eBuildbot

Buildbot Documentation
Release 0.9.7

Brian Warner

May 10, 2017

Contents

Buildbot Tutorial 3
L1 FirstRun . . . oo o e e e e e 3
1.2 First Buildbot run with Docker. 7
1.3 AQuickTour o e e e e e e e 9
1.4 Further Reading e e 16
Buildbot Manual 23
2.1 Introduction L. e e e e e e e e e e e e 23
2.2 Installation L e e e 29
2.3 CONCEPLS & v v v e v e 44
2.4 Secret Management i e 56
2.5 Configuration e e e e e e e e e e e e e 58
2.6 Transition to “worker” terminology oL e 234
2.7 Customization e e e e e e 239
2.8 New-Style Build Steps e e e e e 264
2.9 Command-line Tool e e e e e e e e 267
210 RESOUICES . . o . v v i o e e e e e e e e e e e e e e e e e e 278
2,11 Optimization o oo e e e e e e e e e e 278
2.12 Plugin Infrastructure in Buildbot oo 278
2.13 Deployment e e e e e e e e e e 279
Buildbot Development 283
3.1 General Documents e e 283
3.2 APIS . e e e e e e e 365
3.3 Python3 compatibility e e e e e e e e e 456
340 CIaSSES « v v v o e e e e e e e e e e e e e e e e 459
Release Notes 497
4.1 Buildbot 0.9.7 (2017-05-09) o i i i e e e e e e e e 497
42 Buildbot 0.9.6 (2017-04-19) i i i i e e e e e e e e e e e 498
43 Buildbot 0.9.5(2017-03=18) . . v v i v v i i e e e e e e e e e e e 499
44 Buildbot 0.9.4 (2017-02-08) . . v v i v v i i e e e e e e e e e e e e e e 500
45 Buildbot 0.9.3 (2017=01=11) . v v v v e e e e e e e e 501
46 Buildbot 0.9.2 (2016-12-13) i i i i i e e e e e e e 502
Older Release Notes 505
5.1 Release Notes for Buildbot 0. 9.1 i e e e e e e 505

5.2 Release Notes for Buildbot 0.9.0 i i i i e e 508
5.3 Release Notes for Buildbot 0.9.0rcd« 0 i i i i e e e e e e e e 518
5.4 Release Notes for Buildbot 0.9.0rc3 o i i e e e e e e 519
5.5 Release Notes for Buildbot 0.9.0rc2 0 o i i i e e e e 519
5.6 Release Notes for Buildbot 0.9.0rcl i i v i i i e e e e e e e e e 521
5.7 Release Notes for Buildbot 0.9.0b9 e 522
5.8 Release Notes for Buildbot 0.9.0b8 e 524
5.9 Release Notes for Buildbot 0.9.0b7 e e 531
5.10 Release Notes for Buildbot 0.9.0b6 532
5.11 Release Notes for Buildbot 0.9.0b5 e 533
5.12 Release Notes for Buildbot 0.9.0b4 e 533
5.13 Release Notes for Buildbot 0.9.0b3 e 534
5.14 Release Notes for Buildbot 0.9.0b2 e e 535
5.15 Release Notes for Buildbot 0.9.0b1 e 536
5.16 Release Notes for Buildbot 0.8.11 e 543
5.17 Release Notes for Buildbot 0.8.10 e 546
5.18 Release Notes for Buildbot 0.8.9 e 546
5.19 Release Notes for Buildbot vO.8.8 e 553
5.20 Release Notes for Buildbot vO.8.7 e e 555
5.21 Release Notes for Buildbot vO0.8.6pl 560
6 Indices and Tables 565
7 Copyright 567
Buildmaster Configuration Index 569
Scheduler Index 571
Change Source Index 573
Build Step Index 575
Reporter Target Index 577
Configurator Target Index 579
Build Worker Index 581
Command Line Index 583
Data API Event Index 585
REST/Data API Resource Type Index 587
REST/Data API Path Index 589
REST/Data API Actions Index 591
Python Module Index 593

Buildbot Documentation, Release 0.9.7

This is the Buildbot documentation for Buildbot version | version]|.

If you are evaluating Buildbot and would like to get started quickly, start with the Tutorial. Regular users of Buildbot
should consult the Manual, and those wishing to modify Buildbot directly will want to be familiar with the Developer’s

Documentation.

Contents

Buildbot Documentation, Release 0.9.7

2 Contents

CHAPTER 1

Buildbot Tutorial

Contents:

First Run

Goal

This tutorial will take you from zero to running your first buildbot master and worker as quickly as possible, without
changing the default configuration.

This tutorial is all about instant gratification and the five minute experience: in five minutes we want to convince you
that this project works, and that you should seriously consider spending time learning the system. In this tutorial no
configuration or code changes are done.

This tutorial assumes that you are running Unix, but might be adaptable to Windows.

Thanks to virtualenv (https://pypi.python.org/pypi/virtualenv), installing buildbot in a standalone environment is very
easy. For those more familiar with Docker (https://docker.com), there also exists a docker version of these instructions.

You should be able to cut and paste each shell block from this tutorial directly into a terminal.

Getting ready

There are many ways to get the code on your machine. We will use the easiest one: via pip in a virtualenv
(https://pypi.python.org/pypi/virtualenv). It has the advantage of not polluting your operating system, as everything
will be contained in the virtualenv.

To make this work, you will need the following installed:
¢ Python (https://www.python.org/) and the development packages for it

e virtualenv (https://pypi.python.org/pypi/virtualenv)

https://pypi.python.org/pypi/virtualenv
https://docker.com
https://pypi.python.org/pypi/virtualenv
https://www.python.org/
https://pypi.python.org/pypi/virtualenv

Buildbot Documentation, Release 0.9.7

Preferably, use your distribution package manager to install these.

You will also need a working Internet connection, as virtualenv and pip will need to download other projects from the
Internet.

Note: Buildbot does not require root access. Run the commands in this tutorial as a normal, unprivileged user.

Creating a master

The first necessary step is to create a virtualenv for our master. We will also use a separate directory to demonstrate
the distinction between a master and worker:

mkdir tmp
tmp

mkdir buildbot
buildbot

On Python 2:

virtualenv --no-site-packages sandbox
sandbox/bin/activate

On Python 3:

python3 -m venv sandbox
sandbox/bin/activate

Now that we are ready, we need to install buildbot:

pip install --upgrade pip
pip install

Now that buildbot is installed, it’s time to create the master:

’buildbot create-master master

Buildbot’s activity is controlled by a configuration file. We will use the sample configuration file unchanged:

’mv master/master.cfg.sample master/master.cfg

Finally, start the master:

’buildbot start master

You will now see some log information from the master in this terminal. It should end with lines like these:

2014-11-01 15:52:55+0100 [-] BuildMaster is running
The buildmaster appears to have (re)started correctly.

From now on, feel free to visit the web status page running on the port 8010: http://localhost:8010/

Our master now needs (at least) a worker to execute its commands. For that, head on to the next section!

4 Chapter 1. Buildbot Tutorial

http://localhost:8010/

Buildbot Documentation, Release 0.9.7

Creating a worker

The worker will be executing the commands sent by the master. In this tutorial, we are using the pyflakes project as an
example. As a consequence of this, your worker will need access to the git (https://git-scm.com/) command in order
to checkout some code. Be sure that it is installed, or the builds will fail.

Same as we did for our master, we will create a virtualenv for our worker next to the other one. It would however be
completely ok to do this on another computer - as long as the worker computer is able to connect to the master one:

mkdir tmp/bb-worker
tmp/bb-worker

On Python 2:

virtualenv —--no-site-packages sandbox
sandbox/bin/activate

On Python 3:

python3 -m venv sandbox
sandbox/bin/activate

Install the buildbot-worker command:

pip install buildbot-worker

pip install setuptools-trial

Now, create the worker:

buildbot-worker create-worker worker localhost example-worker pass

Note: If you decided to create this from another computer, you should replace 1ocalhost with the name of the
computer where your master is running.

The username (example-worker), and password (pass) should be the same as those inmaster/master.cfg;
verify this is the case by looking at the section for ¢ ['workers']:

’cat ../bb-master/master/master.cfg

And finally, start the worker:

’buildbot—worker start worker

Check the worker’s output. It should end with lines like these:

2014-11-01 15:56:51+0100 [-] Connecting to localhost:9989
2014-11-01 15:56:51+0100 [Broker,client] message from master: attached
The worker appears to have (re)started correctly.

Meanwhile, from the other terminal, in the master log (twisted. log in the master directory), you should see lines
like these:

1.1. First Run 5

https://git-scm.com/

Buildbot Documentation, Release 0.9.7

2014-11-01 15:56:51+0100 [Broker,1,127.0.0.1] worker 'example-worker' attaching from
—IPv4Address (TCP, '127.0.0.1"', 54015)

2014-11-01 15:56:51+0100 [Broker,1,127.0.0.1] Got workerinfo from 'example-worker'
2014-11-01 15:56:51+0100 [-] bot attached

You should now be able to go to http://localhost:8010, where you will see a web page similar to:

Buildbot: Pyflakes Buildbot: Pyflakes Home

Home

Welcome to buildbot

0 Build running currently
Coneole View 0 recent builds

Waterfall View

> Builds
About

Settings

Click on the Waterfall Display link (http://localhost:8010/waterfall) and you get this:

Buildbot: Pyflakes Buildbot: Pyflakes Waterfall View

Home

Waterfall View

Console View
> Builds

About

Settings

Your master is now quietly waiting for new commits to Pyflakes. This doesn’t happen very often though. In the next
section, we’ll see how to manually start a build.

We just wanted to get you to dip your toes in the water. It’s easy to take your first steps, but this is about as far as we
can go without touching the configuration.

You’ve got a taste now, but you’re probably curious for more. Let’s step it up a little in the second tutorial by changing
the configuration and doing an actual build. Continue on to A Quick Tour.

6 Chapter 1. Buildbot Tutorial

http://localhost:8010
http://localhost:8010/waterfall

Buildbot Documentation, Release 0.9.7

First Buildbot run with Docker

Note: Docker can be tricky to get working correctly if you haven’t used it before. If you’re having trouble, first
determine whether it is a Buildbot issue or a Docker issue by running:

docker run ubuntu:12.04 apt-get update

If that fails, look for help with your Docker install. On the other hand, if that succeeds, then you may have better luck
getting help from members of the Buildbot community.

Docker (https://www.docker.com) is a tool that makes building and deploying custom environments a breeze. It uses
lightweight linux containers (LXC) and performs quickly, making it a great instrument for the testing community. The
next section includes a Docker pre-flight check. If it takes more that 3 minutes to get the ‘Success’ message for you,
try the Buildbot pip-based first run instead.

Current Docker dependencies
* Linux system, with at least kernel 3.8 and AUFS support. For example, Standard Ubuntu, Debian and Arch
systems.
» Packages: Ixc, iptables, ca-certificates, and bzip2 packages.
* Local clock on time or slightly in the future for proper SSL communication.

* This tutorial uses docker-compose to run a master, a worker, and a postgresql database server

Installation

 Use the Docker installation instructions (https://docs.docker.com/engine/installation/) for your operating system.

* Make sure you install docker-compose. As root or inside a virtualenv, run:

’pip install docker-compose

* Test docker is happy in your environment:

sudo docker run -i busybox /bin/echo Success

Building and running Buildbot

git clone —-depth 1 https://github.com/buildbot/buildbot-docker-example-config

buildbot—-docker—-example—-config/simple
docker—-compose up

You should now be able to go to http://localhost:8010 and see a web page similar to:

1.2. First Buildbot run with Docker 7

https://www.docker.com
https://docs.docker.com/engine/installation/
http://localhost:8010

Buildbot Documentation, Release 0.9.7

Buildbot: Pyflakes Buildbot: Pyflakes Home

Home

Welcome to buildbot

0 Build running currently
Cansale View 0 recent builds

> Builds

Waterfall View

About

Settings

Click on the Waterfall Display link (http://localhost:8010/#/waterfall) and you get this:

Buildbot: Pyflakes Buildbot: Pyflakes Waterfall view

Home

Waterfall View

Console View
> Builds

About

Settings

Overview of the docker-compose configuration

This docker-compose configuration is made as a basis for what you would put in production
* Separated containers for each component
* A solid database backend with postgresql

* A buildbot master that exposes its configuration to the docker host

A buildbot worker that can be cloned in order to add additional power

 Containers are linked together so that the only port exposed to external is the web server

The default master container is based on Alpine linux for minimal footprint

* The default worker container is based on more widely known Ubuntu distribution, as this is the container you
want to customize.

* Download the config from a tarball accessible via a web server

8 Chapter 1. Buildbot Tutorial

http://localhost:8010/#/waterfall

Buildbot Documentation, Release 0.9.7

Playing with your Buildbot containers

If you’ve come this far, you have a Buildbot environment that you can freely experiment with.

In order to modify the configuration, you need to fork the project on github https://github.com/buildbot/
buildbot-docker-example-config Then you can clone your own fork, and start the docker-compose again.

To modify your config, edit the master.cfg file, commit your changes, and push to your fork. You can use the com-
mand buildbot check-config in order to make sure the config is valid before the push. You will need to change
docker-compose.yml the variable BUILDBOT_CONFIG_URL in order to point to your github fork.

The BUILDBOT_CONFIG_URL may point to a .tar . gz file accessible from HTTP. Several git servers like github
can generate that tarball automatically from the master branch of a git repository If the BUILDBOT_CONFIG_URL
does not end with . tar.gz, it is considered to be the URL to amaster.cfqg file accessible from HTTP.

Customize your Worker container
It is advised to customize you worker container in order to suit your project’s build dependencies and need. An
example DockerFile is available which the buildbot community uses for its own CI purposes:

https://github.com/buildbot/metabbotcfg/blob/nine/docker/metaworker/Dockerfile

Multi-master
A multi-master environment can be setup using the multimaster/docker-compose.ymnl file in the example
repository

Build the Buildbot container (it will take a few minutes to download packages) cd buildbot-docker-
example-config/simple docker-compose up -d docker-compose scale buildbot=4

Going forward

You’ve got a taste now, but you’re probably curious for more. Let’s step it up a little in the second tutorial by changing
the configuration and doing an actual build. Continue on to A Quick Tour.

A Quick Tour

Goal

This tutorial will expand on the First Run tutorial by taking a quick tour around some of the features of buildbot that
are hinted at in the comments in the sample configuration. We will simply change parts of the default configuration
and explain the activated features.

As a part of this tutorial, we will make buildbot do a few actual builds.
This section will teach you how to:

» make simple configuration changes and activate them

* deal with configuration errors

* force builds

¢ enable and control the IRC bot

1.3. A Quick Tour 9

https://github.com/buildbot/buildbot-docker-example-config
https://github.com/buildbot/buildbot-docker-example-config
https://github.com/buildbot/metabbotcfg/blob/nine/docker/metaworker/Dockerfile

Buildbot Documentation, Release 0.9.7

* enable ssh debugging

e add a ‘try’ scheduler

Setting Project Name and URL

Let’s start simple by looking at where you would customize the buildbot’s project name and URL.
We continue where we left off in the First Run tutorial.

Open a new terminal, and first enter the same sandbox you created before (where SEDITOR is your editor of choice
like vim, gedit, or emacs):

tmp/buildbot
sandbox/bin/activate
SEDITOR master/master.cfg

Now, look for the section marked PROJECT IDENTITY which reads:

c['title'] = "Pyflakes"
c['titleURL'] = "http: divmod.org/trac/wiki/DivmodPyflakes™"

If you want, you can change either of these links to anything you want to see what happens when you change them.

