
buildbot.changes.mail.CVSMaildirSource (built-in

class), 75
buildbot.changes.mail.SVNCommitEmailMaildirSource

(built-in class), 76
buildbot.changes.pb.PBChangeSource (built-in class),

76
buildbot.changes.svnpoller.SVNPoller (built-in class),

79
buildbot.config (module), 264
buildbot.data.builders.Builder (built-in class), 331
buildbot.data.buildrequests.BuildRequest (built-in

class), 333
buildbot.data.builds.Build (built-in class), 329
buildbot.data.buildsets.Buildset (built-in class), 335
buildbot.data.changes.Change (built-in class), 336
buildbot.data.changesources.ChangeSource (built-in

class), 338
buildbot.data.connector (module), 368
buildbot.data.exceptions (module), 370
buildbot.data.logs.Log (built-in class), 340
buildbot.data.masters.Master (built-in class), 345
buildbot.data.patches.Patch (built-in class), 347
buildbot.data.properties.Properties (built-in class), 348
buildbot.data.resultspec (module), 434
buildbot.data.schedulers.Scheduler (built-in class), 347
buildbot.data.steps.Step (built-in class), 351
buildbot.data.types (module), 374
buildbot.db.base (module), 399
buildbot.db.builders (module), 398
buildbot.db.buildrequests (module), 377
buildbot.db.builds (module), 379
buildbot.db.buildsets (module), 385
buildbot.db.changes (module), 388
buildbot.db.changesources (module), 390
buildbot.db.connector (module), 399
buildbot.db.logs (module), 383
buildbot.db.masters (module), 397
buildbot.db.model (module), 401
buildbot.db.pool (module), 400
buildbot.db.schedulers (module), 391
buildbot.db.sourcestamps (module), 393
buildbot.db.state (module), 395

buildbot.db.steps (module), 381
buildbot.db.users (module), 396
buildbot.db.workers (module), 386
buildbot.interfaces.IConfigured (class in build-

bot.config), 268
buildbot.ldapuserinfo.LdapUserInfo (built-in class),

197
buildbot.mq.base (module), 405
buildbot.mq.simple (module), 407
buildbot.mq.wamp (module), 407
buildbot.process.build (module), 411
buildbot.process.buildstep (module), 417
buildbot.process.buildstep.CommandMixin (class in

buildbot.process.buildstep), 426
buildbot.process.buildstep.ShellMixin (class in build-

bot.process.buildstep), 427
buildbot.process.factory.BasicBuildFactory (built-in

class), 127
buildbot.process.factory.BasicSVN (built-in class), 127
buildbot.process.factory.CPAN (built-in class), 128
buildbot.process.factory.Distutils (built-in class), 128
buildbot.process.factory.GNUAutoconf (built-in class),

126
buildbot.process.factory.QuickBuildFactory (built-in

class), 128
buildbot.process.factory.Trial (built-in class), 129
buildbot.process.log (module), 438
buildbot.process.logobserver (module), 440
buildbot.process.results (module), 291
buildbot.reporters.bitbucket.BitbucketStatusPush

(built-in class), 189
buildbot.reporters.github.GitHubStatusPush (built-in

class), 188
buildbot.reporters.gitlab.GitLabStatusPush (built-in

class), 190
buildbot.reporters.hipchat.HipchatStatusPush (built-in

class), 190
buildbot.reporters.mail.MailNotifier (built-in class),

178
buildbot.reporters.stash.StashStatusPush (built-in

class), 189
buildbot.schedulers.base (module), 428
buildbot.schedulers.forceshed (module), 431
buildbot.schedulers.timed.NightlyTriggerable (built-in

class), 97
buildbot.statistics.capture.Capture (built-in class), 318
buildbot.statistics.capture.CaptureBuildDuration (built-

in class), 321
buildbot.statistics.capture.CaptureBuildDuration.default_callback()

(built-in function), 321
buildbot.statistics.capture.CaptureBuildDurationAllBuilders

(built-in class), 321
buildbot.statistics.capture.CaptureBuildEndTime

(built-in class), 320
buildbot.statistics.capture.CaptureBuildEndTime.default_callback()

(built-in function), 321
buildbot.statistics.capture.CaptureBuildEndTimeAllBuilders

(built-in class), 321

532 Index

Buildbot Documentation, Release 0.9.1

buildbot.statistics.capture.CaptureBuildStartTime
(built-in class), 320

buildbot.statistics.capture.CaptureBuildStartTime.default_callback()
(built-in function), 320

buildbot.statistics.capture.CaptureBuildStartTimeAllBuilders
(built-in class), 320

buildbot.statistics.capture.CaptureBuildTimes (built-in
class), 319

buildbot.statistics.capture.CaptureData (built-in class),
322

buildbot.statistics.capture.CaptureDataAllBuilders
(built-in class), 322

buildbot.statistics.capture.CaptureDataBase (built-in
class), 321

buildbot.statistics.capture.CaptureProperty (built-in
class), 319

buildbot.statistics.capture.CapturePropertyAllBuilders
(built-in class), 319

buildbot.statistics.capture.CapturePropertyBase (built-
in class), 318

buildbot.statistics.capture.CapturePropertyBase.default_callback()
(built-in function), 318

buildbot.statistics.stats_service.StatsService (built-in
class), 316

buildbot.statistics.storage_backends.influxdb_client.InfluxStorageService
(built-in class), 317

buildbot.statistis.storage_backends.base.StatsStorageBase
(built-in class), 317

buildbot.status.status_gerrit.GerritStatusPush (built-in
class), 185

buildbot.steps.cmake.CMake (class in build-
bot.steps.source), 154

buildbot.steps.master.LogRenderable (class in build-
bot.steps.source), 168

buildbot.steps.master.MasterShellCommand (class in
buildbot.steps.source), 167

buildbot.steps.master.SetProperty (class in build-
bot.steps.source), 168

buildbot.steps.mswin.Robocopy (class in build-
bot.steps.source), 158

buildbot.steps.python.BuildEPYDoc (class in build-
bot.steps.source), 162

buildbot.steps.python.PyFlakes (class in build-
bot.steps.source), 162

buildbot.steps.python.Sphinx (class in build-
bot.steps.source), 163

buildbot.steps.python_twisted.RemovePYCs (class in
buildbot.steps.source), 164

buildbot.steps.python_twisted.Trial (class in build-
bot.steps.source), 163

buildbot.steps.shell.Configure (class in build-
bot.steps.source), 154

buildbot.steps.shell.SetPropertyFromCommand (class
in buildbot.steps.source), 169

buildbot.steps.shell.ShellCommand (class in build-
bot.steps.source), 150

buildbot.steps.shellsequence.ShellArg (class in build-
bot.steps.source), 153

buildbot.steps.shellsequence.ShellSequence (class in
buildbot.steps.source), 154

buildbot.steps.source (module), 139
buildbot.steps.source.bzr.Bzr (class in build-

bot.steps.source), 145
buildbot.steps.source.cvs.CVS (class in build-

bot.steps.source), 144
buildbot.steps.source.darcs.Darcs (class in build-

bot.steps.source), 149
buildbot.steps.source.gerrit.Gerrit (class in build-

bot.steps.source), 148
buildbot.steps.source.git.Git (class in build-

bot.steps.source), 141
buildbot.steps.source.github.GitHub (class in build-

bot.steps.source), 149
buildbot.steps.source.mercurial.Mercurial (class in

buildbot.steps.source), 141
buildbot.steps.source.mtn.Monotone (class in build-

bot.steps.source), 149
buildbot.steps.source.p4.P4 (class in build-

bot.steps.source), 146
buildbot.steps.source.repo.Repo (class in build-

bot.steps.source), 147
buildbot.steps.source.repo.RepoDownloadsFromChangeSource

(class in buildbot.steps.source), 148
buildbot.steps.source.repo.RepoDownloadsFromProperties

(class in buildbot.steps.source), 148
buildbot.steps.source.svn.SVN (class in build-

bot.steps.source), 143
buildbot.steps.subunit.SubunitShellCommand (class in

buildbot.steps.source), 160
buildbot.steps.transfer.DirectoryUpload (class in build-

bot.steps.source), 166
buildbot.steps.transfer.FileDownload (class in build-

bot.steps.source), 164
buildbot.steps.transfer.FileUpload (class in build-

bot.steps.source), 164
buildbot.steps.transfer.JSONPropertiesDownload (class

in buildbot.steps.source), 167
buildbot.steps.transfer.JSONStringDownload (class in

buildbot.steps.source), 167
buildbot.steps.transfer.MultipleFileUpload (class in

buildbot.steps.source), 166
buildbot.steps.transfer.StringDownload (class in build-

bot.steps.source), 167
buildbot.steps.trigger.Trigger (class in build-

bot.steps.source), 170
buildbot.steps.worker.SetPropertiesFromEnv (class in

buildbot.steps.source), 169
buildbot.util (module), 272
buildbot.util.bbcollections (module), 276
buildbot.util.ConfiguredMixin (class in build-

bot.config), 268
buildbot.util.debounce (module), 278
buildbot.util.eventual (module), 277
buildbot.util.identifiers (module), 283
buildbot.util.json (module), 279
buildbot.util.lineboundaries (module), 284

Index 533

Buildbot Documentation, Release 0.9.1

buildbot.util.lru (module), 275
buildbot.util.maildir (module), 279
buildbot.util.misc (module), 280
buildbot.util.netstrings (module), 281
buildbot.util.pathmatch (module), 281
buildbot.util.poll (module), 278
buildbot.util.sautils (module), 281
buildbot.util.service (module), 284
buildbot.util.state (module), 282
buildbot.util.topicmatch (module), 282
buildbot.wamp.connector (module), 407
buildbot.worker (module), 412
buildbot.worker.docker.DockerLatentWorker (built-in

class), 118
buildbot.worker.ec2.EC2LatentWorker (built-in class),

108
buildbot.worker.hyper.HyperLatentWorker (built-in

class), 121
buildbot.worker.libvirt.LibVirtWorker (built-in class),

113
buildbot.worker.manager (module), 438
buildbot.worker.openstack.OpenStackLatentWorker

(built-in class), 115
buildbot.worker.protocols.base (module), 435
buildbot.www.auth (module), 442
buildbot.www.auth.HTPasswdAuth (built-in class), 195
buildbot.www.auth.NoAuth (built-in class), 194
buildbot.www.auth.RemoteUserAuth (built-in class),

196
buildbot.www.auth.UserPasswordAuth (built-in class),

194
buildbot.www.authz.endpointmatchers.AnyEndpointMatcher

(built-in class), 200
buildbot.www.authz.endpointmatchers.ForceBuildEndpointMatcher

(built-in class), 200
buildbot.www.authz.endpointmatchers.RebuildBuildEndpointMatcher

(built-in class), 201
buildbot.www.authz.endpointmatchers.StopBuildEndpointMatcher

(built-in class), 200
buildbot.www.authz.roles.RolesFromEmails (built-in

class), 201
buildbot.www.authz.roles.RolesFromGroups (built-in

class), 201
buildbot.www.authz.roles.RolesFromOwner (built-in

class), 201
buildbot.www.avatar (module), 443
buildbot.www.oauth2 (module), 442
buildbot.www.oauth2.GitHubAuth (built-in class), 195
buildbot.www.oauth2.GitLabAuth (built-in class), 195
buildbot.www.oauth2.GoogleAuth (built-in class), 195
buildbot.www.resource (module), 443
buildbotNetUsageData (Buildmaster Config), 67
BuildbotService (class in buildbot.util.service), 286
buildbotURL (buildbot.config.MasterConfig attribute),

264
buildbotURL (Buildmaster Config), 59
buildCacheSize (Buildmaster Config), 60
builddir (buildbot.config.BuilderConfig attribute), 266

BuildEPYDoc Build Step, 162
BuilderConfig (class in buildbot.config), 266
builderNames (buildbot.schedulers.base.BaseScheduler

attribute), 428
Builders

DB Connector Component, 398
priority, 61, 216

builders (buildbot.config.MasterConfig attribute), 265
builders (Buildmaster Config), 122
BuildersConnectorComponent (class in build-

bot.db.builders), 398
buildHorizon (buildbot.config.MasterConfig attribute),

264
buildHorizon (Buildmaster Config), 60
buildid, 379
buildid (buildbot.process.build.Build attribute), 411
Buildmaster Config

buildbotNetUsageData, 67
buildbotURL, 59
buildCacheSize, 60
builders, 122
buildHorizon, 60
caches, 60
change_source, 72
changeCacheSize, 60
changeHorizon, 60
codebaseGenerator, 70
collapseRequests, 61
db, 56
db_url, 56
dbconfig, 207
logCompressionLimit, 59
logCompressionMethod, 59
logEncoding, 59
logHorizon, 60
logMaxSize, 59
logMaxTailSize, 59
manhole, 62
metrics, 64
mq, 57
multiMaster, 58
prioritizeBuilders, 61
properties, 62
protocols, 62
reporter, 177
revlink, 69
schedulers, 87
services, 207
stats-service, 64
title, 59
titleURL, 59
user_managers, 69
validation, 69
workers, 105
www, 192

BuildRequests
DB Connector Component, 377

534 Index

Buildbot Documentation, Release 0.9.1

BuildRequestsConnectorComponent (class in build-
bot.db.buildrequests), 377

Builds
collapsing, 214
DB Connector Component, 379
merging, 61, 123
priority, 124, 216

BuildsConnectorComponent (class in build-
bot.db.builds), 379

Buildsets
DB Connector Component, 385

BuildsetsConnectorComponent (class in build-
bot.db.buildsets), 385

BuildStep (class in buildbot.process.buildstep), 417
Buildstep Parameter, 138

alwaysRun, 138
description, 138
descriptionDone, 138
descriptionSuffix, 139
doStepIf, 139
flunkOnFailure, 138
flunkOnWarnings, 138
haltOnFailure, 138
hideStepIf, 139
locks, 139
logEncoding, 139
warnOnFailure, 138
warnOnWarnings, 138

BuildStep URLs, 227
BuildStepFailed, 428
Bzr Build Step, 145
BzrLaunchpadEmailMaildirSource Change Source, 76
BzrPoller Change Source, 80

C
cached() (in module buildbot.db.base), 401
caches (buildbot.config.MasterConfig attribute), 265
caches (Buildmaster Config), 60
callRemote() (buildbot.worker.protocols.base.workerProxyObject

method), 437
cancelAfter() (in module buildbot.util.misc), 280
CANCELLED (in module buildbot.process.results),

292
canStartBuild (buildbot.config.BuilderConfig attribute),

267
category (buildbot.config.BuilderConfig attribute), 267
Change Hooks Change Source, 86
Change Sources, 72

BitBucket, 205
BitbucketPullrequestPoller, 83
BzrLaunchpadEmailMaildirSource, 76
BzrPoller, 80
Change Hooks, 86
CVSMaildirSource, 75
GerritChangeSource, 84
GitHub, 203
GitLab, 206
Gitorious, 207

GitPoller, 81
GoogleCodeAtomPoller, 86
HgPoller, 82
Mercurial, 203
P4Source, 78
PBChangeSource, 76
Poller, 206
SVNCommitEmailMaildirSource, 76
SVNPoller, 79

change_source (Buildmaster Config), 72
change_sources (buildbot.config.MasterConfig at-

tribute), 265
changeCacheSize (Buildmaster Config), 60
changeHorizon (buildbot.config.MasterConfig at-

tribute), 264
changeHorizon (Buildmaster Config), 60
changeid, 388
Changes

DB Connector Component, 388
ChangesConnectorComponent (class in build-

bot.db.changes), 388
ChangeSource (class in buildbot.changes.base), 413
ChangeSourceAlreadyClaimedError, 390
ChangeSources

DB Connector Component, 390
ChangeSourcesConnectorComponent (class in build-

bot.db.changesources), 390
chdict, 388
checkconfig Command Line Subcommand, 237
checkConfig() (build-

bot.statistics.stats_service.StatsService
method), 316

checkConfig() (buildbot.util.service.BuildbotService
method), 286

checkLength() (build-
bot.db.base.DBConnectorComponent
method), 399

checkWorkerHasCommand() (build-
bot.process.buildstep.BuildStep method),
422

ChoiceStringParameter Scheduler, 103
claimBuildRequests() (build-

bot.data.buildrequests.BuildRequest
method), 333

claimBuildRequests() (build-
bot.db.buildrequests.BuildRequestsConnectorComponent
method), 378

classifyChanges() (build-
bot.db.schedulers.SchedulersConnectorComponent
method), 392

cleanupdb Command Line Subcommand, 237
ClusteredService (class in buildbot.util.service), 284
CMake Build Step, 154
code (buildbot.util.service.IHTTPResponse attribute),