After making a change go into the terminal and type:

buildbot reconfig master

You will see a handful of lines of output from the master log, much like this:

2011-12-04 10:11:09-0600 [-] loading configuration from /home/dustin/tmp/buildbot/
—master/master.cfg

2011-12-04 10:11:09-0600 [-] configuration update started

2011-12-04 10:11:09-0600 [-] builder runtests is unchanged

2011-12-04 10:11:09-0600 [-] removing IStatusReceiver <WebStatus on port tcp:8010 at
—0x2aee368>

2011-12-04 10:11:09-0600 [-] (TCP Port 8010 Closed)

2011-12-04 10:11:09-0600 [-] Stopping factory <buildbot.status.web.baseweb.
—RotateLogSite instance at 0x2e36638>

2011-12-04 10:11:09-0600 [-] adding IStatusReceiver <WebStatus on port tcp:8010 at
—0x2c2d950>

2011-12-04 10:11:09-0600 [-] RotateLogSite starting on 8010

2011-12-04 10:11:09-0600 [-] Starting factory <buildbot.status.web.baseweb.
—RotateLogSite instance at 0x2e36el8>

2011-12-04 10:11:09-0600 [-] Setting up http.log rotating 10 files of 10000000 bytes,
—each

2011-12-04 10:11:09-0600 [-] WebStatus using (/home/dustin/tmp/buildbot/master/public_
—html)

2011-12-04 10:11:09-0600 [-] removing O old schedulers, updating 0, and adding O
2011-12-04 10:11:09-0600 [-] adding 1 new changesources, removing 1
2011-12-04 10:11:09-0600 [-] gitpoller: using workdir '/home/dustin/tmp/buildbot/
—master/gitpoller-workdir'

[_

2011-12-04 10:11:09-0600] GitPoller repository already exists

10 Chapter 1. Buildbot Tutorial

Buildbot Documentation, Release 0.9.7

2011-12-04 10:11:09-0600 [-] configuration update complete

Reconfiguration appears to have completed successfully.

The important lines are the ones telling you that it is loading the new configuration at the top, and the one at the bottom
saying that the update is complete.

Now, if you go back to the waterfall page (http://localhost:8010/waterfall), you will see that the project’s name is
whatever you may have changed it to and when you click on the URL of the project name at the bottom of the page it
should take you to the link you put in the configuration.

Configuration Errors
It is very common to make a mistake when configuring buildbot, so you might as well see now what happens in that
case and what you can do to fix the error.

Open up the config again and introduce a syntax error by removing the first single quote in the two lines you changed,
so they read:

cl[title'] = "Pyflakes
c[titleURL'] = "http://divmod.org/trac/wiki/DivmodPyflakes"

This creates a Python SyntaxError. Now go ahead and reconfig the buildmaster:

buildbot reconfig master

This time, the output looks like:

2015-08-14 18:40:46+0000 [-] beginning configuration update

2015-08-14 18:40:46+0000 [-] Loading configuration from '/data/buildbot/master/master.
<~>Cfg'

2015-08-14 18:40:46+0000 [-] error while parsing config file:

Traceback (most recent call last):
File "/usr/local/lib/python2.7/dist-packages/buildbot/master.py", line 265,
—~in reconfig
d = self.doReconfig/()
File "/usr/local/lib/python2.7/dist-packages/twisted/internet/defer.py",
—~line 1274, in unwindGenerator
return _inlineCallbacks (None, gen, Deferred())
File "/usr/local/lib/python2.7/dist-packages/twisted/internet/defer.py",
—line 1128, in _inlineCallbacks
result = g.send(result)
File "/usr/local/lib/python2.7/dist-packages/buildbot/master.py", line 289,
—in doReconfig
self.configFileName)
—-—— <exception caught here> —-—-
File "/usr/local/lib/python2.7/dist-packages/buildbot/config.py", line 156,
—~1in loadConfig
exec f in localDict
exceptions.SyntaxError: EOL while scanning string literal (master.cfg, line

—103)

2015-08-14 18:40:46+0000 [-] error while parsing config file: EOL while scanning,
—string literal (master.cfg, line 103) (traceback in logfile)

2015-08-14 18:40:46+0000 [-] reconfig aborted without making any changes

1.3. A Quick Tour 11

http://localhost:8010/waterfall

Buildbot Documentation, Release 0.9.7

Reconfiguration failed. Please inspect the master.cfg file for errors,
correct them, then try 'buildbot reconfig' again.

This time, it’s clear that there was a mistake in the configuration. Luckily, the Buildbot master will ignore the wrong
configuration and keep running with the previous configuration.

The message is clear enough, so open the configuration again, fix the error, and reconfig the master.

Your First Build

By now you’re probably thinking: “All this time spent and still not done a single build? What was the name of this
project again?”’

On the waterfall (http://localhost:8010/waterfall) page, click on the runtests link. You’ll see a builder page, and an
option that allow you to force a build:

Your name:

force build

Repositc

Revision

Cancel Start Build

Click Start Build - there’s no need to fill in any of the fields in this case. Next, click on view in waterfall
(http://localhost:8010/waterfall ’show=runtests).

You will now see:

12 Chapter 1. Buildbot Tutorial

http://localhost:8010/waterfall
http://localhost:8010/waterfall?show=runtests

Buildbot Documentation, Release 0.9.7

Wuildnat: Py

flakes - Mazilla Firalax
I:I-EI' i —L‘- IE':I--II |:=_-_-.'..'.J_:|l' Beskmarks Teols Help

8 Buildbol: PyTlakes ——
"
A o gy M | mtpusocalhost: B0l ivwaterfall w E.-'I]{-Iw-
i

= C v ek W w—

- R

IHemmr - Yusd evial] Ceaid il Lo meale Bl Brorsl Baibls Belidvlnys Chasgrsaes - Al

Waterfall

B Bnald

rardes Ly
cumrywml g iy wlle
amiesly

FOT chesss
RS

ik

ridia *
IRARAY £ Pild 0
i it i e alll i

[l Bt 4B B) wower kbm Foor Aben Pyflakes prajes
Fags bsmilis 11 ¥iar B60 8 aFDTR

Enabling the IRC Bot

Buildbot includes an IRC bot that you can tell to join a channel and control to report on the status of buildbot.

Note: Security Note

Please note that any user having access to your irc channel or can PM the bot will be able to create or stop builds bug
#3377 (http://trac.buildbot.net/ticket/3377).

First, start an IRC client of your choice, connect to irc.freenode.net and join an empty channel. In this example we
will use #buildbot—-test, so go join that channel. (Note: please do not join the main buildbot channel!)

Edit master.cfg and look for the BUILDBOT SERVICES section. At the end of that section add the lines:

c['services'].append(reporters.IRC (host="irc.freenode.net", nick="bbtest",
channels=["#builldbot-test"]))

Reconfigure the build master then do:

grep -i irc master/twistd.log

The log output should contain a line like this:

2016-11-13 15:53:06+0100 [-] Starting factory <buildbot.reporters.irc.
—IrcStatusFactory instance at 0x7ff2b4b72710>

2016-11-13 15:53:19+0100 [IrcStatusBot,client] <buildbot.reporters.irc.IrcStatusBot,,
—object at 0x7ff2b5075750>: I have joined #buildbot-test

1.3. A Quick Tour 13

http://trac.buildbot.net/ticket/3377
http://trac.buildbot.net/ticket/3377

Buildbot Documentation, Release 0.9.7

You should see the bot now joining in your IRC client. In your IRC channel, type:

bbtest: commands

to get a list of the commands the bot supports.

Let’s tell the bot to notify certain events, to learn which EVENTS we can notify on:

bbtest: help notify

Now let’s set some event notifications:

<@lsblakk> bbtest: notify on started finished failure
< bbtest> The following events are being notified: ['started', 'failure', 'finished']

Now, go back to the web interface and force another build. Alternatively, ask the bot to force a build:

<@lsblakk> bbtest: force build --codebase= runtests
< bbtest> build #1 of runtests started
< bbtest> Hey! build runtests #1 is complete: Success [finished]

You can also see the new builds in the web interface.

Huildbat: runteits - Marilla Firalax

Ele Edit Yiew Higtory Bookmarks Tools Help

iy 1 | ntpsocalhost:B00 (vbulldersiruntests
T s el D T o

IRy - Thsdevial] Ceald i Lo male Daildon Broost Baiby Belidslnrs Chasgrases - (sl

Builder runtests

Cakisn B sl STl |

Mo current bullds
Mo Pending Bulld Begquests
Rrernl Bulleds:

Temie Eryiaian Henuli Hmild & L]
My 10 3003 [P LT . = [LOT Ty]
Mar I 3000E 1l it Bt =i [T Y (|
Mdar 19 3230 1ol et Btk Eat] [o R T o |

Bulldslivves:

L Tl i RE AT

LEm pr AT 8 remrary il Yowr Name llerw @ sdming ymaraddoess i alid s
Farce balld
Vo ferve & beaild, Gl o ke fodlas ey feldy sed pas b e Bon e Beild baiian
'ﬁlrrn-lin--'[
Hrania Bai bealia | |

[s]

The full documentation is available at TRC.

Setting Authorized Web Users

The default configuration allows everyone to perform any task like creating or stopping builds via the web interface.
To restrict this to a user, look for:

14 Chapter 1. Buildbot Tutorial

Buildbot Documentation, Release 0.9.7

cl] = (port=8010,
plugins= (waterfall_view={}, console_view={}))
and append:
cl 11] = util.Authz(
allowRules = [

util.AnyEndpointMatcher (role=)

1,
roleMatchers = [
util.RolesFromUsername (roles=[], usernames=|[1)

cl 11] = util.UserPasswordAuth ([(’)1

For more details, see Authentication plugins.

Debugging with Manhole

You can do some debugging by using manhole, an interactive Python shell. It exposes full access to the buildmaster’s
account (including the ability to modify and delete files), so it should not be enabled with a weak or easily guessable

password.

To use this you will need to install an additional package or two to your virtualenv:

tmp/buildbot
sandbox/bin/activate
pip install -U pip
pip install cryptography pyasnl

In your master.cfg find:

¢ = BuildmasterConfig = {}

Insert the following to enable debugging mode with manhole:

from buildbot import manhole
cl] = manhole.PasswordManhole (,
M)

After restarting the master, you can ssh into the master and get an interactive Python shell:

ssh -pl234 admin@127.0.0.1

Note: The pyasnl-0.1.1 release has a bug which results in an exception similar to this on startup:

’exceptions.TypeError: argument 2 must be long, not int

If you see this, the temporary solution is to install the previous version of pyasnl:

’pip install pyasnl-0.0.13b

1.3. A Quick Tour

15

Buildbot Documentation, Release 0.9.7

If you wanted to check which workers are connected and what builders those workers are assigned to you could do:

>>> master.workers.workers

{'example-worker': <Worker 'example-worker', current builders: runtests>}

Objects can be explored in more depth using dir(x) or the helper function show(x).

Adding a ‘try’ scheduler

Buildbot includes a way for developers to submit patches for testing without committing them to the source code
control system. (This is really handy for projects that support several operating systems or architectures.)

To set this up, add the following lines to master.cfg:

from buildbot.scheduler import Try_Userpass
c['schedulers'] = []
edulers'] .append (Try_Userpass (
name='try',
builderNames=['runtests'],
port=5555,
userpass=|[('sampleuser', 'samplepass')]))

Then you can submit changes using the ¢ ry command.

Let’s try this out by making a one-line change to pyflakes, say, to make it trace the tree by default:

git clone git://github.com/buildbot/pyflakes.git pyflakes—git
pyflakes—-git/pyflakes
SEDITOR checker.py

Then run buildbot’s t ry command as follows:

~/tmp/buildbot/sandbox/bin/activate
buildbot try —--connect=pb --master=127.0.0.1:5555 —--username=sampleuser —-
—passwd=samplepass —--vc=git

This will do git diff for you and send the resulting patch to the server for build and test against the latest sources
from Git.

Now go back to the waterfall (http://localhost:8010/waterfall) page, click on the runtests link, and scroll down. You
should see that another build has been started with your change (and stdout for the tests should be chock-full of parse
trees as a result). The “Reason” for the job will be listed as “‘try’ job”, and the blamelist will be empty.

To make yourself show up as the author of the change, use the ——who=emailaddr option on buildbot try to
pass your email address.

To make a description of the change show up, use the ——properties=comment="this is a comment"
option on buildbot try.

To use ssh instead of a private username/password database, see Try_ Jobdir.

Further Reading

See the following user-contributed tutorials for other highlights and ideas:

16 Chapter 1. Buildbot Tutorial

http://localhost:8010/waterfall

Buildbot Documentation, Release 0.9.7

Buildbot in 5 minutes - a user-contributed tutorial

(Ok, maybe 10.)

Buildbot is really an excellent piece of software, however it can be a bit confusing for a newcomer (like me when I
first started looking at it). Typically, at first sight it looks like a bunch of complicated concepts that make no sense and
whose relationships with each other are unclear. After some time and some reread, it all slowly starts to be more and
more meaningful, until you finally say “oh!” and things start to make sense. Once you get there, you realize that the
documentation is great, but only if you already know what it’s about.

This is what happened to me, at least. Here I'm going to (try to) explain things in a way that would have helped me
more as a newcomer. The approach I'm taking is more or less the reverse of that used by the documentation, that is,
I’'m going to start from the components that do the actual work (the builders) and go up the chain from there up to
change sources. I hope purists will forgive this unorthodoxy. Here I'm trying to clarify the concepts only, and will not
go into the details of each object or property; the documentation explains those quite well.

Installation

I won’t cover the installation; both Buildbot master and worker are available as packages for the major distributions,
and in any case the instructions in the official documentation are fine. This document will refer to Buildbot 0.8.5
which was current at the time of writing, but hopefully the concepts are not too different in other versions. All the
code shown is of course python code, and has to be included in the master.cfg master configuration file.

We won’t cover the basic things such as how to define the workers, project names, or other administrative information
that is contained in that file; for that, again the official documentation is fine.

Builders: the workhorses

Since Buildbot is a tool whose goal is the automation of software builds, it makes sense to me to start from where we
tell Buildbot how to build our software: the builder (or builders, since there can be more than one).

Simply put, a builder is an element that is in charge of performing some action or sequence of actions, normally
something related to building software (for example, checking out the source, or make all), but it can also run
arbitrary commands.

A builder is configured with a list of workers that it can use to carry out its task. The other fundamental piece of
information that a builder needs is, of course, the list of things it has to do (which will normally run on the chosen
worker). In Buildbot, this list of things is represented as a Bui 1dFactory object, which is essentially a sequence of
steps, each one defining a certain operation or command.

Enough talk, let’s see an example. For this example, we are going to assume that our super software project can be
built using a simple make all, and there is another target make packages that creates rpm, deb and tgz packages
of the binaries. In the real world things are usually more complex (for example there may be a configure step, or
multiple targets), but the concepts are the same; it will just be a matter of adding more steps to a builder, or creating
multiple builders, although sometimes the resulting builders can be quite complex.

So to perform a manual build of our project we would type this from the command line (assuming we are at the root
of the local copy of the repository):

$ make clean
$ svn update
$ make all

$ make packages

1.4. Further Reading 17

Buildbot Documentation, Release 0.9.7

$ scp packages/x.rpm packages/x.deb packages/x.tgz someuser@somehost:/repository

Here we’re assuming the repository is SVN, but again the concepts are the same with git, mercurial or any other VCS.

Now, to automate this, we create a builder where each step is one of the commands we typed above. A step can be
a shell command object, or a dedicated object that checks out the source code (there are various types for different
repositories, see the docs for more info), or yet something else:

from buildbot.plugins import steps, util

makeclean = steps.ShellCommand (name="make
command=["mal
description="make

checkout = steps.SVN (baseURL='svn://myrepo/projects/coolproject/trunk',
mode="update",
username="foo",
password="bar'",
haltOnFailure=True)

makeall = steps.ShellCommand (name="make all",
command=["make", "all"],
haltOnFailure=True,
description="make all'")

makepackages = steps.ShellCommand (name="make packag

command=["make", "packages
haltOnFailure=True,
description="make packages")

uploadpackages = steps.ShellCommand (name="upload packages",
description="uplc
command="scp

—packac repository",

haltOnFailure=True)

f_simplebuild = util.BuildFactory ()
f_simplebuild.addStep (makeclean)
f_simplebuild.addStep (checkout)
f_simplebuild.addStep (makeall)
f_simplebuild.addStep (makepackages)
f_simplebuild.addStep (uploadpackages)

cl['builders'] = [

18 Chapter 1. Buildbot Tutorial

Buildbot Documentation, Release 0.9.7

util.BuilderConfig (name= , workernames=| , ,
'], factory=f_simplebuild)
1

So our builder is called simplebuild and can run on either of workerl, worker2 and worker3. If our repos-
itory has other branches besides trunk, we could create another one or more builders to build them; in the example,
only the checkout step would be different, in that it would need to check out the specific branch. Depending on how
exactly those branches have to be built, the shell commands may be recycled, or new ones would have to be created if
they are different in the branch. You get the idea. The important thing is that all the builders be named differently and
all be added to the c ['builders'] value (as can be seen above, it is a list of Bui lderConfig objects).