290
codebaseGenerator (buildbot.config.MasterConfig at-

tribute), 265
codebaseGenerator (Buildmaster Config), 70

Index 535

Buildbot Documentation, Release 0.9.1

codebases (buildbot.schedulers.base.BaseScheduler at-
tribute), 428

collapseRequests (buildbot.config.BuilderConfig
attribute), 267

collapseRequests (buildbot.config.MasterConfig
attribute), 265

collapseRequests (Buildmaster Config), 61
command (buildbot.process.buildstep.buildbot.process.buildstep.ShellMixin

attribute), 427
Command Line Subcommands

checkconfig, 237
cleanupdb, 237
create-master, 236
create-worker, 244
restart (buildbot), 236
restart (worker), 245
sendchange, 241
sighup, 236
start (buildbot), 236
start (worker), 245
stop (buildbot), 236
stop (worker), 245
try, 237
upgrade-master, 236
user, 242

commandComplete() (build-
bot.process.buildstep.LoggingBuildStep
method), 425

ComparableMixin (class in buildbot.util), 272
Compile Build Step, 155
completeBuildRequests() (build-

bot.data.buildrequests.BuildRequest
method), 333

completeBuildRequests() (build-
bot.db.buildrequests.BuildRequestsConnectorComponent
method), 379

completeBuildset() (build-
bot.db.buildsets.BuildsetsConnectorComponent
method), 385

compressLog() (buildbot.data.logs.Log method), 341
compressLog() (build-

bot.db.logs.LogsConnectorComponent
method), 384

ConfigErrors, 267
Configure Build Step, 154
Connection (class in buildbot.worker.protocols.base),

436
consume() (buildbot.statistics.capture.CaptureBuildTimes

method), 319
consume() (buildbot.statistics.capture.CaptureDataBase

method), 322
consume() (buildbot.statistics.capture.CapturePropertyBase

method), 319
content() (buildbot.util.service.IHTTPResponse

method), 289
control() (buildbot.data.base.Endpoint method), 373
control() (buildbot.data.connector.DataConnector

method), 369

CopyDirectory Build Step, 161
CPAN, 128
Cppcheck Build Step, 158
create-master Command Line Subcommand, 236
create-worker Command Line Subcommand, 244
createArgsProxies() (build-

bot.worker.protocols.base.Connection
method), 436

CVS Build Step, 144
CVSMaildirSource Change Source, 75

D
Darcs Build Step, 149
DataConnector (class in buildbot.data.connector), 368
DataException, 370
datetime2epoch() (in module buildbot.util), 273
db (buildbot.config.MasterConfig attribute), 265
db (buildbot.db.base.DBConnectorComponent at-

tribute), 399
db (Buildmaster Config), 56
DB Connector Component

Builders, 398
BuildRequests, 377
Builds, 379
Buildsets, 385
Changes, 388
ChangeSources, 390
Logs, 383
Masters, 397
Schedulers, 391
SourceStamps, 393
State, 395
Steps, 381
Users, 396
Workers, 386

db_url (Buildmaster Config), 56
dbconfig (Buildmaster Config), 207
DbConfig (built-in class), 208
DBConnector (class in buildbot.db.connector), 399
DBConnectorComponent (class in buildbot.db.base),

399
DBThreadPool (class in buildbot.db.pool), 400
deactivate() (buildbot.schedulers.base.BaseScheduler

method), 431
deactivate() (buildbot.util.service.ClusteredService

method), 285
DebCowbuilder Build Step, 173
DebLintian Build Step, 173
Debouncer (class in buildbot.util.debounce), 278
DebPbuilder Build Step, 173
decoder (buildbot.process.log.Log attribute), 439
decodeRC (buildbot.process.buildstep.buildbot.process.buildstep.ShellMixin

attribute), 427
deconfigureAllWorkersForMaster() (build-

bot.db.workers.WorkersConnectorComponent
method), 388

default (buildbot.schedulers.forceshed.BaseParameter
attribute), 432

536 Index

Buildbot Documentation, Release 0.9.1

defaultdict (class in buildbot.util.bbcollections), 276
deferredLocked() (in module buildbot.util.misc), 280
DELETE Build Step, 174
delete() (buildbot.util.service.HTTPClientService

method), 288
Dependent Scheduler, 91
describe() (buildbot.process.buildstep.BuildStep

method), 421
description (buildbot.config.BuilderConfig attribute),

267
description (buildbot.process.buildstep.BuildStep at-

tribute), 418
descriptionDone (buildbot.process.buildstep.BuildStep

attribute), 418
descriptionSuffix (buildbot.process.buildstep.BuildStep

attribute), 418
didFail() (buildbot.process.remotecommand.RemoteCommand

method), 415
diffSets() (in module buildbot.util), 273
DirectoryUpload Build Step, 165
Distutils, 128
do() (buildbot.db.pool.DBThreadPool method), 400
do_with_engine() (buildbot.db.pool.DBThreadPool

method), 401
doBatch() (buildbot.db.base.DBConnectorComponent

method), 400
Docker, 117
DockerLatentWorker Build Worker, 117
doStepIf (buildbot.process.buildstep.BuildStep at-

tribute), 418

E
EC2LatentWorker Build Worker, 108
email

MailNotifier, 178
Endpoint (class in buildbot.data.base), 372
endpoints (buildbot.data.base.ResourceType attribute),

371
Entity (class in buildbot.data.types), 375
entityType (buildbot.data.base.ResourceType attribute),

371
env (buildbot.config.BuilderConfig attribute), 267
env (buildbot.process.buildstep.buildbot.process.buildstep.ShellMixin

attribute), 427
environment variable

HOME, 41
INCLUDE, 157
LIB, 157
P4PASSWD, 79
P4PORT, 79
P4USER, 79
PATH, 30, 41, 80, 123, 151, 157, 168, 248
PYTHONPATH, 31, 41, 87, 129, 151, 164, 230–

232, 248
TMP, 170

epoch2datetime() (in module buildbot.util), 273
error() (in module buildbot.config), 267
errors (buildbot.config.ConfigErrors attribute), 267

evaluateCommand() (build-
bot.process.buildstep.LoggingBuildStep
method), 426

event
build.$buildid.step.$number.log.$logid.complete,

340
build.$buildid.step.$number.log.$logid.newlog,

340
eventPathPatterns (buildbot.data.base.ResourceType at-

tribute), 371
eventually() (in module buildbot.util.eventual), 277
EXCEPTION (in module buildbot.process.results), 292
expireMasters() (buildbot.data.masters.Master

method), 345

F
factory (buildbot.config.BuilderConfig attribute), 266
failed() (buildbot.process.buildstep.BuildStep method),

420
FAILURE (in module buildbot.process.results), 291
feed() (buildbot.util.netstrings.NetstringParser

method), 281
fields (buildbot.data.resultspec.ResultSpec attribute),

434
File Transfer, 164
FileDownload Build Step, 164
FileExists Build Step, 161
FileLoader (class in buildbot.config), 266
FileReaderImpl (class in build-

bot.worker.protocols.base), 438
FileUpload Build Step, 164
FileWriterImpl (class in build-

bot.worker.protocols.base), 438
Filter (class in buildbot.data.resultspec), 435
filters (buildbot.data.resultspec.ResultSpec attribute),

434
findBuilderId() (build-

bot.db.builders.BuildersConnectorComponent
method), 398

findChangeSourceId() (build-
bot.data.changesources.ChangeSource
method), 338

findChangeSourceId() (build-
bot.db.changesources.ChangeSourcesConnectorComponent
method), 391

findMasterId() (build-
bot.db.masters.MastersConnectorComponent
method), 397

findSchedulerId(), 347
findSchedulerId() (build-

bot.db.schedulers.SchedulersConnectorComponent
method), 392

findSomethingId() (build-
bot.db.base.DBConnectorComponent
method), 399

findUserByAttr() (build-
bot.db.users.UsersConnectorComponent
method), 396

Index 537

Buildbot Documentation, Release 0.9.1

findWorkerId() (build-
bot.db.workers.WorkersConnectorComponent
method), 387

finish() (buildbot.process.log.Log method), 439
finishBuild() (buildbot.data.builds.Build method), 329
finishBuild() (buildbot.db.builds.BuildsConnectorComponent

method), 381
finished() (buildbot.process.buildstep.BuildStep

method), 420
finishLog() (buildbot.data.logs.Log method), 341
finishLog() (buildbot.db.logs.LogsConnectorComponent

method), 384
finishReceived() (build-

bot.process.logobserver.LogLineObserver
method), 440

finishReceived() (build-
bot.process.logobserver.LogObserver
method), 440

finishStep() (buildbot.data.steps.Step method), 352
finishStep() (buildbot.db.steps.StepsConnectorComponent

method), 382
fireEventually() (in module buildbot.util.eventual), 277
flatten() (in module buildbot.util), 273
flattened_iterator() (in module buildbot.util), 274
flunkOnFailure (buildbot.process.buildstep.BuildStep

attribute), 418
flunkOnFailure (build-

bot.process.results.ResultComputingConfigMixin
attribute), 292

flunkOnWarnings (build-
bot.process.buildstep.BuildStep attribute),
418

flunkOnWarnings (build-
bot.process.results.ResultComputingConfigMixin
attribute), 292

flush() (buildbot.util.lineboundaries.LineBoundaryFinder
method), 284

flushChangeClassifications() (build-
bot.db.schedulers.SchedulersConnectorComponent
method), 392

flushEventualQueue() (in module build-
bot.util.eventual), 277

Forced Builds, 98
forceIdentifier() (in module buildbot.util.identifiers),

283
ForceScheduler Scheduler, 98
formatInterval() (in module buildbot.util), 272
fullName() (buildbot.schedulers.forceshed.BaseParameter

method), 432

G
Gerrit Build Step, 148
Gerrit integration

Repo Build Step, 147
GerritChangeSource Change Source, 84
GerritStatusPush (built-in class), 185
GerritStatusPush Reporter Target, 185
GET Build Step, 174

get() (buildbot.data.base.Endpoint method), 372
get() (buildbot.util.service.HTTPClientService

method), 288
get() (DbConfig method), 208
get() (in module buildbot.util.lru), 276
getBuild() (buildbot.db.builds.BuildsConnectorComponent

method), 379
getBuildByNumber() (build-

bot.db.builds.BuildsConnectorComponent
method), 380

getBuilder() (buildbot.db.builders.BuildersConnectorComponent
method), 399

getBuilders() (buildbot.db.builders.BuildersConnectorComponent
method), 399

getBuildProperties() (build-
bot.db.builds.BuildsConnectorComponent
method), 381

getBuildRequest() (build-
bot.db.buildrequests.BuildRequestsConnectorComponent
method), 377

getBuildRequests() (build-
bot.db.buildrequests.BuildRequestsConnectorComponent
method), 377

getBuilds() (buildbot.db.builds.BuildsConnectorComponent
method), 380

getBuildset() (buildbot.db.buildsets.BuildsetsConnectorComponent
method), 386

getBuildsetProperties() (build-
bot.db.buildsets.BuildsetsConnectorComponent
method), 386

getBuildsets() (build-
bot.db.buildsets.BuildsetsConnectorComponent
method), 386

getChange() (buildbot.db.changes.ChangesConnectorComponent
method), 389

getChangeClassifications() (build-
bot.db.schedulers.SchedulersConnectorComponent
method), 392

getChangeFromSSid() (build-
bot.db.changes.ChangesConnectorComponent
method), 390

getChanges() (buildbot.db.changes.ChangesConnectorComponent
method), 390

getChangesCount() (build-
bot.db.changes.ChangesConnectorComponent
method), 390

getChangesForBuild() (build-
bot.db.changes.ChangesConnectorComponent
method), 390

getChangeSource() (build-
bot.db.changesources.ChangeSourcesConnectorComponent
method), 391

getChangeSources() (build-
bot.db.changesources.ChangeSourcesConnectorComponent
method), 391

getChangeUids() (build-
bot.db.changes.ChangesConnectorComponent
method), 389

538 Index

Buildbot Documentation, Release 0.9.1

getConfigDict() (build-
bot.config.buildbot.interfaces.IConfigured
method), 268

getConfigDict() (build-
bot.config.buildbot.util.ConfiguredMixin
method), 268

getCurrentSummary() (build-
bot.process.buildstep.BuildStep method),
420

getEndpoint() (buildbot.data.connector.DataConnector
method), 369

getEndpoints() (buildbot.data.base.ResourceType
method), 371

getExtraParams(), 192
getFileContentFromWorker() (build-

bot.process.buildstep.buildbot.process.buildstep.CommandMixin
method), 426

getFinalState() (build-
bot.steps.source.buildbot.steps.shellsequence.ShellSequence
method), 154

getFromKwargs() (build-
bot.schedulers.forceshed.BaseParameter
method), 432

getLatestChangeid() (build-
bot.db.changes.ChangesConnectorComponent
method), 390

getLog() (buildbot.db.logs.LogsConnectorComponent
method), 383

getLog() (buildbot.process.buildstep.BuildStep
method), 423

getLogBySlug() (build-
bot.db.logs.LogsConnectorComponent
method), 383

getLoginResource() (buildbot.www.auth.AuthBase
method), 442

getLogLines() (build-
bot.db.logs.LogsConnectorComponent
method), 384

getLogout() (buildbot.www.auth.AuthBase method),
442

getLogs() (buildbot.db.logs.LogsConnectorComponent
method), 383

getMaster() (buildbot.db.masters.MastersConnectorComponent
method), 398

getMasters() (buildbot.db.masters.MastersConnectorComponent
method), 398

getMessage(), 192
getName() (buildbot.util.service.SharedService

method), 286
getObjectId() (buildbot.db.state.StateConnectorComponent

method), 395
getParentChangeIds() (build-

bot.db.changes.ChangesConnectorComponent
method), 388

getPrevSuccessfulBuild() (build-
bot.db.builds.BuildsConnectorComponent
method), 380

getProperties(), 434

getProperty(), 433
getRecentChanges() (build-

bot.db.changes.ChangesConnectorComponent
method), 390

getRecipientList(), 192
getRenderingFor(), 433
getResultSummary() (build-

bot.process.buildstep.BuildStep method),
421

getScheduler() (build-
bot.db.schedulers.SchedulersConnectorComponent
method), 393

getSchedulers() (build-
bot.db.schedulers.SchedulersConnectorComponent
method), 393

getSchedulersAndProperties() (in module build-
bot.steps.source), 171

getService() (buildbot.util.service.HTTPClientService
static method), 288

getService() (buildbot.util.service.SharedService
method), 286

getSourceStamp() (build-
bot.db.sourcestamps.SourceStampsConnectorComponent
method), 394

getSourceStamps() (build-
bot.db.sourcestamps.SourceStampsConnectorComponent
method), 394

getSourceStampsForBuild() (build-
bot.db.sourcestamps.SourceStampsConnectorComponent
method), 394

getState() (buildbot.db.state.StateConnectorComponent
method), 395

getState() (buildbot.schedulers.base.BaseScheduler
method), 431

getState() (buildbot.util.state.StateMixin method), 283
getStatistic() (buildbot.process.buildstep.BuildStep

method), 421
getStatistics() (buildbot.process.buildstep.BuildStep

method), 421
getStderr() (buildbot.process.logobserver.BufferLogObserver

method), 441
getStdout() (buildbot.process.logobserver.BufferLogObserver

method), 441
getStep() (buildbot.db.steps.StepsConnectorComponent

method), 382
getSteps() (buildbot.db.steps.StepsConnectorComponent

method), 382
getSummaryStatistic() (buildbot.process.build.Build

method), 411
getUrl() (buildbot.process.build.Build method), 411
getUser() (buildbot.db.users.UsersConnectorComponent

method), 396
getUserAvatar() (buildbot.www.avatar.AvatarBase

method), 443
getUserByUsername() (build-

bot.db.users.UsersConnectorComponent
method), 396

getUserInfo() (buildbot.www.auth.UserInfoProviderBase

Index 539

Buildbot Documentation, Release 0.9.1

method), 442
getUserInfoFromOAuthClient() (build-

bot.www.oauth2.OAuth2Auth method),
443

getUsers() (buildbot.db.users.UsersConnectorComponent
method), 396

getWorker() (buildbot.db.workers.WorkersConnectorComponent
method), 387

getWorkerName() (build-
bot.process.buildstep.BuildStep method),
422

getWorkers() (buildbot.db.workers.WorkersConnectorComponent
method), 387

Git Build Step, 141
GitHub Build Step, 148
GitHub Change Source, 203
GitHubStatusPush (built-in class), 188
GitHubStatusPush Reporter Target, 188
GitLab Change Source, 206
GitLabStatusPush (built-in class), 190
GitLabStatusPush Reporter Target, 190
Gitorious Change Source, 207
GitPoller Change Source, 81
GNUAutoconf, 126
GoogleCodeAtomPoller Change Source, 86
gotChange() (buildbot.schedulers.base.BaseScheduler

method), 429

H
haltOnFailure (buildbot.process.buildstep.BuildStep at-

tribute), 418
haltOnFailure (build-

bot.process.results.ResultComputingConfigMixin
attribute), 292

hashColumns() (build-
bot.db.base.DBConnectorComponent
method), 399

hasProperty(), 434
hasStatistic() (buildbot.process.buildstep.BuildStep

method), 421
HEAD Build Step, 174
HgPoller Change Source, 82
hideStepIf (buildbot.process.buildstep.BuildStep

attribute), 418
HipchatStatusPush Reporter Target, 190
hits (in module buildbot.util.lru), 275
HLint Build Step, 173
HOME, 41
HTMLLog (class in buildbot.process.log), 439
HTTP Requests, 174
HTTPClientService (class in buildbot.util.service), 288,