Of course the type and number of steps will vary depending on the goal; for example, to just check that a commit
doesn’t break the build, we could include just up to the make all step. Or we could have a builder that performs
a more thorough test by also doing make test or other targets. You get the idea. Note that at each step except the
very first we use haltOnFailure=True because it would not make sense to execute a step if the previous one
failed (ok, it wouldn’t be needed for the last step, but it’s harmless and protects us if one day we add another step after
it).

Schedulers

Now this is all nice and dandy, but who tells the builder (or builders) to run, and when? This is the job of the scheduler,
which is a fancy name for an element that waits for some event to happen, and when it does, based on that information
decides whether and when to run a builder (and which one or ones). There can be more than one scheduler. I'm being
purposely vague here because the possibilities are almost endless and highly dependent on the actual setup, build
purposes, source repository layout and other elements.

So a scheduler needs to be configured with two main pieces of information: on one hand, which events to react to, and
on the other hand, which builder or builders to trigger when those events are detected. (It’s more complex than that,
but if you understand this, you can get the rest of the details from the docs).

A simple type of scheduler may be a periodic scheduler: when a configurable amount of time has passed, run a certain
builder (or builders). In our example, that’s how we would trigger a build every hour:

from buildbot.plugins import schedulers

hourlyscheduler = schedulers.Periodic (name= ,
builderNames=[1,
periodicBuildTimer=3600)

cl

[hourlyscheduler]

That’s it. Every hour this hourly scheduler will run the simplebuild builder. If we have more than one builder
that we want to run every hour, we can just add them to the builderNames list when defining the scheduler
and they will all be run. Or since multiple scheduler are allowed, other schedulers can be defined and added to
c['schedulers'] in the same way.

Other types of schedulers exist; in particular, there are schedulers that can be more dynamic than the periodic one. The
typical dynamic scheduler is one that learns about changes in a source repository (generally because some developer
checks in some change), and triggers one or more builders in response to those changes. Let’s assume for now that the
scheduler “magically” learns about changes in the repository (more about this later); here’s how we would define it:

from buildbot.plugins import schedulers

1.4. Further Reading 19

Buildbot Documentation, Release 0.9.7

trunkchanged = schedulers.SingleBranchScheduler (name= ,
change_filter=util.
—ChangeFilter (branch=None),
treeStableTimer=300,
builderNames=[1)

cl] = [trunkchanged]

This scheduler receives changes happening to the repository, and among all of them, pays attention to those happening
in “trunk” (that’s what branch=None means). In other words, it filters the changes to react only to those it’s
interested in. When such changes are detected, and the tree has been quiet for 5 minutes (300 seconds), it runs the
simplebuild builder. The treeStableTimer helps in those situations where commits tend to happen in bursts,
which would otherwise result in multiple build requests queuing up.

What if we want to act on two branches (say, trunk and 7.2)? First we create two builders, one for each branch (see
the builders paragraph above), then we create two dynamic schedulers:

from buildbot.plugins import schedulers

trunkchanged = schedulers.SingleBranchScheduler (name= ,
change_filter=util.
—ChangeFilter (branch=None) ,
treeStableTimer=300,

builderNames=[1)
branch72changed = schedulers.SingleBranchScheduler (name= ’
change_filter=util.
—ChangeFilter (branch=),
treeStableTimer=300,
builderNames=[1)
cl] = [trunkchanged, branch72changed]

The syntax of the change filter is VCS-dependent (above is for SVN), but again once the idea is clear, the documenta-
tion has all the details. Another feature of the scheduler is that is can be told which changes, within those it’s paying
attention to, are important and which are not. For example, there may be a documentation directory in the branch the
scheduler is watching, but changes under that directory should not trigger a build of the binary. This finer filtering is
implemented by means of the fileIsImportant argument to the scheduler (full details in the docs and - alas - in
the sources).

Change sources

Earlier we said that a dynamic scheduler “magically” learns about changes; the final piece of the puzzle are change
sources, which are precisely the elements in Buildbot whose task is to detect changes in the repository and commu-
nicate them to the schedulers. Note that periodic schedulers don’t need a change source, since they only depend on
elapsed time; dynamic schedulers, on the other hand, do need a change source.

A change source is generally configured with information about a source repository (which is where changes happen);
a change source can watch changes at different levels in the hierarchy of the repository, so for example it is possible
to watch the whole repository or a subset of it, or just a single branch. This determines the extent of the information
that is passed down to the schedulers.

20 Chapter 1. Buildbot Tutorial

Buildbot Documentation, Release 0.9.7

There are many ways a change source can learn about changes; it can periodically poll the repository for changes, or
the VCS can be configured (for example through hook scripts triggered by commits) to push changes into the change
source. While these two methods are probably the most common, they are not the only possibilities; it is possible for
example to have a change source detect changes by parsing some email sent to a mailing list when a commit happens,
and yet other methods exist. The manual again has the details.

To complete our example, here’s a change source that polls a SVN repository every 2 minutes:

from buildbot.plugins import changes, util

svnpoller = changes.SVNPoller (repourl=
svnuser= ,
svnpasswd= ,
pollinterval=120,
split_file=util.svn.split_file_branches)

cl] = svnpoller

This poller watches the whole “coolproject” section of the repository, so it will detect changes in all the branches. We
could have said:

’repourl

or:

’repourl

to watch only a specific branch.

To watch another project, you need to create another change source — and you need to filter changes by project. For
instance, when you add a change source watching project ‘superproject’ to the above example, you need to change:

trunkchanged = schedulers.SingleBranchScheduler (name= ,
change_filter=
—ChangeFilter (branch=None) ,

toe.g.:

trunkchanged = schedulers.SingleBranchScheduler (name= ,
change_filter=

—ChangeFilter (project= , branch=None),

else coolproject will be built when there’s a change in superproject.

Since we’re watching more than one branch, we need a method to tell in which branch the change occurred when we
detect one. This is what the split_file argument does, it takes a callable that Buildbot will call to do the job.
The split_file_branches function, which comes with Buildbot, is designed for exactly this purpose so that’s what the
example above uses.

And of course this is all SVN-specific, but there are pollers for all the popular VCSs.

But note: if you have many projects, branches, and builders it probably pays to not hardcode all the schedulers and
builders in the configuration, but generate them dynamically starting from list of all projects, branches, targets etc.
and using loops to generate all possible combinations (or only the needed ones, depending on the specific setup), as
explained in the documentation chapter about Customization.

1.4. Further Reading 21

Buildbot Documentation, Release 0.9.7

Status targets

Now that the basics are in place, let’s go back to the builders, which is where the real work happens. Status targets are
simply the means Buildbot uses to inform the world about what’s happening, that is, how builders are doing. There
are many status targets: a web interface, a mail notifier, an IRC notifier, and others. They are described fairly well in
the manual.

One thing I’ve found useful is the ability to pass a domain name as the lookup argument to amailNotifier, which
allows you to take an unqualified username as it appears in the SVN change and create a valid email address by
appending the given domain name to it:

from buildbot.plugins import status

notifier = status.MailNotifier (fromaddr= ,
sendToInterestedUsers=True,
lookup=)

cl] .append (notifier)

The mail notifier can be customized at will by means of the messageFormatter argument, which is a class that
Buildbot calls to format the body of the email, and to which it makes available lots of information about the build.
Here all the details.

Conclusion

Please note that this article has just scratched the surface; given the complexity of the task of build automation,
the possibilities are almost endless. So there’s much, much more to say about Buildbot. However, hopefully this
is a preparation step before reading the official manual. Had I found an explanation as the one above when I was
approaching Buildbot, I’d have had to read the manual just once, rather than multiple times. Hope this can help
someone else.

(Thanks to Davide Brini for permission to include this tutorial, derived from one he originally posted at http:
/Ibackreference.org .)

This is the Buildbot manual for Buildbot version |version]|.

22 Chapter 1. Buildbot Tutorial

http://backreference.org
http://backreference.org

CHAPTER 2

Buildbot Manual

Introduction

Buildbot is a system to automate the compile/test cycle required by most software projects to validate code changes. By
automatically rebuilding and testing the tree each time something has changed, build problems are pinpointed quickly,
before other developers are inconvenienced by the failure. The guilty developer can be identified and harassed without
human intervention. By running the builds on a variety of platforms, developers who do not have the facilities to test
their changes everywhere before checkin will at least know shortly afterwards whether they have broken the build or
not. Warning counts, lint checks, image size, compile time, and other build parameters can be tracked over time, are
more visible, and are therefore easier to improve.

The overall goal is to reduce tree breakage and provide a platform to run tests or code-quality checks that are too
annoying or pedantic for any human to waste their time with. Developers get immediate (and potentially public)
feedback about their changes, encouraging them to be more careful about testing before checkin.

Features:

run builds on a variety of worker platforms

arbitrary build process: handles projects using C, Python, whatever

minimal host requirements: Python and Twisted

workers can be behind a firewall if they can still do checkout

status delivery through web page, email, IRC, other protocols

track builds in progress, provide estimated completion time

flexible configuration by subclassing generic build process classes

debug tools to force a new build, submit fake Changes, query worker status

released under the GPL (https://opensource.org/licenses/gpl-2.0.php)

23

https://opensource.org/licenses/gpl-2.0.php

Buildbot Documentation, Release 0.9.7

History and Philosophy

The Buildbot was inspired by a similar project built for a development team writing a cross-platform embedded system.
The various components of the project were supposed to compile and run on several flavors of unix (linux, solaris,
BSD), but individual developers had their own preferences and tended to stick to a single platform. From time to time,
incompatibilities would sneak in (some unix platforms want to use st ring. h, some prefer st rings.h), and then
the tree would compile for some developers but not others. The buildbot was written to automate the human process of
walking into the office, updating a tree, compiling (and discovering the breakage), finding the developer at fault, and
complaining to them about the problem they had introduced. With multiple platforms it was difficult for developers to
do the right thing (compile their potential change on all platforms); the buildbot offered a way to help.

Another problem was when programmers would change the behavior of a library without warning its users, or change
internal aspects that other code was (unfortunately) depending upon. Adding unit tests to the codebase helps here: if
an application’s unit tests pass despite changes in the libraries it uses, you can have more confidence that the library
changes haven’t broken anything. Many developers complained that the unit tests were inconvenient or took too long
to run: having the buildbot run them reduces the developer’s workload to a minimum.

In general, having more visibility into the project is always good, and automation makes it easier for developers to do
the right thing. When everyone can see the status of the project, developers are encouraged to keep the tree in good
working order. Unit tests that aren’t run on a regular basis tend to suffer from bitrot just like code does: exercising
them on a regular basis helps to keep them functioning and useful.

The current version of the Buildbot is additionally targeted at distributed free-software projects, where resources and
platforms are only available when provided by interested volunteers. The workers are designed to require an absolute
minimum of configuration, reducing the effort a potential volunteer needs to expend to be able to contribute a new test
environment to the project. The goal is for anyone who wishes that a given project would run on their favorite platform
should be able to offer that project a worker, running on that platform, where they can verify that their portability code
works, and keeps working.

System Architecture

The Buildbot consists of a single buildmaster and one or more workers, connected in a star topology. The buildmaster
makes all decisions about what, when, and how to build. It sends commands to be run on the workers, which simply
execute the commands and return the results. (certain steps involve more local decision making, where the overhead
of sending a lot of commands back and forth would be inappropriate, but in general the buildmaster is responsible for
everything).

The buildmaster is usually fed Changes by some sort of version control system (Change Sources), which may cause
builds to be run. As the builds are performed, various status messages are produced, which are then sent to any
registered Reporters.

24 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

REPOSITORY NOTIFIERS
*«Subversion Email
«Mercurial p * =mal
«Bazaar . c oll BUILD ; «Web Status

Pp—— CHANGES =3 MASTER TATUS =2 | JIRC
*Darcs *Status Client
«GIT
«CVS

COMMANDS COMMANDS

The buildmaster is configured and maintained by the buildmaster admin, who is generally the project team member
responsible for build process issues. Each worker is maintained by a worker admin, who do not need to be quite as

involved. Generally workers are run by anyone who has an interest in seeing the project work well on their favorite
platform.

Worker Connections

The workers are typically run on a variety of separate machines, at least one per platform of interest. These machines
connect to the buildmaster over a TCP connection to a publically-visible port. As a result, the workers can live behind
a NAT box or similar firewalls, as long as they can get to buildmaster. The TCP connections are initiated by the worker
and accepted by the buildmaster, but commands and results travel both ways within this connection. The buildmaster
is always in charge, so all commands travel exclusively from the buildmaster to the worker.

To perform builds, the workers must typically obtain source code from a CVS/SVN/etc repository. Therefore they
must also be able to reach the repository. The buildmaster provides instructions for performing builds, but does not
provide the source code itself.

- -~
P Ve REPOSITORY
-» - - .
I [sSubversion
BUILD COMMANDS S — sMercurial
/ ™
MASTER ResuLTs Bazaar
) : *Darcs
. 1 oGIT
~ 1 «CVS
“«_ NAT ,

Buildmaster Architecture
The buildmaster consists of several pieces:
2.1. Introduction 25

Buildbot Documentation, Release 0.9.7

P r__,-'__ ':x__‘. /-"’_"H-\
(Gunce X G Giee y

.-'(--- _.-\\'-\.
{ (CHANGE)

SCHEDULER SCHEDULER
Y Y 7
T T

"_,-'"- ""\\ lll{z"-_ _::\
,»l (" Bunp B o\ ‘ l. RE}IIIL..__\J
™ .‘R,U £ R] \ MEOUEST
(Buip Yy \NEUBT/ \Rewest) 2 N Nl
' REQUEST / - B (DULD
N .\REJ.IE'):;

Ii QueuE l %

| BUILDER BUILDER BUILDER

I T 1

A o, el "\'I i
(Buw) N Buo) Buw) -
S~ \Bup} N h IBIIIL'} I@..M D)

I 1.

- | WORKER || WORKER
: FOR FOR
- | BUILDER || BUILDER

|]
—
By
—

- | WORKER || WORKER
: FOR FOR
- | BUILDER || BUILDER

WORKER

WORKER

Change Sources Which create a Change object each time something is modified in the VC repository. Most
ChangeSources listen for messages from a hook script of some sort. Some sources actively poll the repository
on a regular basis. All Changes are fed to the schedulers.

Schedulers Which decide when builds should be performed. They collect Changes into BuildRequests, which
are then queued for delivery to Builders until a worker is available.

Builders Which control exactly how each build is performed (with a series of BuildSteps, configured in a
BuildFactory). Each Build is run on a single worker.

Status plugins Which deliver information about the build results through protocols like HTTP, mail, and IRC.

Each Builder is configured with a list of Workers that it will use for its builds. These workers are expected
to behave identically: the only reason to use multiple Workers for a single Builder is to provide a measure of
load-balancing.

Within a single Worker, each Builder creates its own WorkerForBuilder instance. These
WorkerForBuilders operate independently from each other. Each gets its own base directory to work in. It
is quite common to have many Builders sharing the same worker. For example, there might be two workers: one

26 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

for 1386, and a second for PowerPC. There may then be a pair of Builders that do a full compile/test run, one for
each architecture, and a lone Bui 1der that creates snapshot source tarballs if the full builders complete successfully.
The full builders would each run on a single worker, whereas the tarball creation step might run on either worker (since
the platform doesn’t matter when creating source tarballs). In this case, the mapping would look like:

Builder (full-i386) —-> Workers (worker—-1386)
Builder (full-ppc) —-> Workers (worker—-ppc)
Builder (source-tarball) -> Workers (worker-i386, worker-ppc)

and each Worker would have two WorkerForBuilders inside it, one for a full builder, and a second for the
source-tarball builder.