290
HttpStatusPush (built-in class), 187
HttpStatusPush Reporter Target, 187
HTTPStep Build Step, 174

I
Identifier (class in buildbot.data.types), 375

identifierToUid() (build-
bot.db.users.UsersConnectorComponent
method), 397

IHTTPResponse (class in buildbot.util.service), 289
in_reactor() (in module buildbot.util), 274
INCLUDE, 157
incrementIdentifier() (in module build-

bot.util.identifiers), 283
InheritBuildParameter Scheduler, 104
initialStdin (buildbot.process.buildstep.buildbot.process.buildstep.ShellMixin

attribute), 427
InsertFromSelect (class in buildbot.util.sautils), 281
Integer (class in buildbot.data.types), 374
interrupt() (buildbot.process.buildstep.BuildStep

method), 420
interrupt() (buildbot.process.remotecommand.RemoteCommand

method), 415
interruptSignal (build-

bot.process.buildstep.buildbot.process.buildstep.ShellMixin
attribute), 427

inv() (in module buildbot.util.lru), 276
InvalidOptionError, 370
InvalidPathError, 370
IRC, 182
IRC Reporter Target, 182
is_current() (buildbot.db.model.Model method), 401
isActive() (buildbot.util.service.ClusteredService

method), 285
isCollection (buildbot.data.base.Endpoint attribute),

372
isIdentifier() (in module buildbot.util.identifiers), 283
isRaw (buildbot.data.base.Endpoint attribute), 372
iterPatterns() (buildbot.util.pathmatch.Matcher

method), 282

J
join_list() (in module buildbot.util), 275
json() (buildbot.util.service.IHTTPResponse method),

290
JSONPropertiesDownload Build Step, 167
JSONStringDownload Build Step, 167

K
KeyedSets (class in buildbot.util.bbcollections), 276

L
label (buildbot.schedulers.forceshed.BaseParameter at-

tribute), 432
lazylogfiles (buildbot.process.buildstep.buildbot.process.buildstep.ShellMixin

attribute), 427
LIB, 157
libvirt, 113
LibVirtWorker Build Worker, 113
limit (buildbot.data.resultspec.ResultSpec attribute),

434
LineBoundaryFinder (class in build-

bot.util.lineboundaries), 284

540 Index

Buildbot Documentation, Release 0.9.1

LineConsumerLogObserver (class in build-
bot.process.logobserver), 441

links, 227
List (class in buildbot.data.types), 375
Listener (class in buildbot.worker.protocols.base), 435
loadConfig() (buildbot.config.FileLoader method), 266
loadConfigDict() (in module buildbot.config), 266
loadFromDict() (buildbot.config.MasterConfig class

method), 266
locks (buildbot.config.BuilderConfig attribute), 267
locks (buildbot.process.buildstep.BuildStep attribute),

418
Log (class in buildbot.process.log), 438
logCompressionLimit (buildbot.config.MasterConfig

attribute), 264
logCompressionLimit (Buildmaster Config), 59
logCompressionMethod (buildbot.config.MasterConfig

attribute), 264
logCompressionMethod (Buildmaster Config), 59
logEncoding (buildbot.config.MasterConfig attribute),

265
logEncoding (buildbot.process.buildstep.BuildStep at-

tribute), 418
logEncoding (Buildmaster Config), 59
logEnviron (buildbot.process.buildstep.buildbot.process.buildstep.ShellMixin

attribute), 427
logfiles (buildbot.process.buildstep.buildbot.process.buildstep.ShellMixin

attribute), 427
logfiles (buildbot.process.buildstep.LoggingBuildStep

attribute), 425
LoggingBuildStep (class in buildbot.process.buildstep),

424
logHorizon (buildbot.config.MasterConfig attribute),

264
logHorizon (Buildmaster Config), 60
logid (buildbot.process.log.Log attribute), 439
LogLineObserver (class in build-

bot.process.logobserver), 440
logMaxSize (buildbot.config.MasterConfig attribute),

264
logMaxSize (Buildmaster Config), 59
logMaxTailSize (buildbot.config.MasterConfig at-

tribute), 265
logMaxTailSize (Buildmaster Config), 59
LogObserver (class in buildbot.process.logobserver),

440
LogRenderable Build Step, 168
Logs

DB Connector Component, 383
logs (buildbot.process.remotecommand.RemoteCommand

attribute), 415
LogsConnectorComponent (class in buildbot.db.logs),

383
loseConnection() (build-

bot.worker.protocols.base.Connection
method), 436

M
MaildirService (class in buildbot.util.maildir), 279
MailNotifier Reporter Target, 178
MakeDirectory Build Step, 161
makeList() (in module buildbot.util), 273
makeRemoteShellCommand() (build-

bot.process.buildstep.buildbot.process.buildstep.ShellMixin
method), 427

Manhole, 62
manhole (buildbot.config.MasterConfig attribute), 265
manhole (Buildmaster Config), 62
master (buildbot.util.state.StateMixin attribute), 282
master (in module buildbot.status.buildset), 413
masterActive() (buildbot.data.masters.Master method),

345
MasterConfig (class in buildbot.config), 264
Masters

DB Connector Component, 397
MastersConnectorComponent (class in build-

bot.db.masters), 397
MasterShellCommand Build Step, 167
masterStopped() (buildbot.data.masters.Master

method), 345
Matcher (class in buildbot.util.pathmatch), 281
matches() (buildbot.util.topicmatch.TopicMatcher

method), 282
max_size (in module buildbot.util.lru), 276
MaxQ Build Step, 174
maxTime (buildbot.process.buildstep.buildbot.process.buildstep.ShellMixin

attribute), 427
maybeAutoLogin() (buildbot.www.auth.AuthBase

method), 442
maybeBuildsetComplete() (build-

bot.data.buildsets.Buildset method), 335
Mercurial Build Step, 140
Mercurial Change Source, 203
messageReceived() (build-

bot.util.maildir.MaildirService method),
280

metadata (buildbot.db.model.Model attribute), 401
method() (in module buildbot.util.debounce), 278
method() (in module buildbot.util.poll), 278
metrics (buildbot.config.MasterConfig attribute), 265
metrics (Buildmaster Config), 64
misses (in module buildbot.util.lru), 276
MockBuildSRPM Build Step, 172
MockRebuild Build Step, 172
Model (class in buildbot.db.model), 401
Monotone Build Step, 149
moveToCurDir() (buildbot.util.maildir.MaildirService

method), 280
mq (Buildmaster Config), 57
MQConnector (class in buildbot.mq.base), 405
MsBuild12 Build Step, 156
MsBuild14 Build Step, 156
MsBuild4 Build Step, 156
MTR Build Step, 159

Index 541

Buildbot Documentation, Release 0.9.1

multiMaster (buildbot.config.MasterConfig attribute),
265

multiMaster (Buildmaster Config), 58
multiple (buildbot.schedulers.forceshed.BaseParameter

attribute), 432
MultipleFileUpload Build Step, 166
MySQL, 57

limitations, 378, 403, 404

N
name (buildbot.config.buildbot.util.ConfiguredMixin

attribute), 268
name (buildbot.config.BuilderConfig attribute), 266
name (buildbot.data.base.ResourceType attribute), 371
name (buildbot.process.buildstep.BuildStep attribute),

418
name (buildbot.process.log.Log attribute), 439
name (buildbot.schedulers.base.BaseScheduler at-

tribute), 428
name (buildbot.schedulers.forceshed.BaseParameter at-

tribute), 432
name (buildbot.util.state.StateMixin attribute), 282
naturalSort() (in module buildbot.util), 272
needsReconfig (buildbot.www.resource.Resource at-

tribute), 443
NetstringParser (class in buildbot.util.netstrings), 281
newBuild() (buildbot.data.builds.Build method), 329
newStep() (buildbot.data.steps.Step method), 351
nextBuild (buildbot.config.BuilderConfig attribute),

267
nextWorker (buildbot.config.BuilderConfig attribute),

267
Nightly Scheduler, 93
NightlyTriggerable Scheduler, 97
none_or_str() (in module buildbot.util), 274
NoneOk (class in buildbot.data.types), 375
NotABranch (in module buildbot.util), 274
NotClaimedError, 377
notify() (in module buildbot.util), 275
notifyOnDisconnect() (build-

bot.worker.protocols.base.Connection
method), 436

now() (in module buildbot.util), 273

O
OAuth2Auth (class in buildbot.www.oauth2), 442
objdict, 395
objectid, 395
offset (buildbot.data.resultspec.ResultSpec attribute),

434
OpenStackLatentWorker Build Worker, 115
OPTIONS Build Step, 174
order (buildbot.data.resultspec.ResultSpec attribute),

434

P
P4 Build Step, 146
P4PASSWD, 79

P4PORT, 79
P4Source Change Source, 78
P4USER, 79
parse_from_arg() (build-

bot.schedulers.forceshed.BaseParameter
method), 433

parse_from_args() (build-
bot.schedulers.forceshed.BaseParameter
method), 433

PATH, 30, 41, 80, 123, 151, 157, 168, 248
pathExists() (buildbot.process.buildstep.buildbot.process.buildstep.CommandMixin

method), 426
pathPatterns (buildbot.data.base.Endpoint attribute),

372
PBChangeSource Change Source, 76
Periodic Scheduler, 92
PerlModuleTest Build Step, 159
plural (buildbot.data.base.ResourceType attribute), 371
Poller (class in buildbot.util.poll), 279
Poller Change Source, 206
PollingChangeSource (class in buildbot.changes.base),

414
popBooleanFilter() (build-

bot.data.resultspec.ResultSpec method),
435

popField() (buildbot.data.resultspec.ResultSpec
method), 435

popFilter() (buildbot.data.resultspec.ResultSpec
method), 435

popIntegerFilter() (buildbot.data.resultspec.ResultSpec
method), 435

popProperties() (buildbot.data.resultspec.ResultSpec
method), 434

popStringFilter() (buildbot.data.resultspec.ResultSpec
method), 435

POST Build Step, 174
post() (buildbot.util.service.HTTPClientService

method), 289
Postgres, 57
prioritizeBuilders (buildbot.config.MasterConfig

attribute), 265
prioritizeBuilders (Buildmaster Config), 61
priority (buildbot.config.ReconfigurableServiceMixin

attribute), 269
produce() (buildbot.mq.base.MQConnector method),

405
produceEvent() (buildbot.data.base.ResourceType

method), 371
produceEvent() (build-

bot.data.connector.DataConnector method),
369

progressMetrics (buildbot.process.buildstep.BuildStep
attribute), 418

Properties, 50, 130
branch, 131
builddir, 131
builder, 123
buildername, 131

542 Index

Buildbot Documentation, Release 0.9.1

buildnumber, 131
Common Properties, 130
from forced build, 184
from GerritChangeSource, 85
from scheduler, 87
from steps, 168
from worker, 106
global, 62
got_revision, 130
Interpolate, 132
IProperties, 433
IRenderable, 433
JSONPropertiesDownload, 167
Property, 131
Renderer, 133
scheduler, 131
Transform, 133
tree-size-KiB, 159
triggering schedulers, 170
warnings-count, 155
WithProperties, 134
workername, 131

properties (buildbot.config.BuilderConfig attribute),
267

properties (buildbot.config.MasterConfig attribute), 265
properties (buildbot.data.resultspec.ResultSpec at-

tribute), 434
properties (buildbot.schedulers.base.BaseScheduler at-

tribute), 428
properties (Buildmaster Config), 62
Property (class in buildbot.data.resultspec), 435
protocols (buildbot.config.MasterConfig attribute), 265
protocols (Buildmaster Config), 62
proxies (buildbot.worker.protocols.base.Connection at-

tribute), 436
PUT Build Step, 174
put() (buildbot.util.service.HTTPClientService

method), 289
put() (in module buildbot.util.lru), 276
PyFlakes Build Step, 162
PyLint Build Step, 163
Python Enhancement Proposals

PEP 328, 276
PYTHONPATH, 31, 41, 87, 129, 151, 164, 230–232,

248

Q
QueueRef (class in buildbot.mq.base), 406
QuickBuildFactory, 127

R
rc (buildbot.process.remotecommand.RemoteCommand

attribute), 415
reclaimBuildRequests() (build-

bot.data.buildrequests.BuildRequest
method), 333

reclaimBuildRequests() (build-
bot.db.buildrequests.BuildRequestsConnectorComponent

method), 378
reconfigAuth() (buildbot.www.auth.AuthBase method),

442
reconfigResource() (buildbot.www.resource.Resource

method), 443
reconfigService() (build-

bot.statistics.stats_service.StatsService
method), 316

reconfigService() (build-
bot.util.service.BuildbotService method),
287

reconfigServiceWithBuildbotConfig() (build-
bot.config.ReconfigurableServiceMixin
method), 269

reconfigServiceWithSibling() (build-
bot.util.service.BuildbotService method),
287

ReconfigurableServiceMixin (class in buildbot.config),
268

Redirect (class in buildbot.www.resource), 443
refhits (in module buildbot.util.lru), 275
regex (buildbot.schedulers.forceshed.BaseParameter at-

tribute), 432
register() (buildbot.worker.manager.WorkerManager

method), 438
registerConsumers() (build-

bot.statistics.stats_service.StatsService
method), 316

remote_close() (build-
bot.worker.protocols.base.FileReaderImpl
method), 438

remote_complete() (build-
bot.process.remotecommand.RemoteCommand
method), 415

remote_read() (build-
bot.worker.protocols.base.FileReaderImpl
method), 438

remote_update() (build-
bot.process.remotecommand.RemoteCommand
method), 415

remote_update() (build-
bot.worker.protocols.base.RemoteCommandImpl
method), 437

RemoteCommand (class in build-
bot.process.remotecommand), 414

RemoteCommandImpl (class in build-
bot.worker.protocols.base), 437

remoteComplete() (build-
bot.process.remotecommand.RemoteCommand
method), 415

remoteGetWorkerInfo() (build-
bot.worker.protocols.base.Connection
method), 436

remoteInterruptCommand() (build-
bot.worker.protocols.base.Connection
method), 437

remotePrint() (buildbot.worker.protocols.base.Connection
method), 436

Index 543

Buildbot Documentation, Release 0.9.1

remoteSetBuilderList() (build-
bot.worker.protocols.base.Connection
method), 436

RemoteShellCommand (class in build-
bot.process.remotecommand), 417

remoteShutdown() (build-
bot.worker.protocols.base.Connection
method), 436

remoteStartBuild() (build-
bot.worker.protocols.base.Connection
method), 437

remoteStartCommand() (build-
bot.worker.protocols.base.Connection
method), 436

remoteUpdate() (build-
bot.process.remotecommand.RemoteCommand
method), 415

removeBuilderMaster() (build-
bot.db.builders.BuildersConnectorComponent
method), 398

removeConsumers() (build-
bot.statistics.stats_service.StatsService
method), 317

RemoveDirectory Build Step, 161
removeOrder() (buildbot.data.resultspec.ResultSpec

method), 435
removePagination() (build-

bot.data.resultspec.ResultSpec method),
435

RemovePYCs Build Step, 164
removeUser() (build-

bot.db.users.UsersConnectorComponent
method), 397

renderable, 131
rendered (buildbot.process.buildstep.BuildStep at-

tribute), 418
Repo Build Step, 147

Gerrit integration, 147
reporter (Buildmaster Config), 177
Reporter Targets

BitbucketStatusPush, 189
GerritStatusPush, 185
GitHubStatusPush, 188
GitLabStatusPush, 190
HipchatStatusPush, 190
HttpStatusPush, 187
IRC, 182
MailNotifier, 178

required (buildbot.schedulers.forceshed.BaseParameter
attribute), 432

Resource (class in buildbot.www.resource), 443
Resource Action

/builders/{builderid}/builds/{build_number}:rebuild,
330

/builders/{builderid}/builds/{build_number}:stop,
330

/buildrequests/{buildrequestid}:cancel, 334
/builds/{buildid}:rebuild, 331

/builds/{buildid}:stop, 330
/forceschedulers/{schedulername}:force, 339

Resource Path
/, 347
/application.spec, 350
/builders, 331
/builders/{builderid}, 331
/builders/{builderid}/{masterid}, 346
/builders/{builderid}/buildrequests, 334
/builders/{builderid}/builds, 330
/builders/{builderid}/builds/{build_number}, 330
/builders/{builderid}/builds/{build_number}/steps,

352
/builders/{builderid}/builds/{build_number}/steps/{step_name},

352
/builders/{builderid}/builds/{build_number}/steps/{step_name}/logs,

341
/builders/{builderid}/builds/{build_number}/steps/{step_name}/logs/{log_slug},

341
/builders/{builderid}/builds/{build_number}/steps/{step_name}/logs/{log_slug}/contents,

344
/builders/{builderid}/builds/{build_number}/steps/{step_name}/logs/{log_slug}/raw,

355
/builders/{builderid}/builds/{build_number}/steps/{step_number},

352
/builders/{builderid}/builds/{build_number}/steps/{step_number}/logs,

341
/builders/{builderid}/builds/{build_number}/steps/{step_number}/logs/{log_slug},

342
/builders/{builderid}/builds/{build_number}/steps/{step_number}/logs/{log_slug}/contents,

344
/builders/{builderid}/builds/{build_number}/steps/{step_number}/logs/{log_slug}/raw,