Once a WorkerForBuilder is available, the Builder pulls one or more BuildRequests off its incoming
queue. (It may pull more than one if it determines that it can merge the requests together; for example, there may be
multiple requests to build the current HEAD revision). These requests are merged into a single Bui 1d instance, which
includes the SourceStamp that describes what exact version of the source code should be used for the build. The
Build is then randomly assigned to a free WorkerForBuilder and the build begins.

The behaviour when BuildRequests are merged can be customized, Collapsing Build Requests.
Status Delivery Architecture

The buildmaster maintains a central Status object, to which various status plugins are connected. Through this
Status object, a full hierarchy of build status objects can be obtained.

2.1. Introduction 27

Buildbot Documentation, Release 0.9.7

ok STATUS
\Reossy) nd PLUGINS
1 re=1=e Waterfall
IFL) !
1L | - -} = Mail Notif er
—— 1
—————— |
-....d BUILDER 11 r1=9IRC
BUILDER _p--—{ T/LDE! i
L
L1
1| IRC SERVER
B e BuiLD Buip X
'.EUILB.*---- Status) | STatus =»| MTA
T |
-->| BROWSER

i
-

The configuration file controls which status plugins are active. Each status plugin gets a reference to the top-level
Status object. From there they can request information on each Builder, Build, Step, and LogFile. This
query-on-demand interface is used by the html.Waterfall plugin to create the main status page each time a web
browser hits the main URL.

The status plugins can also subscribe to hear about new Builds as they occur: this is used by the MailNotifier
to create new email messages for each recently-completed Build.

The Status object records the status of old builds on disk in the buildmaster’s base directory. This allows it to return
information about historical builds.

There are also status objects that correspond to Schedulers and Workers. These allow status plugins to report
information about upcoming builds, and the online/offline status of each worker.

28 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

Control Flow

A day in the life of the buildbot:

¢ A developer commits some source code changes to the repository. A hook script or commit trigger of some
sort sends information about this change to the buildmaster through one of its configured Change Sources.
This notification might arrive via email, or over a network connection (either initiated by the buildmaster as it
subscribes to changes, or by the commit trigger as it pushes Changes towards the buildmaster). The Change
contains information about who made the change, what files were modified, which revision contains the change,
and any checkin comments.

 The buildmaster distributes this change to all of its configured schedulers. Any important changes cause the
tree-stable-timer to be started, and the Change is added to a list of those that will go into a new Build.
When the timer expires, a Build is started on each of a set of configured Builders, all compiling/testing the
same source code. Unless configured otherwise, all Builds run in parallel on the various workers.

e The Build consists of a series of Steps. Each Step causes some number of commands to be invoked on
the remote worker associated with that Builder. The first step is almost always to perform a checkout of
the appropriate revision from the same VC system that produced the Change. The rest generally perform a
compile and run unit tests. As each Step runs, the worker reports back command output and return status to
the buildmaster.

e As the Build runs, status messages like “Build Started”, “Step Started”, “Build Finished”, etc, are published
to a collection of Status Targets. One of these targets is usually the HTML Waterfall display, which shows
a chronological list of events, and summarizes the results of the most recent build at the top of each column.
Developers can periodically check this page to see how their changes have fared. If they see red, they know that
they’ve made a mistake and need to fix it. If they see green, they know that they’ve done their duty and don’t
need to worry about their change breaking anything.

e IfaMailNotifier status target is active, the completion of a build will cause email to be sent to any devel-
opers whose Changes were incorporated into this Build. The MailNotifier can be configured to only
send mail upon failing builds, or for builds which have just transitioned from passing to failing. Other status
targets can provide similar real-time notification via different communication channels, like IRC.

Installation

Buildbot Components

Buildbot is shipped in two components: the buildmaster (called buildbot for legacy reasons) and the worker. The
worker component has far fewer requirements, and is more broadly compatible than the buildmaster. You will need
to carefully pick the environment in which to run your buildmaster, but the worker should be able to run just about
anywhere.

It is possible to install the buildmaster and worker on the same system, although for anything but the smallest installa-
tion this arrangement will not be very efficient.

Requirements

Common Requirements

At a bare minimum, you’ll need the following for both the buildmaster and a worker:

Python: https://www.python.org

2.2. Installation 29

https://www.python.org

Buildbot Documentation, Release 0.9.7

Buildbot master requires Python-2.7. Buildbot worker require Python-2.6, although Python-2.7 is recom-
mended.

Note: This should be a “normal” build of Python. Builds of Python with debugging enabled or other
unusual build parameters are likely to cause incorrect behavior.

Twisted: http://twistedmatrix.com

Buildbot requires Twisted-14.0.1 or later on the master, and Twisted-10.2.0 on the worker. In upcoming
versions of Buildbot, a newer Twisted will also be required on the worker. As always, the most recent
version is recommended. Note that Twisted requires Zopelnterface to be installed as well.

Future:

As part of ongoing (but as-yet incomplete) work to make Buildbot compatible with Python 3, the master
requires the future module.

Of course, your project’s build process will impose additional requirements on the workers. These hosts must have all
the tools necessary to compile and test your project’s source code.

Windows Support

Buildbot - both master and worker - runs well natively on Windows. The worker runs well on Cygwin, but because of
problems with SQLite on Cygwin, the master does not.

Buildbot’s windows testing is limited to the most recent Twisted and Python versions. For best results, use the most
recent available versions of these libraries on Windows.

Pywin32: http://sourceforge.net/projects/pywin32/

Twisted requires PyWin32 in order to spawn processes on Windows.

Buildmaster Requirements

Note that all of these requirements aside from SQLite can easily be installed from the Python package repository,
PyPI.

sqlite3: http://www.sqlite.org

Buildbot requires a database to store its state, and by default uses SQLite. Version 3.7.0 or higher is
recommended, although Buildbot will run down to 3.6.16 — at the risk of “Database is locked” errors. The
minimum version is 3.4.0, below which parallel database queries and schema introspection fail.

Please note that Python ships with sqlite3 by default since Python 2.6. Python2.6 for Windows ships with
sqlite 3.6.2, thus you will not be able to run buildbot with sqlite on Windows and Python 2.6.

If you configure a different database engine, then SQLite is not required. however note that Buildbot’s
own unit tests require SQLite.

Jinja2: http://jinja.pocoo.org/

Buildbot requires Jinja version 2.1 or higher.

Jinja2 is a general purpose templating language and is used by Buildbot to generate the HTML output.
SQLAIchemy: http://www.sqlalchemy.org/

Buildbot requires SQLAlchemy version 0.8.0 or higher. SQLAlchemy allows Buildbot to build database
schemas and queries for a wide variety of database systems.

30 Chapter 2. Buildbot Manual

http://twistedmatrix.com
http://sourceforge.net/projects/pywin32/
http://www.sqlite.org
http://jinja.pocoo.org/
http://www.sqlalchemy.org/

Buildbot Documentation, Release 0.9.7

SQLAIchemy-Migrate: https://sqlalchemy-migrate.readthedocs.io/en/latest/

Buildbot requires SQLAlchemy-Migrate version 0.9.0 or higher. Buildbot uses SQLAlchemy-Migrate to
manage schema upgrades from version to version.

Python-Dateutil: http://labix.org/python-dateutil

Buildbot requires Python-Dateutil in version 1.5 or higher (the last version to support Python-2.x). This
is a small, pure-Python library.

Autobahn:

The master requires Autobahn version 0.16.0 or higher with Python 2.7.

Installing the code

The Buildbot Packages

Buildbot comes in several parts: buildbot (the buildmaster), buildbot-worker (the worker),
buildbot-www, and several web plugins such as buildbot-waterfall-view.

The worker and buildmaster can be installed individually or together. The base web (buildbot .www) and web
plugins are required to run a master with a web interface (the common configuration).

Installation From PyPI

The preferred way to install Buildbot is using pip. For the master:

’pip install buildbot

and for the worker:

’pip install buildbot-worker

When using pip to install instead of distribution specific package manangers, e.g. via apt-get or ports, it is simpler
to choose exactly which version one wants to use. It may however be easier to install via distribution specific package
mangers but note that they may provide an earlier version than what is available via pip.

If you plan to use TLS or SSL in master configuration (e.g. to fetch resources over HTTPS using twisted.web.
client), you need to install Buildbot with t 1s extras:

pip install buildbot[tls]

Installation From Tarballs

Buildbot master and buildbot-worker are installed wusing the standard Python distutils
(http://docs.python.org/library/distutils.html) process. For either component, after unpacking the tarball, the
process is:

python setup.py build
python setup.py install

where the install step may need to be done as root. This will put the bulk of the code in somewhere like /usr/1ib/
pythonx.y/site-packages/buildbot. It will also install the buildbot command-line tool in /usr/
bin/buildbot.

2.2. Installation 31

https://sqlalchemy-migrate.readthedocs.io/en/latest/
http://labix.org/python-dateutil
http://docs.python.org/library/distutils.html

Buildbot Documentation, Release 0.9.7

If the environment variable $NO_INSTALIL_REQS is set to 1, then setup.py will not try to install Buildbot’s
requirements. This is usually only useful when building a Buildbot package.

To test this, shift to a different directory (like /tmp), and run:

buildbot —--version

buildbot-worker —--version

If it shows you the versions of Buildbot and Twisted, the install went ok. If it says “no such command” or it gets an
ImportError when it tries to load the libraries, then something went wrong. pydoc buildbot is another useful
diagnostic tool.

Windows users will find these files in other places. You will need to make sure that Python can find the libraries, and
will probably find it convenient to have buildbot on your PATH.

Installation in a Virtualenv

If you cannot or do not wish to install the buildbot into a site-wide location like /usr or /usr/local,
you can also install it into the account’s home directory or any other location using a tool like virtualenv
(http://pypi.python.org/pypi/virtualenv).

Running Buildbot’s Tests (optional)

If you wish, you can run the buildbot unit test suite. First, ensure you have the mock (http://pypi.python.org/pypi/mock)
Python module installed from PyPI. You must not be using a Python wheels packaged version of Buildbot or have
specified the bdist_wheel command when building. The test suite is not included with the PyPi packaged version.
This module is not required for ordinary Buildbot operation - only to run the tests. Note that this is not the same as the
Fedora mock package!

You can check with

python —-mmock

Then, run the tests:

PYTHONPATH=. trial buildbot.test

PYTHONPATH=. trial buildbot_worker.test

Nothing should fail, although a few might be skipped.

If any of the tests fail for reasons other than a missing mock, you should stop and investigate the cause before
continuing the installation process, as it will probably be easier to track down the bug early. In most cases, the
problem is incorrectly installed Python modules or a badly configured PYTHONPATH. This may be a good time to
contact the Buildbot developers for help.

Upgrading to Nine
Upgrading a Buildbot instance from 0.8.x to 0.9.x may require a number of changes to the master configuration. Those
changes are summarized here. If you are starting fresh with 0.9.0 or later, you can safely skip this section.

First important note is that Buildbot does not support an upgrade of a 0.8.x instance to 0.9.x. Notably the build data
and logs will not be accessible anymore if you upgraded, thus the database migration scripts have been dropped.

32 Chapter 2. Buildbot Manual

http://pypi.python.org/pypi/virtualenv
http://pypi.python.org/pypi/mock

Buildbot Documentation, Release 0.9.7

You should not pip upgrade -U buildbot, but rather start from a clean virtualenv aside from your old master.
You can keep your old master instance to serve the old build status.

Buildbot is now composed of several Python packages and Javascript Ul and the easiest way to install it is to run the
following command within a virtualenv:

pip install

Config File Syntax

In preparation for compatibility with Python 3, Buildbot configuration files no longer allow the print statement:

’print

To fix, simply enclose the print arguments in parentheses:

’print()

Plugins

Although plugin support was available in 0.8.12, its use is now highly recommended. Instead of importing modules
directly in master . cfg, import the plugin kind from buildbot.plugins:

’from buildbot.plugins import steps

Then access the plugin itself as an attribute:

steps.SetProperty(..)

See Plugin Infrastructure in Buildbot for more information.

Web Status

The most prominent change is that the existing WebStatus class is now gone, replaced by the new www functionality.

Thus an html.WebStatus entry in c['status'] should be removed and replaced with configuration in
c['"www'] " . For example, replace:

from buildbot.status import html
cl] .append (html.WebStatus (http_port=8010, allowForce=)
with:
cl] = (port=8010,
plugins= (waterfall_view={},
console_view={}))

See www for more information.

Status Classes

Where in 0.8.x most of the data about a build was available synchronously, it must now be fetched dynamically using
the Data API. All classes under the Python package buildbot .status should be considered deprecated. Many

2.2. Installation 33

Buildbot Documentation, Release 0.9.7

have already been removed, and the remainder have limited functionality. Any custom code which refers to these
classes must be rewritten to use the Data API. Avoid the temptation to reach into the Buildbot source code to find other
useful-looking methods!

Common uses of the status API are:
¢ getBuild in a custom renderable
* MailNotifier message formatters (see below for upgrade hints)
* doIf functions on steps

Import paths for several classes under the buildbot . status package but which remain useful have changed. Most
of these are now available as plugins (see above), but for the remainder, consult the source code.

BuildRequest Merging

Buildbot 0.9.x has replaced the old concept of request merging (mergeRequests) with a more flexible request-
collapsing mechanism. See collapseRequest s for more information.

Status Reporters

In fact, the whole c [' status '] configuration parameter is gone.

Many of the status listeners used in the status hierarchy in 0.8.x have been replaced with “reporters” that are available
as buildbot plugins. However, note that not all status listeners have yet been ported. See the release notes for details.

Including the "status" key in the configuration object will cause a configuration error. All reporters should be
included in c ['services'] as described in Reporters.

The available reporters as of 0.9.0 are

* MailNotifier

e TRC

* HttpStatusPush

* GerritStatusPush

* GitHubStatusPush (replaces buildbot.status.github.GitHubStatus)
See the reporter index for the full, current list.
A few notes on changes to the configuration of these reporters:

* MailNotifier argument messageFormatter should now be a buildbot.reporters.message.
MessageFormatter, due to the removal of the status classes (see above), such formatters must be re-
implemented using the Data API.

* MailNotifier argument previousBuildGetter is not supported anymore
e MailNotifier no longer forces SSL 3.0 when useT1s is true.

* GerritStatusPush callbacks slightly changed signature, and include a master reference instead of a status
reference.

* GitHubStatusPush now accepts a context parameter to be passed to the GitHub Status API.

e buildbot.status.builder.Results and the constants buildbot.status.results.SUCCESS
should be imported from the buiIdbot.process. results module instead.

34 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

Steps

Buildbot-0.8.9 introduced “new-style steps”, with an asynchronous run method. In the remaining 0.8.x releases, use
of new-style and old-style steps were supported side-by-side. In 0.9.x, old-style steps are emulated using a collection
of hacks to allow asynchronous calls to be called from synchronous code. This emulation is imperfect, and you are
strongly encouraged to rewrite any custom steps as New-Style Build Steps.

Note that new-style steps now “push” their status when it changes, so the describe method no longer exists.

Identifiers

Many strings in Buildbot must now be identifiers. Identifiers are designed to fit easily and unambiguously into URLSs,
AMQP routes, and the like. An “identifier” is a nonempty unicode string of limited length, containing only ASCII
alphanumeric characters along with — (dash) and __ (underscore), and not beginning with a digit

Unfortunately, many existing names do not fit this pattern.
The following fields are identifiers:

¢ worker name (50-character)

¢ builder name (20-character)

* step name (50-character)

Serving static files

Since version 0.9.0 Buildbot doesn’t use and don’t serve master’s public_html directory. You need to use third-
party HTTP server for serving static files.

Transition to “worker” terminology

Since version 0.9.0 of Buildbot “slave”-based terminology is deprecated in favor of “worker”-based terminology.

All identifiers, messages and documentation were updated to use “worker” instead of “slave”. Old API names are still
available, but deprecated.

For details about changed API and how to control generated warnings see Transition to “worker” terminology.

Other Config Settings

The default master.cfg file contains some new changes, which you should look over:

e c['protocols'] = {'pb': {'port': 9989} } (the default port used by the workers)
» Waterfall View: requires installation (pip install buildbot-waterfall-view) and configuration
(c['www'] = { ..., 'plugins': {'waterfall_view': {} }).
Build History

There is no support for importing build history from 0.8.x (where the history was stored on-disk in pickle files) into
0.9.x (where it is stored in the database).