355
/builders/{builderid}/forceschedulers, 339
/builders/{builderid}/masters, 346
/builders/{builderid}/workers, 353
/builders/{builderid}/workers/{name}, 353
/builders/{builderid}/workers/{workerid}, 354
/buildrequests, 334
/buildrequests/{buildrequestid}, 334
/buildrequests/{buildrequestid}/builds, 330
/builds, 330
/builds/{buildid}, 330
/builds/{buildid}/changes, 337
/builds/{buildid}/properties, 349
/builds/{buildid}/steps, 352
/builds/{buildid}/steps/{step_number_or_name},

353
/builds/{buildid}/steps/{step_number_or_name}/logs,

342
/builds/{buildid}/steps/{step_number_or_name}/logs/{log_slug},

342
/builds/{buildid}/steps/{step_number_or_name}/logs/{log_slug}/contents,

344
/builds/{buildid}/steps/{step_number_or_name}/logs/{log_slug}/raw,

356
/buildsets, 335
/buildsets/{bsid}, 335

544 Index

Buildbot Documentation, Release 0.9.1

/buildsets/{bsid}/properties, 349
/changes, 337
/changes/{changeid}, 337
/changesources, 338
/changesources/{changesourceid}, 338
/forceschedulers, 339
/forceschedulers/{schedulername}, 339
/logs/{logid}, 342
/logs/{logid}/contents, 344
/logs/{logid}/raw, 356
/masters, 346
/masters/{masterid}, 346
/masters/{masterid}/builders, 331
/masters/{masterid}/builders/{builderid}, 332
/masters/{masterid}/builders/{builderid}/workers,

354
/masters/{masterid}/builders/{builderid}/workers/{name},

354
/masters/{masterid}/builders/{builderid}/workers/{workerid},

354
/masters/{masterid}/changesources, 338
/masters/{masterid}/changesources/{changesourceid},

338
/masters/{masterid}/schedulers, 348
/masters/{masterid}/schedulers/{schedulerid},

348
/masters/{masterid}/workers, 354
/masters/{masterid}/workers/{name}, 354
/masters/{masterid}/workers/{workerid}, 355
/schedulers, 348
/schedulers/{schedulerid}, 348
/sourcestamps, 350
/sourcestamps/{ssid}, 350
/sourcestamps/{ssid}/changes, 337
/steps/{stepid}/logs, 342
/steps/{stepid}/logs/{log_slug}, 343
/steps/{stepid}/logs/{log_slug}/contents, 344
/steps/{stepid}/logs/{log_slug}/raw, 356
/workers, 355
/workers/{name_or_id}, 355

Resource Type
build, 328
builder, 331
buildrequest, 332
buildset, 334
change, 336
changesource, 337
collection, 326
forcescheduler, 339
identifier, 340
log, 340
logchunk, 343
master, 345
patch, 346
rootlink, 347
scheduler, 347
sourcedproperties, 348
sourcestamp, 349

spec, 350
step, 350
worker, 353

ResourceType (class in buildbot.data.base), 371
restart (buildbot) Command Line Subcommand, 236
restart (worker) Command Line Subcommand, 245
ResultComputingConfigMixin (class in build-

bot.process.results), 292
resultConfig (buildbot.process.results.ResultComputingConfigMixin

attribute), 292
results (buildbot.process.buildstep.BuildStep attribute),

418
Results (in module buildbot.process.results), 292
results() (buildbot.process.remotecommand.RemoteCommand

method), 415
ResultSpec (class in buildbot.data.resultspec), 434
RETRY (in module buildbot.process.results), 292
revlink (Buildmaster Config), 69
Robocopy Build Step, 158
rootLinkName (buildbot.data.base.Endpoint attribute),

372
RpmBuild Build Step, 171
RpmLint Build Step, 172
rtypes (buildbot.data.connector.DataConnector at-

tribute), 369
run() (buildbot.process.buildstep.BuildStep method),

419
run() (buildbot.process.remotecommand.RemoteCommand

method), 414
runCommand() (buildbot.process.buildstep.BuildStep

method), 423
runGlob() (buildbot.process.buildstep.buildbot.process.buildstep.CommandMixin

method), 426
runMkdir() (buildbot.process.buildstep.buildbot.process.buildstep.CommandMixin

method), 426
runRmdir() (buildbot.process.buildstep.buildbot.process.buildstep.CommandMixin

method), 426

S
sa_version() (in module buildbot.util.sautils), 281
safeTranslate() (in module buildbot.util), 272
Scheduler Scheduler, 90
SchedulerAlreadyClaimedError, 370, 391
schedulerid (buildbot.schedulers.base.BaseScheduler

attribute), 429
Schedulers

AnyBranchScheduler, 91
ChoiceStringParameter, 103
DB Connector Component, 391
Dependent, 91
ForceScheduler, 98
InheritBuildParameter, 104
Nightly, 93
NightlyTriggerable, 97
Periodic, 92
Scheduler, 90
SingleBranchScheduler, 90
Triggerable, 96

Index 545

Buildbot Documentation, Release 0.9.1

Try_Jobdir, 94
Try_Userpass, 94
WorkerChoiceParameter, 105

schedulers (buildbot.config.MasterConfig attribute),
265

schedulers (Buildmaster Config), 87
SchedulersConnectorComponent (class in build-

bot.db.schedulers), 391
sendBuildSetSummary() (in module build-

bot.status.buildset), 413
sendchange Command Line Subcommand, 241
Service Mixins

ReconfigurableServiceMixin, 268
Service utilities

ClusteredService, 284
services (buildbot.config.MasterConfig attribute), 265
services (Buildmaster Config), 207
set() (DbConfig method), 208
setAllMastersActiveLongTimeAgo() (build-

bot.db.masters.MastersConnectorComponent
method), 398

setBasedir() (buildbot.util.maildir.MaildirService
method), 280

setBuild() (buildbot.process.buildstep.BuildStep
method), 419

setBuildProperties() (build-
bot.data.properties.Properties method),
349

setBuildProperty() (buildbot.data.properties.Properties
method), 348

setBuildProperty() (build-
bot.db.builds.BuildsConnectorComponent
method), 381

setBuildStateString() (buildbot.data.builds.Build
method), 329

setChangeSourceMaster() (build-
bot.db.changesources.ChangeSourcesConnectorComponent
method), 391

setDefaultWorkdir() (build-
bot.process.buildstep.BuildStep method),
419

setMasterState() (build-
bot.db.masters.MastersConnectorComponent
method), 397

setProgress() (buildbot.process.buildstep.BuildStep
method), 422

SetPropertiesFromEnv Build Step, 169
SetProperty Build Step, 168
setProperty(), 434
SetPropertyFromCommand Build Step, 169
setSchedulerMaster() (build-

bot.db.schedulers.SchedulersConnectorComponent
method), 392

setState() (buildbot.db.state.StateConnectorComponent
method), 395

setState() (buildbot.schedulers.base.BaseScheduler
method), 431

setStatistic() (buildbot.process.buildstep.BuildStep

method), 421
setStepStateString() (buildbot.data.steps.Step method),

351
setupProgress() (buildbot.process.buildstep.BuildStep

method), 419
setupShellMixin() (build-

bot.process.buildstep.buildbot.process.buildstep.ShellMixin
method), 427

setWorker() (buildbot.process.buildstep.BuildStep
method), 419

SharedService (class in buildbot.util.service), 285
ShellCommand Build Step, 150
ShellSequence Build Step, 153
shouldRunTheCommand() (build-

bot.steps.source.buildbot.steps.shellsequence.ShellSequence
method), 154

sighup Command Line Subcommand, 236
sigtermTime (buildbot.process.buildstep.buildbot.process.buildstep.ShellMixin

attribute), 427
SimpleMQ (class in buildbot.mq.simple), 407
SingleBranchScheduler Scheduler, 90
SKIPPED (in module buildbot.process.results), 292
SourcedProperties (class in buildbot.data.types), 375
SourceStamps

DB Connector Component, 393
SourceStampsConnectorComponent (class in build-

bot.db.sourcestamps), 393
Sphinx Build Step, 162
SQLite, 56

limitations, 378, 403, 404
ssdict, 393
ssid, 393
start (buildbot) Command Line Subcommand, 236
start (worker) Command Line Subcommand, 245
start() (buildbot.process.buildstep.BuildStep method),

420
start() (buildbot.util.debounce.Debouncer method), 278
start() (buildbot.util.poll.Poller method), 279
startConsuming() (buildbot.mq.base.MQConnector

method), 405
startConsumingChanges() (build-

bot.schedulers.base.BaseScheduler method),
429

startStep() (buildbot.data.steps.Step method), 351
startStep() (buildbot.process.buildstep.BuildStep

method), 419
StashStatusPush (built-in class), 189
State

DB Connector Component, 395
StateConnectorComponent (class in buildbot.db.state),

395
StateMixin (class in buildbot.util.state), 282
stats-service (Buildmaster Config), 64
stdout (buildbot.process.remotecommand.RemoteCommand

attribute), 415
stepdict, 381
stepid, 381
stepid (buildbot.process.buildstep.BuildStep attribute),

546 Index

Buildbot Documentation, Release 0.9.1

418
Steps

DB Connector Component, 381
StepsConnectorComponent (class in buildbot.db.steps),

381
stop (buildbot) Command Line Subcommand, 236
stop (worker) Command Line Subcommand, 245
stop() (buildbot.util.debounce.Debouncer method), 278
stop() (buildbot.util.poll.Poller method), 279
stopConsuming() (buildbot.mq.base.QueueRef

method), 406
stopped (buildbot.process.buildstep.BuildStep at-

tribute), 420
stopService() (buildbot.statistics.stats_service.StatsService

method), 316
StreamLog (class in buildbot.process.log), 439
String (class in buildbot.data.types), 374
StringDownload Build Step, 167
strings (buildbot.util.netstrings.NetstringParser at-

tribute), 281
stripUrlPassword() (in module buildbot.util), 275
subscribe() (buildbot.process.log.Log method), 439
SubunitShellCommand Build Step, 160
SUCCESS (in module buildbot.process.results), 291
summarySubscribe() (in module build-

bot.status.buildset), 413
summaryUnsubscribe() (in module build-

bot.status.buildset), 413
SVN Build Step, 143
SVNCommitEmailMaildirSource Change Source, 76
SVNPoller Change Source, 79

T
Test Build Step, 159
TextLog (class in buildbot.process.log), 439
thd_postStatsValue() (build-

bot.statistics.storage_backends.influxdb_client.InfluxStorageService
method), 318

thd_postStatsValue() (build-
bot.statistis.storage_backends.base.StatsStorageBase
method), 317

timeout (buildbot.process.buildstep.buildbot.process.buildstep.ShellMixin
attribute), 427

title (buildbot.config.MasterConfig attribute), 264
title (Buildmaster Config), 59
titleURL (buildbot.config.MasterConfig attribute), 264
titleURL (Buildmaster Config), 59
TMP, 170
TopicMatcher (class in buildbot.util.topicmatch), 282
TreeSize Build Step, 159
Trial, 129
Trial Build Step, 163
Trigger Build Step, 170
Triggerable Scheduler, 96
Triggers, 96
try Command Line Subcommand, 237
Try_Jobdir Scheduler, 94
Try_Userpass Scheduler, 94

trySetChangeSourceMaster() (build-
bot.data.changesources.ChangeSource
method), 338

trySetSchedulerMaster(), 347
type (buildbot.process.log.Log attribute), 439
type (buildbot.schedulers.forceshed.BaseParameter at-

tribute), 432

U
unclaimBuildRequests() (build-

bot.data.buildrequests.BuildRequest
method), 333

unclaimBuildRequests() (build-
bot.db.buildrequests.BuildRequestsConnectorComponent
method), 378

unclaimExpiredRequests() (build-
bot.data.buildrequests.BuildRequest
method), 333

unclaimExpiredRequests() (build-
bot.db.buildrequests.BuildRequestsConnectorComponent
method), 379

unregister() (buildbot.worker.manager.WorkerRegistration
method), 438

unsupported format character, 134
update() (buildbot.worker.manager.WorkerRegistration

method), 438
updateBuilderList() (buildbot.data.builders.Builder

method), 331
updateFromKwargs() (build-

bot.schedulers.forceshed.BaseParameter
method), 432

updateMethod() (in module buildbot.data.base), 374
updateSummary() (build-

bot.process.buildstep.BuildStep method),
420

updateUser() (buildbot.db.users.UsersConnectorComponent
method), 396

updateUserInfo() (buildbot.www.auth.AuthBase
method), 442

upgrade() (buildbot.db.model.Model method), 401
upgrade-master Command Line Subcommand, 236
useLog() (buildbot.process.remotecommand.RemoteCommand

method), 416
useLogDelayed() (build-

bot.process.remotecommand.RemoteCommand
method), 416

useProgress (buildbot.process.buildstep.BuildStep at-
tribute), 418

usePTY (buildbot.process.buildstep.buildbot.process.buildstep.ShellMixin
attribute), 427

user Command Line Subcommand, 242
user_managers (buildbot.config.MasterConfig at-

tribute), 265
user_managers (Buildmaster Config), 69
userInfoProvider (buildbot.www.auth.AuthBase at-

tribute), 442
UserInfoProviderBase (class in buildbot.www.auth),

442

Index 547

Buildbot Documentation, Release 0.9.1

Users
DB Connector Component, 396

UsersConnectorComponent (class in buildbot.db.users),
396

UTC (in module buildbot.util), 273

V
validation (buildbot.config.MasterConfig attribute), 265
validation (Buildmaster Config), 69
VC10 Build Step, 156
VC11 Build Step, 156
VC12 Build Step, 156
VC14 Build Step, 156
VC6 Build Step, 156
VC7 Build Step, 156
VC8 Build Step, 156
VC9 Build Step, 156
VCExpress9 Build Step, 156
Visual C++, 156
Visual Studio, 156
VS2003 Build Step, 156
VS2005 Build Step, 156
VS2008 Build Step, 156
VS2010 Build Step, 156
VS2012 Build Step, 156
VS2013 Build Step, 156
VS2015 Build Step, 156

W
wait() (in module buildbot.util), 275
waitUntilEvent() (buildbot.mq.base.MQConnector

method), 406
WampConnector (class in buildbot.wamp.connector),

407
WampMQ (class in buildbot.mq.wamp), 407
want_stderr (buildbot.process.buildstep.buildbot.process.buildstep.ShellMixin

attribute), 427
want_stdout (buildbot.process.buildstep.buildbot.process.buildstep.ShellMixin

attribute), 427
WARNINGS (in module buildbot.process.results), 291
warnOnFailure (buildbot.process.buildstep.BuildStep

attribute), 418
warnOnFailure (build-

bot.process.results.ResultComputingConfigMixin
attribute), 292

warnOnWarnings (build-
bot.process.buildstep.BuildStep attribute),
418

warnOnWarnings (build-
bot.process.results.ResultComputingConfigMixin
attribute), 292

workdir (buildbot.process.buildstep.buildbot.process.buildstep.ShellMixin
attribute), 427

workdir (buildbot.process.buildstep.BuildStep at-
tribute), 419

worker (buildbot.process.buildstep.BuildStep attribute),
419

Worker (class in buildbot.worker), 412

workerbuilddir (buildbot.config.BuilderConfig at-
tribute), 267

WorkerChoiceParameter Scheduler, 105
workerConfigured() (build-

bot.db.workers.WorkersConnectorComponent
method), 388

workerConnected() (build-
bot.db.workers.WorkersConnectorComponent
method), 387

workerDisconnected() (build-
bot.db.workers.WorkersConnectorComponent
method), 387

workerid (buildbot.worker.Worker attribute), 412
WorkerManager (class in buildbot.worker.manager),

438
workernames (buildbot.config.BuilderConfig attribute),

266
workerProxyObject (class in build-

bot.worker.protocols.base), 437
WorkerRegistration (class in buildbot.worker.manager),

438
Workers

AWS EC2, 108
DB Connector Component, 386
Docker, 117
latent, 107
libvirt, 113
limiting concurrency, 106
local, 107

workers (buildbot.config.MasterConfig attribute), 265
workers (Buildmaster Config), 105
WorkersConnectorComponent (class in build-

bot.db.workers), 386
workerVersion() (buildbot.process.buildstep.BuildStep

method), 422
workerVersionIsOlderThan() (build-

bot.process.buildstep.BuildStep method),
422

worst_status() (in module buildbot.process.results), 292
www (buildbot.config.MasterConfig attribute), 265
www (Buildmaster Config), 192

Y
yieldMetricsValue() (build-

bot.statistics.stats_service.StatsService
method), 317

548 Index

	Buildbot Tutorial
	First Run
	First Buildbot run with Docker
	A Quick Tour
	Further Reading

	Buildbot Manual
	Introduction
	Installation
	Concepts
	Configuration
	Transition to ``worker'' terminology
	Customization
	New-Style Build Steps
	Command-line Tool
	Resources
	Optimization
	Plugin Infrastructure in Buildbot
	Deployment

	Buildbot Development
	General Documents
	APIs
	Python3 compatibility
	Classes

	Release Notes for Buildbot |version|
	Master
	Worker
	Details
	Older Versions

	Indices and Tables
	Copyright
	Buildmaster Configuration Index
	Scheduler Index
	Change Source Index
	Build Step Index
	Reporter Target Index
	Build Worker Index
	Command Line Index
	Data API Event Index
	REST/Data API Resource Type Index
	REST/Data API Path Index
	REST/Data API Actions Index
	Python Module Index