2.2. Installation 35

Buildbot Documentation, Release 0.9.7

Data LifeTime

Buildbot Nine data being implemented fully in an SQL database, the buildHorizon feature had to be reworked.
Instead of being number-of-things based, it is now time based. This makes more sense from a user perspective but
makes it harder to predict the database average size. Please be careful to provision enough disk space for your database.

Theold c['logHorizon'] way of configuring is not supported anymore. See JanitorConfigurator tolearn
how to configure. A new ___Janitor builder will be created to help keep an eye on the cleanup activities.

More Information

For minor changes not mentioned here, consult the release notes for the versions over which you are upgrading.

Buildbot-0.9.0 represents several years’ work, and as such we may have missed potential migration issues. To find the
latest “gotchas” and share with other users, see http://trac.buildbot.net/wiki/NineMigrationGuide.

Buildmaster Setup

Creating a buildmaster

As you learned earlier (System Architecture), the buildmaster runs on a central host (usually one that is publicly visible,
so everybody can check on the status of the project), and controls all aspects of the buildbot system

You will probably wish to create a separate user account for the buildmaster, perhaps named buildmaster. Do not
run the buildmaster as root!

You need to choose a directory for the buildmaster, called the basedir. This directory will be owned by the build-
master. It will contain configuration, the database, and status information - including logfiles. On a large buildmaster
this directory will see a lot of activity, so it should be on a disk with adequate space and speed.

Once you’ve picked a directory, use the buildbot create-master command to create the directory and populate
it with startup files:

buildbot create-master —-r basedir

You will need to create a configuration file before starting the buildmaster. Most of the rest of this manual is dedicated
to explaining how to do this. A sample configuration file is placed in the working directory, named master.cfg.
sample, which can be copied to master.cfqg and edited to suit your purposes.

(Internal details: This command creates a file named buildbot . tac that contains all the state necessary to create the
buildmaster. Twisted has a tool called t wistd which can use this .tac file to create and launch a buildmaster instance.
Twistd takes care of logging and daemonization (running the program in the background). /usr/bin/buildbot
is a front end which runs twistd for you.)

Your master will need a database to store the various information about your builds, and its configuration. By default,
the sglite3 backend will be used. This needs no configuration, neither extra software. All information will be
stored in the file state.sglite. Buildbot however supports multiple backends. See Using A Database Server for
more options.

Buildmaster Options

This section lists options to the create-master command. You can also type buildbot create-master
——help for an up-to-the-moment summary.

——force
This option will allow to re-use an existing directory.

36 Chapter 2. Buildbot Manual

http://trac.buildbot.net/wiki/NineMigrationGuide

Buildbot Documentation, Release 0.9.7

——no-logrotate
This disables internal worker log management mechanism. With this option worker does not override the default
logfile name and its behaviour giving a possibility to control those with command-line options of twistd daemon.

——relocatable
This creates a “relocatable” buildbot . tac, which uses relative paths instead of absolute paths, so that the
buildmaster directory can be moved about.

—--config
The name of the configuration file to use. This configuration file need not reside in the buildmaster directory.

——log-size
This is the size in bytes when to rotate the Twisted log files. The default is 10MiB.

—-log-count
This is the number of log rotations to keep around. You can either specify a number or None to keep all
twistd. log files around. The default is 10.

--db
The database that the Buildmaster should use. Note that the same value must be added to the configuration file.

Upgrading an Existing Buildmaster

If you have just installed a new version of the Buildbot code, and you have buildmasters that were created using an
older version, you’ll need to upgrade these buildmasters before you can use them. The upgrade process adds and
modifies files in the buildmaster’s base directory to make it compatible with the new code.

buildbot upgrade-master basedir

This command will also scan your master.cfg file for incompatibilities (by loading it and printing any errors or
deprecation warnings that occur). Each buildbot release tries to be compatible with configurations that worked cleanly
(i.e. without deprecation warnings) on the previous release: any functions or classes that are to be removed will first
be deprecated in a release, to give you a chance to start using the replacement.

The upgrade-master command is idempotent. It is safe to run it multiple times. After each upgrade of the buildbot
code, you should use upgrade—master on all your buildmasters.

In general, Buildbot workers and masters can be upgraded independently, although some new features will not be
available, depending on the master and worker versions.

Beyond this general information, read all of the sections below that apply to versions through which you are upgrading.

Version-specific Notes
Upgrading from Buildbot-0.8.x to Buildbot-0.9.x

See Upgrading to Nine for a guide to upgrading from 0.8.x to 0.9.x

Upgrading a Buildmaster to Buildbot-0.7.6

The 0.7.6 release introduced the public_html/ directory, which contains index.html and other files served by
the WebStatus and Waterfall status displays. The upgrade—-master command will create these files if they
do not already exist. It will not modify existing copies, but it will write a new copy in e.2. index.html .new if the
new version differs from the version that already exists.

2.2. Installation 37

Buildbot Documentation, Release 0.9.7

Upgrading a Buildmaster to Buildbot-0.8.0

Buildbot-0.8.0 introduces a database backend, which is SQLite by default. The upgrade-master command will
automatically create and populate this database with the changes the buildmaster has seen. Note that, as of this release,
build history is not contained in the database, and is thus not migrated.

Upgrading into a non-SQLite database

If you are not using sqlite, you will need to add an entry into your master.cfg to reflect the database version you
are using. The upgrade process does not edit your master.cfg for you. So something like:

cl] =

Once the parameter has been added, invoke upgrade-master. This will extract the DB url from your configuration
file.

buildbot upgrade-master

See Database Specification for more options to specify a database.

Worker Setup

Creating a worker

Typically, you will be adding a worker to an existing buildmaster, to provide additional architecture coverage. The
buildbot administrator will give you several pieces of information necessary to connect to the buildmaster. You should
also be somewhat familiar with the project being tested, so you can troubleshoot build problems locally.

The buildbot exists to make sure that the project’s stated how to build it process actually works. To this end,
the worker should run in an environment just like that of your regular developers. Typically the project build process
is documented somewhere (README, INSTALL, etc), in a document that should mention all library dependencies and
contain a basic set of build instructions. This document will be useful as you configure the host and account in which
the worker runs.

Here’s a good checklist for setting up a worker:
1. Set up the account

It is recommended (although not mandatory) to set up a separate user account for the worker. This account
is frequently named buildbot or worker. This serves to isolate your personal working environment
from that of the worker’s, and helps to minimize the security threat posed by letting possibly-unknown
contributors run arbitrary code on your system. The account should have a minimum of fancy init scripts.

2. Install the buildbot code

Follow the instructions given earlier (Installing the code). If you use a separate worker account, and you
didn’t install the buildbot code to a shared location, then you will need to install it with ——home=~ for
each account that needs it.

3. Set up the host

Make sure the host can actually reach the buildmaster. Usually the buildmaster is running a status web-
server on the same machine, so simply point your web browser at it and see if you can get there. Install
whatever additional packages or libraries the project’s INSTALL document advises. (or not: if your

38 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

worker is supposed to make sure that building without optional libraries still works, then don’t install
those libraries.)

Again, these libraries don’t necessarily have to be installed to a site-wide shared location, but they must
be available to your build process. Accomplishing this is usually very specific to the build process, so
installing them to /usr or /usr/local is usually the best approach.

4. Test the build process

Follow the instructions in the INSTALL document, in the worker’s account. Perform a full CVS (or
whatever) checkout, configure, make, run tests, etc. Confirm that the build works without manual fussing.
If it doesn’t work when you do it by hand, it will be unlikely to work when the buildbot attempts to do it
in an automated fashion.

5. Choose a base directory

This should be somewhere in the worker’s account, typically named after the project which is being
tested. The worker will not touch any file outside of this directory. Something like ~/Buildbot or
~/Workers/fooproject is appropriate.

6. Get the buildmaster host/port, botname, and password

When the buildbot admin configures the buildmaster to accept and use your worker, they will provide you
with the following pieces of information:

* your worker’s name
¢ the password assigned to your worker
¢ the hostname and port number of the buildmaster, i.e. http://buildbot.example.org:8007
7. Create the worker
Now run the ‘worker’ command as follows:

buildbot—-worker create-worker BASEDIR MASTERHOST:PORT
WORKERNAME PASSWORD

This will create the base directory and a collection of files inside, including the buildbot . tac file that
contains all the information you passed to the buildbot command.

8. Fill in the hostinfo files

When it first connects, the worker will send a few files up to the buildmaster which describe the host
that it is running on. These files are presented on the web status display so that developers have more
information to reproduce any test failures that are witnessed by the buildbot. There are sample files in the
info subdirectory of the buildbot’s base directory. You should edit these to correctly describe you and
your host.

BASEDIR/info/admin should contain your name and email address. This is the worker admin
address, and will be visible from the build status page (so you may wish to munge it a bit if address-
harvesting spambots are a concern).

BASEDIR/info/host should be filled with a brief description of the host: OS, version, memory size,
CPU speed, versions of relevant libraries installed, and finally the version of the buildbot code which is
running the worker.

The optional BASEDIR/info/access_uri can specify a URI which will connect a user to the ma-
chine. Many systems accept ssh://hostname URISs for this purpose.

If you run many workers, you may want to create a single ~worker/info file and share it among all
the workers with symlinks.

2.2. Installation 39

http://buildbot.example.org:8007

Buildbot Documentation, Release 0.9.7

Worker Options

There are a handful of options you might want to use when creating the worker with the buildbot-worker
create-worker <options> DIR <params> command. You can type buildbot-worker
create-worker —-—help for a summary. To use these, just include them on the buildbot-worker
create-worker command line, like this

buildbot-worker create-worker —--umask=022 ~/worker buildmaster.example.org:42012
—{myworkername} {mypasswd}

—--no-logrotate
This disables internal worker log management mechanism. With this option worker does not override the default
logfile name and its behaviour giving a possibility to control those with command-line options of twistd daemon.

——umask
This is a string (generally an octal representation of an integer) which will cause the worker process’ umask
value to be set shortly after initialization. The twistd daemonization utility forces the umask to 077 at startup
(which means that all files created by the worker or its child processes will be unreadable by any user other than
the worker account). If you want build products to be readable by other accounts, you can add ——umask=022
to tell the worker to fix the umask after twistd clobbers it. If you want build products to be writable by other
accounts too, use ——umask=000, but this is likely to be a security problem.

——keepalive
This is a number that indicates how frequently keepalive messages should be sent from the worker to the
buildmaster, expressed in seconds. The default (600) causes a message to be sent to the buildmaster at least once
every 10 minutes. To set this to a lower value, use e.g. ——keepalive=120.

If the worker is behind a NAT box or stateful firewall, these messages may help to keep the connection alive:
some NAT boxes tend to forget about a connection if it has not been used in a while. When this happens, the
buildmaster will think that the worker has disappeared, and builds will time out. Meanwhile the worker will not
realize than anything is wrong.

—--maxdelay
This is a number that indicates the maximum amount of time the worker will wait between connection attempts,
expressed in seconds. The default (300) causes the worker to wait at most 5 minutes before trying to connect to
the buildmaster again.

—-log-size
This is the size in bytes when to rotate the Twisted log files.

——log—-count
This is the number of log rotations to keep around. You can either specify a number or None to keep all
twistd. log files around. The default is 10.

——allow-shutdown
Can also be passed directly to the Worker constructor in buildbot . tac. If set, it allows the worker to initiate
a graceful shutdown, meaning that it will ask the master to shut down the worker when the current build, if any,
is complete.

Setting allow_shutdown to £i1le will cause the worker to watch shutdown . stamp in basedir for updates to
its mtime. When the mtime changes, the worker will request a graceful shutdown from the master. The file does
not need to exist prior to starting the worker.

Setting allow_shutdown to signal will set up a SIGHUP handler to start a graceful shutdown. When the signal
is received, the worker will request a graceful shutdown from the master.

The default value is None, in which case this feature will be disabled.

Both master and worker must be at least version 0.8.3 for this feature to work.

40 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

Other Worker Configuration

unicode_encoding This represents the encoding that buildbot should use when converting unicode commandline
arguments into byte strings in order to pass to the operating system when spawning new processes.

The default value is what Python’s sys.getfilesystemencoding returns, which on Windows is ‘mbcs’,
on Mac OSX is ‘utf-8’, and on Unix depends on your locale settings.

If you need a different encoding, this can be changed in your worker’s buildbot.tac file by adding a
unicode_encoding argument to the Worker constructor.

s = Worker (buildmaster_host, port, workername, passwd, basedir,
keepalive, usepty, umask=umask, maxdelay=maxdelay,
unicode_encoding="'utf-8', allow_shutdown='signal')

Upgrading an Existing Worker

Version-specific Notes

During project lifetime worker has transitioned over few states:
1. Before Buildbot version 0.8.1 worker were integral part of buildbot package distribution.

2. Starting from Buildbot version 0.8.1 worker were extracted from buildbot package to buildbot-slave
package.

3. Starting from Buildbot version 0.9.0 the buildbot—-slave package was renamed to buildbot-worker.

Upgrading a Worker to buildbot-slave 0.8.1

Before Buildbot version 0.8.1, the Buildbot master and worker were part of the same distribution. As of version 0.8.1,
the worker is a separate distribution.

As of this release, you will need to install buildbot—-slave to run a worker.

Any automatic startup scripts that had run buildbot start for previous versions should be changed to run
buildslave start instead.

If you are running a version later than 0.8.1, then you can skip the remainder of this section: the upgrade-slave
command will take care of this. If you are upgrading directly to 0.8.1, read on.

The existing buildbot . tac for any workers running older versions will need to be edited or replaced. If the loss
of cached worker state (e.g., for Source steps in copy mode) is not problematic, the easiest solution is to simply delete
the worker directory and re-run buildslave create-slave.

If deleting the worker directory is problematic, the change to buildbot .tac is simple. On line 3, replace:

’from pbuildbot.slave.bot import BuildSlave

with:

’from buildslave.bot import BuildSlave

After this change, the worker should start as usual.

2.2. Installation 41

Buildbot Documentation, Release 0.9.7

Upgrading from 0.8.17 to the latest 0. 8. » version of buildbot-slave

If you have just installed a new version of Buildbot-slave, you may need to take some steps to upgrade it. If you are
upgrading to version 0.8.2 or later, you can run

buildslave upgrade-slave /path/to/worker/dir

Upgrading from the latest version of buildbot-slave t0 buildbot-worker

If the loss of cached worker state (e.g., for Source steps in copy mode) is not problematic, the easiest solution is to
simply delete the worker directory and re-run buildbot-worker create-worker.

If deleting the worker directory is problematic, you can change buildbot . tac in the following way:

1. Replace:

’from buildslave.bot import BuildSlave

with:

’from buildbot_worker.bot import Worker

2. Replace:
’application = service.Application('buildslave')

with:

’application = service.Application('buildbot-worker")
3. Replace:

s = BuildSlave (buildmaster_host, port, slavename, passwd, basedir,
keepalive, usepty, umask=umask, maxdelay=maxdelay,
numcpus=numcpus, allow_shutdown=allow_shutdown)

with:

s = Worker (buildmaster_host, port, slavename, passwd, basedir,
keepalive, umask=umask, maxdelay=maxdelay,

numcpus=numcpus, allow_shutdown=allow_shutdown)

See Transition to “Worker” Terminology for details of changes in version Buildbot 0. 9. 0.

Next Steps

Launching the daemons

Both the buildmaster and the worker run as daemon programs. To launch them, pass the working directory to the
buildbot and buildbot-worker commands, as appropriate:

buildbot start [BASEDIR]

buildbot-worker start [WORKER_BASEDIR]

42 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

The BASEDIR is option and can be omitted if the current directory contains the buildbot configuration (the
buildbot.tac file).

buildbot start

This command will start the daemon and then return, so normally it will not produce any output. To verify that the
programs are indeed running, look for a pair of files named twistd.log and twistd.pid that should be created
in the working directory. twistd.pid contains the process ID of the newly-spawned daemon.

When the worker connects to the buildmaster, new directories will start appearing in its base directory. The buildmaster
tells the worker to create a directory for each Builder which will be using that worker. All build operations are
performed within these directories: CVS checkouts, compiles, and tests.

Once you get everything running, you will want to arrange for the buildbot daemons to be started at boot time. One
way is to use cron, by putting them in a @ reboot crontab entry'

@reboot buildbot start [BASEDIR]

When you run erontab to set this up, remember to do it as the buildmaster or worker account! If you add this to
your crontab when running as your regular account (or worse yet, root), then the daemon will run as the wrong user,
quite possibly as one with more authority than you intended to provide.

It is important to remember that the environment provided to cron jobs and init scripts can be quite different that your
normal runtime. There may be fewer environment variables specified, and the PATH may be shorter than usual. It is a
good idea to test out this method of launching the worker by using a cron job with a time in the near future, with the
same command, and then check twistd. log to make sure the worker actually started correctly. Common problems
here are for /usr/local or ~/bin tonotbe on your PATH, or for PYTHONPATH to not be set correctly. Sometimes
HOME is messed up too.

Some distributions may include conveniences to make starting buildbot at boot time easy. For instance, with the
default buildbot package in Debian-based distributions, you may only need to modify /etc/default/buildbot
(see also /etc/init.d/buildbot, which reads the configuration in /etc/default/buildbot).

Buildbot also comes with its own init scripts that provide support for controlling multi-worker and multi-master setups
(mostly because they are based on the init script from the Debian package). With a little modification these scripts can
be used both on Debian and RHEL-based distributions and may thus prove helpful to package maintainers who are
working on buildbot (or those that haven’t yet split buildbot into master and worker packages).

worker/contrib/init-scripts/buildbot-worker.default

master/contrib/init-scripts/buildmaster.default

worker/contrib/init-scripts/buildbot-worker.init.sh

master/contrib/init-scripts/buildmaster.init.sh

chkconfig buildmaster reset

update-rc.d buildmaster defaults

! This @reboot syntax is understood by Vixie cron, which is the flavor usually provided with Linux systems. Other unices may have a cron
that doesn’t understand @ reboot

2.2. Installation 43

Buildbot Documentation, Release 0.9.7

Logfiles

While a buildbot daemon runs, it emits text to a logfile, named twistd.log. Acommandliketail -f twistd.
log is useful to watch the command output as it runs.

The buildmaster will announce any errors with its configuration file in the logfile, so it is a good idea to look at the log
at startup time to check for any problems. Most buildmaster activities will cause lines to be added to the log.

Shutdown

To stop a buildmaster or worker manually, use:

buildbot stop [BASEDIR]

buildbot-worker stop [WORKER_BASEDIR]

This simply looks for the twistd.pid file and kills whatever process is identified within.

At system shutdown, all processes are sent a STGKILL. The buildmaster and worker will respond to this by shutting
down normally.

The buildmaster will respond to a SIGHUP by re-reading its config file. Of course, this only works on Unix-like
systems with signal support, and won’t work on Windows. The following shortcut is available:

’buildbot reconfig [BASEDIR]

When you update the Buildbot code to a new release, you will need to restart the buildmaster and/or worker be-
fore it can take advantage of the new code. You can do a buildbot stop BASEDIR and buildbot start
BASEDIR in quick succession, or you can use the restart shortcut, which does both steps for you:

’buildbot restart [BASEDIR]

Workers can similarly be restarted with:

’buildbot—worker restart [BASEDIR]

There are certain configuration changes that are not handled cleanly by buildbot reconfig. If this occurs,
buildbot restart isa more robust tool to fully switch over to the new configuration.

buildbot restart may also be used to start a stopped Buildbot instance. This behaviour is useful when writing
scripts that stop, start and restart Buildbot.

A worker may also be gracefully shutdown from the web UL This is useful to shutdown a worker without interrupting
any current builds. The buildmaster will wait until the worker is finished all its current builds, and will then tell the
worker to shutdown.

Concepts

This chapter defines some of the basic concepts that the Buildbot uses. You’ll need to understand how the Buildbot
sees the world to configure it properly.

Source Stamps

Source code comes from repositories, provided by version control systems. Repositories are generally identified by
URLs, e.g., git://github.com/buildbot /buildbot.git.

44 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

In these days of distributed version control systems, the same codebase may appear in multiple repositories.
For example, https://github.com/mozilla/mozilla-central and http://hg.mozilla.org/
mozilla-release both contain the Firefox codebase, although not exactly the same code.

Many projects are built from multiple codebases. For example, a company may build several applications based on the
same core library. The “app” codebase and the “core” codebase are in separate repositories, but are compiled together
and constitute a single project. Changes to either codebase should cause a rebuild of the application.

Most version control systems define some sort of revision that can be used (sometimes in combination with a branch)
to uniquely specify a particular version of the source code.

To build a project, Buildbot needs to know exactly which version of each codebase it should build. It uses a source
stamp to do so for each codebase; the collection of sourcestamps required for a project is called a source stamp set.

Version Control Systems

Buildbot supports a significant number of version control systems, so it treats them abstractly.

For purposes of deciding when to perform builds, Buildbot’s change sources monitor repositories, and represent any
updates to those repositories as changes. These change sources fall broadly into two categories: pollers which period-
ically check the repository for updates; and hooks, where the repository is configured to notify Buildbot whenever an
update occurs.

This concept does not map perfectly to every version control system. For example, for CVS Buildbot must guess that
version updates made to multiple files within a short time represent a single change; for DVCS’s like Git, Buildbot
records a change when a commit is pushed to the monitored repository, not when it is initially committed. We assume
that the Changes arrive at the master in the same order in which they are committed to the repository.

When it comes time to actually perform a build, a scheduler prepares a source stamp set, as described above, based
on its configuration. When the build begins, one or more source steps use the information in the source stamp set to
actually check out the source code, using the normal VCS commands.

Tree Stability

Changes tend to arrive at a buildmaster in bursts. In many cases, these bursts of changes are meant to be taken together.
For example, a developer may have pushed multiple commits to a DVCS that comprise the same new feature or bugfix.
To avoid trying to build every change, Buildbot supports the notion of tree stability, by waiting for a burst of changes
to finish before starting to schedule builds. This is implemented as a timer, with builds not scheduled until no changes
have occurred for the duration of the timer.

How Different VC Systems Specify Sources

For CVS, the static specifications are repository and module. In addition to those, each build uses a timestamp (or
omits the timestamp to mean the latest) and branch tag (which defaults to HEAD). These parameters collectively
specify a set of sources from which a build may be performed.

Subversion (http://subversion.tigris.org), combines the repository, module, and branch into a single Subversion URL
parameter. Within that scope, source checkouts can be specified by a numeric revision number (a repository-wide
monotonically-increasing marker, such that each transaction that changes the repository is indexed by a different revi-
sion number), or a revision timestamp. When branches are used, the repository and module form a static baseURL,
while each build has a revision number and a branch (which defaults to a statically-specified defaultBranch). The
baseURL and branch are simply concatenated together to derive the repourl to use for the checkout.

Perforce (http://www.perforce.com/) is similar. The server is specified through a P4APORT parameter. Module and
branch are specified in a single depot path, and revisions are depot-wide. When branches are used, the p4dbase and
defaultBranch are concatenated together to produce the depot path.

2.3. Concepts 45

http://subversion.tigris.org
http://www.perforce.com/

Buildbot Documentation, Release 0.9.7

Bzr (http://bazaar-vcs.org) (which is a descendant of Arch/Bazaar, and is frequently referred to as “Bazaar”) has the
same sort of repository-vs-workspace model as Arch, but the repository data can either be stored inside the working
directory or kept elsewhere (either on the same machine or on an entirely different machine). For the purposes of
Buildbot (which never commits changes), the repository is specified with a URL and a revision number.

The most common way to obtain read-only access to a bzr tree is via HTTP, simply by making the repository visible
through a web server like Apache. Bzr can also use FTP and SFTP servers, if the worker process has sufficient
privileges to access them. Higher performance can be obtained by running a special Bazaar-specific server. None
of these matter to the buildbot: the repository URL just has to match the kind of server being used. The repoURL
argument provides the location of the repository.

Branches are expressed as subdirectories of the main central repository, which means that if branches are being used,
the BZR step is given a baseURL and defaultBranch instead of getting the repoURL argument.

Darcs (http://darcs.net/) doesn’t really have the notion of a single master repository. Nor does it really have branches.
In Darcs, each working directory is also a repository, and there are operations to push and pull patches from one of
these repositories to another. For the Buildbot’s purposes, all you need to do is specify the URL of a repository
that you want to build from. The worker will then pull the latest patches from that repository and build them. Multiple
branches are implemented by using multiple repositories (possibly living on the same server).

Builders which use Darcs therefore have a static repourl which specifies the location of the repository. If branches
are being used, the source Step is instead configured with a baseURL and a defaultBranch, and the two strings
are simply concatenated together to obtain the repository’s URL. Each build then has a specific branch which replaces
defaultBranch, or just uses the default one. Instead of a revision number, each build can have a context,
which is a string that records all the patches that are present in a given tree (this is the output of darcs changes
—-—context, and is considerably less concise than, e.g. Subversion’s revision number, but the patch-reordering
flexibility of Darcs makes it impossible to provide a shorter useful specification).

Mercurial (https://www.mercurial-scm.org/) is like Darcs, in that each branch is stored in a separate repository. The
repourl, baseURL, and defaultBranch arguments are all handled the same way as with Darcs. The revision,
however, is the hash identifier returned by hg identify.

Git (http://git.or.cz/) also follows a decentralized model, and each repository can have several branches and tags. The
source Step is configured with a static repour1 which specifies the location of the repository. In addition, an optional
branch parameter can be specified to check out code from a specific branch instead of the default master branch.
The revision is specified as a SHA1 hash as returned by e.g. git rev-parse. No attempt is made to ensure that
the specified revision is actually a subset of the specified branch.

Monotone (http://www.monotone.ca/) is another that follows a decentralized model where each repository can have
several branches and tags. The source Step is configured with static repourl and branch parameters, which
specifies the location of the repository and the branch to use. The revision is specified as a SHA1 hash as returned by
e.g. mtn automate select w:. No attempt is made to ensure that the specified revision is actually a subset of
the specified branch.

Changes
Who

Each Change has a who attribute, which specifies which developer is responsible for the change. This is a string
which comes from a namespace controlled by the VC repository. Frequently this means it is a username on the host
which runs the repository, but not all VC systems require this. Each StatusNotifier will map the who attribute
into something appropriate for their particular means of communication: an email address, an IRC handle, etc.

This who attribute is also parsed and stored into Buildbot’s database (see User Objects). Currently, only who attributes
in Changes from git repositories are translated into user objects, but in the future all incoming Changes will have
their who parsed and stored.

46 Chapter 2. Buildbot Manual

http://bazaar-vcs.org
http://darcs.net/
https://www.mercurial-scm.org/
http://git.or.cz/
http://www.monotone.ca/

Buildbot Documentation, Release 0.9.7

Files

It also has a list of £iles, which are just the tree-relative filenames of any files that were added, deleted, or modified
for this Change. These filenames are used by the fileIsImportant function (in the scheduler) to decide whether
it is worth triggering a new build or not, e.g. the function could use the following function to only run a build if a C
file were checked in:

def has_C_files (change):
for name in change.files:
if name.endswith () :
return True
return False

Certain BuildSteps can also use the list of changed files to run a more targeted series of tests, e.g. the
python_twisted.Trial step canrun just the unit tests that provide coverage for the modified .py files instead of
running the full test suite.

Comments

The Change also has a comment s attribute, which is a string containing any checkin comments.

Project

The project attribute of a change or source stamp describes the project to which it corresponds, as a short human-
readable string. This is useful in cases where multiple independent projects are built on the same buildmaster. In such
cases, it can be used to control which builds are scheduled for a given commit, and to limit status displays to only one
project.

Repository

This attribute specifies the repository in which this change occurred. In the case of DVCS’s, this information may
be required to check out the committed source code. However, using the repository from a change has security risks:
if Buildbot is configured to blindly trust this information, then it may easily be tricked into building arbitrary source
code, potentially compromising the workers and the integrity of subsequent builds.

Codebase

This attribute specifies the codebase to which this change was made. As described above, multiple repositories may
contain the same codebase. A change’s codebase is usually determined by the codebaseGenerator configuration.
By default the codebase is ‘’; this value is used automatically for single-codebase configurations.

Revision

Each Change can have a revision attribute, which describes how to get a tree with a specific state: a tree which
includes this Change (and all that came before it) but none that come after it. If this information is unavailable, the
revision attribute will be None. These revisions are provided by the ChangeSource.

Revisions are always strings.
CVS revision is the seconds since the epoch as an integer.

SVN revision is the revision number

2.3. Concepts a7

Buildbot Documentation, Release 0.9.7

Darcs revision is alarge string, the output of darcs changes —-context
Mercurial revision is a short string (a hash ID), the output of hg identify
P4 revision is the transaction number

Git revision is a short string (a SHA1 hash), the output of e.g. git rev-parse

Branches

The Change might also have a branch attribute. This indicates that all of the Change’s files are in the same named
branch. The schedulers get to decide whether the branch should be built or not.

For VC systems like CVS, Git and Monotone the branch name is unrelated to the filename. (That is, the branch name
and the filename inhabit unrelated namespaces.) For SVN, branches are expressed as subdirectories of the repository,
so the file’s repourl is a combination of some base URL, the branch name, and the filename within the branch. (In
a sense, the branch name and the filename inhabit the same namespace.) Darcs branches are subdirectories of a base
URL just like SVN. Mercurial branches are the same as Darcs.

CVS branch="warner-newfeature’, files=[’src/foo.c’]

SVN branch="branches/warner-newfeature’, files=[’src/foo.c’]
Darcs branch="warner-newfeature’, files=[’src/foo.c’]
Mercurial branch="warner-newfeature’, files=[’src/foo.c’]

Git branch="warner-newfeature’, files=[’src/foo.c’]

Monotone branch=’warner-newfeature’, files=[’src/foo.c’]

Change Properties

A Change may have one or more properties attached to it, usually specified through the Force Build form or
sendchange. Properties are discussed in detail in the Build Properties section.

Scheduling Builds

Each Buildmaster has a set of scheduler objects, each of which gets a copy of every incoming Change. The Schedulers
are responsible for deciding when Bui 1ds should be run. Some Buildbot installations might have a single scheduler,
while others may have several, each for a different purpose.

For example, a quick scheduler might exist to give immediate feedback to developers, hoping to catch obvious prob-
lems in the code that can be detected quickly. These typically do not run the full test suite, nor do they run on a wide
variety of platforms. They also usually do a VC update rather than performing a brand-new checkout each time.

A separate full scheduler might run more comprehensive tests, to catch more subtle problems. configured to run after
the quick scheduler, to give developers time to commit fixes to bugs caught by the quick scheduler before running the
comprehensive tests. This scheduler would also feed multiple Builders.

Many schedulers can be configured to wait a while after seeing a source-code change - this is the tree stable timer.
The timer allows multiple commits to be “batched” together. This is particularly useful in distributed version control
systems, where a developer may push a long sequence of changes all at once. To save resources, it’s often desirable
only to test the most recent change.

Schedulers can also filter out the changes they are interested in, based on a number of criteria. For example, a scheduler
that only builds documentation might skip any changes that do not affect the documentation. Schedulers can also filter
on the branch to which a commit was made.

48 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

There is some support for configuring dependencies between builds - for example, you may want to build packages
only for revisions which pass all of the unit tests. This support is under active development in Buildbot, and is referred
to as “build coordination”.

Periodic builds (those which are run every N seconds rather than after new Changes arrive) are triggered by a special
Periodic scheduler.

Each scheduler creates and submits BuildSet objects to the BuildMaster, which is then responsible for making
sure the individual Bui1dRequests are delivered to the target Builders.

Scheduler instances are activated by placing them in the schedulers list in the buildmaster config file. Each
scheduler must have a unique name.

BuildSets

A BuildSet is the name given to a set of Builds that all compile/test the same version of the tree on multiple
Builders. In general, all these component Builds will perform the same sequence of Steps, using the same
source code, but on different platforms or against a different set of libraries.

The BuildSet is tracked as a single unit, which fails if any of the component Bui 1ds have failed, and therefore can
succeed only if all of the component Bui 1ds have succeeded. There are two kinds of status notification messages that
can be emitted for a BuildSet: the firstFailure type (which fires as soon as we know the BuildSet will
fail), and the Finished type (which fires once the BuildSet has completely finished, regardless of whether the
overall set passed or failed).

A BuildSet is created with set of one or more source stamp tuples of (branch, revision, changes,
patch), some of which may be None, and a list of Builders on which it is to be run. They are then given to the
BuildMaster, which is responsible for creating a separate Bui 1dRequest for each Builder.

There are a couple of different likely values for the SourceStamp:

(revision=None, changes=CHANGES, patch=None) This is a SourceStamp used when a series of
Changes have triggered a build. The VC step will attempt to check out a tree that contains CHANGES (and
any changes that occurred before CHANGES, but not any that occurred after them.)

(revision=None, changes=None, patch=None) This builds the most recent code on the default branch.
This is the sort of SourceStamp that would be used on a Build that was triggered by a user request, or a
Periodic scheduler. It is also possible to configure the VC Source Step to always check out the latest sources
rather than paying attention to the Changes in the SourceStamp, which will result in same behavior as this.

(branch=BRANCH, revision=None, changes=None, patch=None) This builds the mostrecent code
on the given BRANCH. Again, this is generally triggered by a user request or a Periodic scheduler.

(revision=REV, changes=None, patch=(LEVEL, DIFF, SUBDIR ROOT)) This checks out the
tree at the given revision REV, then applies a patch (using patch -pLEVEL <DIFF) from inside the rel-
ative directory SUBDIR_ROOT. Item SUBDIR_ROOT is optional and defaults to the builder working directory.
The t ry command creates this kind of SourceStamp. If patch is None, the patching step is bypassed.

The buildmaster is responsible for turning the BuildSet into a set of BuildRequest objects and queueing them
on the appropriate Builders.

BuildRequests

A BuildRequest is a request to build a specific set of source code (specified by one ore more source stamps)
on a single Builder. Each Builder runs the BuildRequest as soon as it can (i.e. when an associated worker
becomes free). BuildRequests are prioritized from oldest to newest, so when a worker becomes free, the Builder
with the oldest BuildRequest is run.

2.3. Concepts 49

Buildbot Documentation, Release 0.9.7

The BuildRequest contains one SourceStamp specification per codebase. The actual process of running the
build (the series of Steps that will be executed) is implemented by the Build object. In the future this might be
changed, to have the Build define what gets built, and a separate BuildProcess (provided by the Builder) to
define how it gets built.

The BuildRequest may be mergeable with other compatible BuildRequests. Builds that are triggered by
incoming Changes will generally be mergeable. Builds that are triggered by user requests are generally not, unless
they are multiple requests to build the latest sources of the same branch. A merge of buildrequests is performed per
codebase, thus on changes having the same codebase.

Builders

The Buildmaster runs a collection of Builders, each of which handles a single type of build (e.g. full versus quick),
on one or more workers. Builders serve as a kind of queue for a particular type of build. Each Builder gets a
separate column in the waterfall display. In general, each Builder runs independently (although various kinds of
interlocks can cause one Builder to have an effect on another).

Each builder is a long-lived object which controls a sequence of Builds. Each Builder is created when the config
file is first parsed, and lives forever (or rather until it is removed from the config file). It mediates the connections to
the workers that do all the work, and is responsible for creating the Build objects - Builds.

Each builder gets a unique name, and the path name of a directory where it gets to do all its work (there is a buildmaster-
side directory for keeping status information, as well as a worker-side directory where the actual checkout/compile/test
commands are executed).

Build Factories

A builder also has a BuildFactory, which is responsible for creating new Build instances: because the Build
instance is what actually performs each build, choosing the BuildFactory is the way to specify what happens each
time a build is done (Builds).

Workers

Each builder is associated with one of more Workers. A builder which is used to perform Mac OS X builds (as
opposed to Linux or Solaris builds) should naturally be associated with a Mac worker.

If multiple workers are available for any given builder, you will have some measure of redundancy: in case one
worker goes offline, the others can still keep the Builder working. In addition, multiple workers will allow multiple
simultaneous builds for the same Builder, which might be useful if you have a lot of forced or t ry builds taking
place.

If you use this feature, it is important to make sure that the workers are all, in fact, capable of running the given build.
The worker hosts should be configured similarly, otherwise you will spend a lot of time trying (unsuccessfully) to
reproduce a failure that only occurs on some of the workers and not the others. Different platforms, operating systems,
versions of major programs or libraries, all these things mean you should use separate Builders.

Builds

A build is a single compile or test run of a particular version of the source code, and is comprised of a series of steps. It
is ultimately up to you what constitutes a build, but for compiled software it is generally the checkout, configure, make,
and make check sequence. For interpreted projects like Python modules, a build is generally a checkout followed by
an invocation of the bundled test suite.

50 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

A BuildFactory describes the steps a build will perform. The builder which starts a build uses its configured build
factory to determine the build’s steps.

Users

Buildbot has a somewhat limited awareness of users. It assumes the world consists of a set of developers, each of
whom can be described by a couple of simple attributes. These developers make changes to the source code, causing
builds which may succeed or fail.

Users also may have different levels of authorization when issuing Buildbot commands, such as forcing a build from
the web interface or from an IRC channel.

Each developer is primarily known through the source control system. Each Change object that arrives is tagged with
a who field that typically gives the account name (on the repository machine) of the user responsible for that change.
This string is displayed on the HTML status pages and in each Build‘s blamelist.

To do more with the User than just refer to them, this username needs to be mapped into an address of some sort. The
responsibility for this mapping is left up to the status module which needs the address. In the future, the responsibility
for managing users will be transferred to User Objects.

The who fields in git Changes are used to create User Objects, which allows for more control and flexibility in how
Buildbot manages users.

User Objects

User Objects allow Buildbot to better manage users throughout its various interactions with users (see Change Sources
and Reporters). The User Objects are stored in the Buildbot database and correlate the various attributes that a user
might have: irc, Git, etc.

Changes

Incoming Changes all have a who attribute attached to them that specifies which developer is responsible for that
Change. When a Change is first rendered, the who attribute is parsed and added to the database if it doesn’t exist or
checked against an existing user. The who attribute is formatted in different ways depending on the version control
system that the Change came from.

git who attributes take the form Full Name <Email>.
svn who attributes are of the form Username.

hg who attributes are free-form strings, but usually adhere to similar conventions as git attributes (Full Name
<Email>).

cvs who attributes are of the form Username.
darcs who attributes contain an Email and may also include a Full Name like git attributes.

bzr who attributes are free-form strings like hg, and can include a Username, Email, and/or Full Name.

Tools

For managing users manually, use the buildbot user command, which allows you to add, remove, update, and
show various attributes of users in the Buildbot database (see Command-line Tool).

2.3. Concepts 51

Buildbot Documentation, Release 0.9.7

Uses

Correlating the various bits and pieces that Buildbot views as users also means that one attribute of a user can be
translated into another. This provides a more complete view of users throughout Buildbot.

One such use is being able to find email addresses based on a set of Builds to notify users through the
MailNotifier. This process is explained more clearly in Email Addresses.

Another way to utilize User Objects is through UsersAuth for web authentication. To use UsersAuth, you need to set
a bb_username and bb_password via the buildbot user command line tool to check against. The password will
be encrypted before storing in the database along with other user attributes.

Doing Things With Users

Each change has a single user who is responsible for it. Most builds have a set of changes: the build generally
represents the first time these changes have been built and tested by the Buildbot. The build has a blamelist that is the
union of the users responsible for all the build’s changes. If the build was created by a Try Schedulers this list will
include the submitter of the try job, if known.

The build provides a list of users who are interested in the build — the infterested users. Usually this is equal to the
blamelist, but may also be expanded, e.g., to include the current build sherrif or a module’s maintainer.

If desired, the buildbot can notify the interested users until the problem is resolved.

Email Addresses

The MailNotifier is a status target which can send email about the results of each build. It accepts a static list of
email addresses to which each message should be delivered, but it can also be configured to send mail to the Build"‘s
Interested Users. To do this, it needs a way to convert User names into email addresses.

For many VC systems, the User Name is actually an account name on the system which hosts the repository. As such,
turning the name into an email address is a simple matter of appending @repositoryhost.com. Some projects
use other kinds of mappings (for example the preferred email address may be at project . org despite the repository
host being named cvs.project.org), and some VC systems have full separation between the concept of a user
and that of an account on the repository host (like Perforce). Some systems (like Git) put a full contact email address
in every change.

To convert these names to addresses, the MailNotifier uses an EmailLookup object. This provides a
getAddress method which accepts a name and (eventually) returns an address. The default MailNotifier
module provides an EmailLookup which simply appends a static string, configurable when the notifier is created.
To create more complex behaviors (perhaps using an LDAP lookup, or using finger on a central host to determine
a preferred address for the developer), provide a different object as the 1 ookup argument.

If an EmailLookup object isn’t given to the MailNotifier, the MailNotifier will try to find emails through User Objects.
This will work the same as if an EmailLookup object was used if every user in the Build’s Interested Users list has an
email in the database for them. If a user whose change led to a Build doesn’t have an email attribute, that user will not
receive an email. If ext raRecipients is given, those users are still sent mail when the EmailLookup object is not
specified.

In the future, when the Problem mechanism has been set up, the Buildbot will need to send mail to arbitrary Users.
It will do this by locating a MailNotifier-like object among all the buildmaster’s status targets, and asking it
to send messages to various Users. This means the User-to-address mapping only has to be set up once, in your
MailNotifier, and every email message the buildbot emits will take advantage of it.

52 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

IRC Nicknames

Like MailNotifier, the buildbot.status.words.IRC class provides a status target which can announce
the results of each build. It also provides an interactive interface by responding to online queries posted in the channel
or sent as private messages.

In the future, the buildbot can be configured map User names to IRC nicknames, to watch for the recent presence of
these nicknames, and to deliver build status messages to the interested parties. Like MailNotifier does for email
addresses, the IRC object will have an IRCLookup which is responsible for nicknames. The mapping can be set up
statically, or it can be updated by online users themselves (by claiming a username with some kind of buildbot:
i am user warner commands).

Once the mapping is established, the rest of the buildbot can ask the IRC object to send messages to various users. It
can report on the likelihood that the user saw the given message (based upon how long the user has been inactive on
the channel), which might prompt the Problem Hassler logic to send them an email message instead.

These operations and authentication of commands issued by particular nicknames will be implemented in User Ob-
jects.

Build Properties

Each build has a set of Build Properties, which can be used by its build steps to modify their actions. These properties,
in the form of key-value pairs, provide a general framework for dynamically altering the behavior of a build based on
its circumstances.

Properties form a simple kind of variable in a build. Some properties are set when the build starts, and properties can
be changed as a build progresses — properties set or changed in one step may be accessed in subsequent steps. Property
values can be numbers, strings, lists, or dictionaries - basically, anything that can be represented in JSON.

Properties are very flexible, and can be used to implement all manner of functionality. Here are some examples:

Most Source steps record the revision that they checked out in the got__revision property. A later step could use
this property to specify the name of a fully-built tarball, dropped in an easily-accessible directory for later testing.

Note: In builds with more than one codebase, the got_revision property is a dictionary, keyed by codebase.

Some projects want to perform nightly builds as well as building in response to committed changes. Such a project
would run two schedulers, both pointing to the same set of builders, but could provide an is_night 1y property so
that steps can distinguish the nightly builds, perhaps to run more resource-intensive tests.

Some projects have different build processes on different systems. Rather than create a build factory for each worker,
the steps can use worker properties to identify the unique aspects of each worker and adapt the build process dynami-
cally.

Multiple-Codebase Builds

What if an end-product is composed of code from several codebases? Changes may arrive from different repositories
within the tree-stable-timer period. Buildbot will not only use the source-trees that contain changes but also needs the
remaining source-trees to build the complete product.

For this reason a Scheduler can be configured to base a build on a set of several source-trees that can (partly) be
overridden by the information from incoming Changes.

As described above, the source for each codebase is identified by a source stamp, containing its repository, branch and
revision. A full build set will specify a source stamp set describing the source to use for each codebase.

2.3. Concepts 53

Buildbot Documentation, Release 0.9.7

Configuring all of this takes a coordinated approach. A complete multiple repository configuration consists of:
a codebase generator

Every relevant change arriving from a VC must contain a codebase. This is done by a
codebaseGenerator that is defined in the configuration. Most generators examine the repository
of a change to determine its codebase, using project-specific rules.

some schedulers

Each scheduler has to be configured with a set of all required codebases to build a product. These
codebases indicate the set of required source-trees. In order for the scheduler to be able to produce a
complete set for each build, the configuration can give a default repository, branch, and revision for each
codebase. When a scheduler must generate a source stamp for a codebase that has received no changes, it
applies these default values.

multiple source steps - one for each codebase

A Builders*‘s build factory must include a source step for each codebase. Each of the source steps has a
codebase attribute which is used to select an appropriate source stamp from the source stamp set for a
build. This information comes from the arrived changes or from the scheduler’s configured default values.

Note: Each source step has to have its own workdir set in order for the checkout to be done for each
codebase in its own directory.

Note: Ensure you specify the codebase within your source step’s Interpolate() calls (ex. http://. ..
/svn/% (src:codebase:branch) s). See Interpolate for details.

Warning: Defining a codebaseGenerator that returns non-empty (not ' ') codebases will change the be-
havior of all the schedulers.

Multimaster

Warning: Buildbot Multimaster is considered experimental. There are still some companies using it in produc-
tion. Don’t hesitate to use the mailing lists to share your experience.

54 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

Masterd

workerd

=D

]

]

]

LR - B
i

A

Buildbot supports interconnection of several masters. This has to be done through a multi-master enabled message
queue backend. As of now the only one supported is wamp and crossbar.io. see wamp

There are then several strategy for introducing multimaster in your buildbot infra. A simple way to say it is by adding
the concept of symmetrics and asymmetrics multimaster (like there is SMP and AMP for multi core CPUs)

Symmetric multimaster is when each master share the exact same configuration. They run the same builders, same
schedulers, same everything, the only difference is that workers are connected evenly between the masters (by any
means (e.g. DNS load balancing, etc)) Symmetric multimaster is good to use to scale buildbot horizontally.

Asymmetric multimaster is when each master have different configuration. Each master may have a specific respon-
sibility (e.g schedulers, set of builder, UI). This was more how you did in 0.8, also because of its own technical
limitations. A nice feature of asymmetric multimaster is that you can have the UI only handled by some masters.

Separating the Ul from the controlling will greatly help in the performance of the UI, because badly written Build-
Steps?? can stall the reactor for several seconds.

The fanciest configuration would probably be a symmetric configuration for everything but the UI. You would scale
the number of UI master according to your number of Ul users, and scale the number of engine masters to the number
of workers.

Depending on your workload and size of master host, it is probably a good idea to start thinking of multimaster starting
from a hundred workers connected.

Multimaster can also be used for high availability, and seamless upgrade of configuration code. Complex configuration
indeed requires sometimes to restart the master to reload custom steps or code, or just to upgrade the upstream buildbot
version.

In this case, you will implement following procedure:
e Start new master(s) with new code and configuration.

 Send a graceful shutdown to the old master(s).

2.3. Concepts 55

Buildbot Documentation, Release 0.9.7

* New master(s) will start taking the new jobs, while old master(s) will just finish managing the running builds.

* As an old master is finishing the running builds, it will drop the connections from the workers, who will then
reconnect automatically, and by the mean of load balancer will get connected to a new master to run new jobs.

As buildbot nine has been designed to allow such procedure, it has not been implemented in production yet as we
know. There is probably a new REST api needed in order to graceful shutdown a master, and the details of gracefully
dropping the connection to the workers to be sorted out.

Secret Management

Requirements

Buildbot steps might need secrets to execute their actions. Secrets are used to execute commands or to create authenti-
cated network connections. Secrets may be a SSH key, a password, or a file content like a wgetrc file or a public SSH
key. To preserve confidentiality, the secrets values must not be printed or logged in the twisted or steps logs. Secrets
must not be stored in the Buildbot configuration (master.cfg), as the source code is usually shared in SCM like git.

How to use Buildbot Secret Management

Secrets and providers

Buildbot implements several providers for secrets retrieval:

* File system based: secrets are written in a file. This is a simple solution for example when secrets are managed
by config management system like Ansible Vault.

 Third party backend based: secrets are stored by a specialized software. These solution are usually more secured.

Secrets providers are configured if needed in the master configuration. Multiple providers can be configured at once.
The secret manager is a Buildbot service. The secret manager returns the specific provider results related to the
providers registered in the configuration.

How to use secrets in Buildbot

The following example shows a basic usage of secrets in Buildbot.

c['secretsProviders'] = [util.SecretInFile (directory="/path/toSecretstiles"]

fl.addStep (ShellCommand (Interpolate ("wget —u user -p %{secrets:userpassword}s =%
—{prop:urltofetch}s")))

Secrets are also interpolated in the build like properties are, and will be used in a command line for example.

Secrets storages

56 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

SecretinFile

cl] = [util.SecretInFile(directory=]

In the passed directory, every file contains a secret identified by the filename.

e.g: a file user contains the text pa$$w0Ord.

SecretinVault

cl 1] = [util.SecretInVault (
vaultToken= () .read (),
vaultServer=

)]

Vault secures, stores, and tightly controls access to secrets. Vault presents a unified API to access multiple backends.
To be authenticated in Vault, Buildbot need to send a token to the vault server. The token is generated when the Vault
instance is initialized for the first time.

In the master configuration, the Vault provider is instantiated through the Buildbot service manager as a secret provider
with the the Vault server address and the Vault token. The provider SecretlnVault allows Buildbot to read secrets in
Vault. For more informations about Vault please visit: Vault: https://www.vaultproject.io/

How to configure a Vault instance

Vault being a very generic system, it can be complex to install for the first time. Here is a simple tutorial to install the
minimal Vault for use with Buildbot.

Use Docker to install Vault

A Docker image is available to help users installing Vault. Without any arguments, the command launches a Docker
Vault developer instance, easy to use and test the functions. The developer version is already initialized and unsealed.
To launch a Vault server please refer to the VaultDocker (https://hub.docker.com/_/vault/) documentation:

In a shell:

docker run vault

Starting the vault instance

Once the Docker image is created, launch a shell terminal on the Docker image:

’docker -i -t docker_vault_image_name /bin/sh

Then, export the environment variable VAULT_ADDR needed to init Vault.

’ VAULT_ADDR=

2.4. Secret Management 57

https://www.vaultproject.io/
https://hub.docker.com/_/vault/

Buildbot Documentation, Release 0.9.7

Writing secrets

By default Vault is initialized with a mount named secret. To add a new secret:

’vault write secret/new_secret_key value=new_secret_value

Configuration

The following sections describe the configuration of the various Buildbot components. The information available here
is sufficient to create basic build and test configurations, and does not assume great familiarity with Python.

In more advanced Buildbot configurations, Buildbot acts as a framework for a continuous-integration application. The
next section, Customization, describes this approach, with frequent references into the development documentation.

Configuring Buildbot

The buildbot’s behavior is defined by the config file, which normally lives in the master . cfg file in the buildmaster’s
base directory (but this can be changed with an option to the buildbot create-master command). This file
completely specifies which Builders are to be run, which workers they should use, how Changes should be tracked,
and where the status information is to be sent. The buildmaster’s buildbot .tac file names the base directory;
everything else comes from the config file.

A sample config file was installed for you when you created the buildmaster, but you will need to edit it before your
buildbot will do anything useful.

This chapter gives an overview of the format of this file and the various sections in it. You will need to read the later
chapters to understand how to fill in each section properly.

Config File Format

The config file is, fundamentally, just a piece of Python code which defines a dictionary named
BuildmasterConfig, with a number of keys that are treated specially. You don’t need to know Python to do
basic configuration, though, you can just copy the syntax of the sample file. If you are comfortable writing Python
code, however, you can use all the power of a full programming language to achieve more complicated configurations.

The BuildmasterConfig name is the only one which matters: all other names defined during the execution of
the file are discarded. When parsing the config file, the Buildmaster generally compares the old configuration with the
new one and performs the minimum set of actions necessary to bring the buildbot up to date: Builders which are
not changed are left untouched, and Builders which are modified get to keep their old event history.

The beginning of the master . cfqg file typically starts with something like:

BuildmasterConfig = ¢ = {}

Therefore a config key like change_source will usually appear in master.cfgas c['change_source'].

See cfg for a full list of BuildMasterConfig keys.

Basic Python Syntax

The master configuration file is interpreted as Python, allowing the full flexibility of the language. For the configura-
tions described in this section, a detailed knowledge of Python is not required, but the basic syntax is easily described.

58 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

Python comments start with a hash character #, tuples are defined with (parenthesis, pairs),andlists (arrays)
are defined with [square, brackets]. Tuples and lists are mostly interchangeable. Dictionaries (data structures
which map keys to values) are defined with curly braces: { 'keyl': wvaluel, 'key2': wvalue2}. Function
calls (and object instantiation) can use named parameters, like steps.ShellCommand (command=["trial",
"pyflakes"]).

The config file starts with a series of import statements, which make various kinds of Steps and Status targets
available for later use. The main BuildmasterConfig dictionary is created, then it is populated with a variety of
keys, described section-by-section in subsequent chapters.

Predefined Config File Symbols

The following symbols are automatically available for use in the configuration file.

basedir the base directory for the buildmaster. This string has not been expanded, so it may start with a tilde. It
needs to be expanded before use. The config file is located in:

os.path.expanduser (os.path. join (basedir,))

_ file the absolute path of the config file. The config file’s directory is located in os.path.
dirname(___file_).

Testing the Config File

To verify that the config file is well-formed and contains no deprecated or invalid elements, use the checkconfig
command, passing it either a master directory or a config file.

o)

% buildbot checkconfig master.cfg
Config file is good!

% buildbot checkconfig /tmp/masterdir
Config file is good!

If the config file has deprecated features (perhaps because you’ve upgraded the buildmaster and need to update the
config file to match), they will be announced by checkconfig. In this case, the config file will work, but you should
really remove the deprecated items and use the recommended replacements instead:

)

% buildbot checkconfig master.cfg
/usr/lib/python2.4/site-packages/buildbot/master.py:559: DeprecationWarning: c|
—'sources'] is

deprecated as of 0.7.6 and will be removed by 0.8.0 . Please use c|['change_source']
—~instead.

Config file is good!

If you have errors in your configuration file, checkconfig will let you know:

o

% buildbot checkconfig master.cfg

Configuration Errors:

c['workers'] must be a list of Worker instances

no workers are configured

builder 'smoketest' uses unknown workers 'linux-002'

If the config file is simply broken, that will be caught too:

2.5. Configuration 59

Buildbot Documentation, Release 0.9.7

)

% buildbot checkconfig master.cfg

error while parsing config file:

Traceback (most recent call last):

File "/home/buildbot/master/bin/buildbot", line 4, in <module>
runner.run ()

File "/home/buildbot/master/buildbot/scripts/runner.py", line 1358, in run
if not doCheckConfig(so):

File "/home/buildbot/master/buildbot/scripts/runner.py", line 1079, in doCheckConfig
return cl.load(quiet=quiet)

File "/home/buildbot/master/buildbot/scripts/checkconfig.py", line 29, in load
self.basedir, self.configFileName)

—-—— <exception caught here> --—-

File "/home/buildbot/master/buildbot/config.py", line 147, in loadConfig
exec f in localDict

exceptions.SyntaxError: invalid syntax (master.cfg, line 52)

Configuration Errors:

error while parsing config file: invalid syntax (master.cfg, line 52) (traceback in_

—~logfile)

Loading the Config File

The config file is only read at specific points in time. It is first read when the buildmaster is launched.

Note: If the configuration is invalid, the master will display the errors in the console output, but will not exit.

Reloading the Config File (reconfig)

If you are on the system hosting the buildmaster, you can send a SIGHUP signal to it: the buildbot tool has a
shortcut for this:

buildbot reconfig BASEDIR

This command will show you all of the lines from twistd. log that relate to the reconfiguration. If there are any
problems during the config-file reload, they will be displayed in these lines.

When reloading the config file, the buildmaster will endeavor to change as little as possible about the running system.
For example, although old status targets may be shut down and new ones started up, any status targets that were not
changed since the last time the config file was read will be left running and untouched. Likewise any Builders
which have not been changed will be left running. If a Builder is modified (say, the build process is changed) while
a Build is currently running, that Build will keep running with the old process until it completes. Any previously
queued Builds (or Builds which get queued after the reconfig) will use the new process.

Warning: Buildbot’s reconfiguration system is fragile for a few difficult-to-fix reasons:

¢ Any modules imported by the configuration file are not automatically reloaded. Python modules such as
http://pypi.python.org/pypi/lazy-reload may help here, but reloading modules is fraught with subtleties and
difficult-to-decipher failure cases.

* During the reconfiguration, active internal objects are divorced from the service hierarchy, leading to trace-
backs in the web interface and other components. These are ordinarily transient, but with HTTP connection
caching (either by the browser or an intervening proxy) they can last for a long time.

60 Chapter 2. Buildbot Manual

http://pypi.python.org/pypi/lazy-reload

Buildbot Documentation, Release 0.9.7

* If the new configuration file is invalid, it is possible for Buildbot’s internal state to be corrupted, leading to
undefined results. When this occurs, it is best to restart the master.

* For more advanced configurations, it is impossible for Buildbot to tell if the configuration for a Builder
or Scheduler has changed, and thus the Builder or Scheduler will always be reloaded. This occurs
most commonly when a callable is passed as a configuration parameter.

The bbproto project (at https://github.com/dabrahams/bbproto) may help to construct large (multi-file) configura-
tions which can be effectively reloaded and reconfigured.

Global Configuration

The keys in this section affect the operations of the buildmaster globally.

* Database Specification
* MQ Specification

* Multi-master mode

* Site Definitions

* Log Handling

* Data Lifetime

* Merging Build Requests

* Prioritizing Builders

* Manhole

* Metrics Options

* Statistics Service

* secretsProviders
* BuildbotNetUsageData
» Users Options

* Input Validation

e Revision Links

e Codebase Generator

* Setting the PB Port for Workers

* Defining Global Properties

Database Specification

Buildbot requires a connection to a database to maintain certain state information, such as tracking pending build
requests. In the default configuration Buildbot uses a file-based SQLite database, stored in the state.sqglite file
of the master’s base directory. Override this configuration with the db_ ur1 parameter.

Buildbot accepts a database configuration in a dictionary named db. All keys are optional:

2.5. Configuration

61

https://github.com/dabrahams/bbproto

Buildbot Documentation, Release 0.9.7

The db_url key indicates the database engine to use. The format of this parameter is completely documented at
http://www.sqlalchemy.org/docs/dialects/, but is generally of the form:

These parameters can be specified directly in the configuration dictionary, as c['db_url'] and
c['db_poll_interval'], although this method is deprecated.

The following sections give additional information for particular database backends:

SQLite

For sqlite databases, since there is no host and port, relative paths are specified with sglite:/// and absolute paths
with sglite:////. Examples:

cl] =

SQLite requires no special configuration.

MySQL

cl] =

The max_idle argument for MySQL connections is unique to Buildbot, and should be set to something less than
the wait_timeout configured for your server. This controls the SQLAlchemy pool_recycle parameter, which
defaults to no timeout. Setting this parameter ensures that connections are closed and re-opened after the config-
ured amount of idle time. If you see errors such as _mysqgl_exceptions.OperationalError: (2006,
'MySQL server has gone away'), this means your max_idle setting is probably too high. show
global variables like 'wait_timeout'; will show what the currently configured wait_timeout is
on your MySQL server.

Buildbot requires use_unique=True and charset=ut £8, and will add them automatically, so they do not need
to be specified in db_url.

MySQL defaults to the MyISAM storage engine, but this can be overridden with the storage_engine URL argu-
ment.

Postgres

cl] =

PosgreSQL requires no special configuration.

MQ Specification

Buildbot uses a message-queueing system to handle communication within the master. Messages are used to indicate
events within the master, and components that are interested in those events arrange to receive them.

62 Chapter 2. Buildbot Manual

http://www.sqlalchemy.org/docs/dialects/

Buildbot Documentation, Release 0.9.7

The message queueing implementation is configured as a dictionary in the mg option. The type key describes the
type of MQ implemetation to be used. Note that the implementation type cannot be changed in a reconfig.

The available implemenetation types are described in the following sections.

Simple

This is the default MQ implementation. Similar to SQLite, it has no additional software dependencies, but does not
support multi-master mode.

Note that this implementation also does not support message persistence across a restart of the master. For example,
if a change is received, but the master shuts down before the schedulers can create build requests for it, then those
schedulers will not be notified of the change when the master starts again.

The debug key, which defaults to False, can be used to enable logging of every message produced on this master.

Wamp

Note: At the moment, wamp is the only message queue implementation for multimaster. It has been privileged as
this is the only message queue that have very solid support for Twisted. Other more common message queue systems
like RabbitMQ (using the AMQP protocol) do not have convincing driver for twisted, and this would require to run on
threads, which will add an important performance overhead.

cl 1 = A

This is a MQ implementation using wamp (http://wamp.ws/) protocol. This implementation uses Python Autobahn
(http://autobahn.ws) wamp client library, and is fully asynchronous (no use of threads). To use this implementation,
you need a wamp router like Crossbar (http://crossbar.io).

Please refer to Crossbar documentation for more details, but the default Crossbar setup will just work with Buildbot,
provided you use the example mq configuration above, and start Crossbar with:

pip install crossbar
crossbar init
crossbar start

The implementation does not yet support wamp authentication. This MQ allows buildbot to run in multi-master mode.

Note that this implementation also does not support message persistence across a restart of the master. For example,
if a change is received, but the master shuts down before the schedulers can create build requests for it, then those
schedulers will not be notified of the change when the master starts again.

2.5. Configuration 63

http://wamp.ws/
http://autobahn.ws
http://crossbar.io

Buildbot Documentation, Release 0.9.7

router_url (mandatory): points to your router websocket url. Buildbot is only supporting wamp over web-
socket, which is a sub-protocol of http. SSL is supported using wss: // instead of ws: //.

realm (optional, defaults to buildbot): defines the wamp realm to use for your buildbot messages.
wamp_debug_level (optional, defaults to error): defines the log level of autobahn.

You must use a router with very reliable connection to the master. If for some reason, the wamp connection is lost,
then the master will stop, and should be restarted via a process manager.

Multi-master mode

See Multimaster for details on the Multi-master mode in Buildbot Nine.

By default, Buildbot makes coherency checks that prevents typo in your master .cfg It make sure schedulers are
not referencing unknown builders, and enforces there is at least one builder.

In the case of a asymmetric multimaster, those coherency checks can be harmful and prevent you to implement what
you want. For example you might want to have one master dedicated to the UL, so that a big load generated by builds
will not impact page load times.

To enable multi-master mode in this configuration, you will need to set the multiMaster option so that buildbot
doesn’t warn about missing schedulers or builders.

Site Definitions

Three basic settings describe the buildmaster in status reports:

cl 1 =
cl] =

titleis ashort string that will appear at the top of this buildbot installation’s home page (linked to the t i t IeURL).

titleURL is a URL string that must end with a slash (/). HTML status displays will show title as a link to
titleURL. This URL is often used to provide a link from buildbot HTML pages to your project’s home page.

The buildbotURL string should point to the location where the buildbot’s internal web server is visible. This URL
must end with a slash (/).

When status notices are sent to users (e.g., by email or over IRC), buildbot URL will be used to create a URL to the
specific build or problem that they are being notified about.

64 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

Log Handling

[1 =
[] = 1024%1024
[] = 32768
[] =

Q0 QQ

The logCompressionLimit enables compression of build logs on disk for logs that are bigger than the given size,
or disables that completely if set to False. The default value is 4096, which should be a reasonable default on most
file systems. This setting has no impact on status plugins, and merely affects the required disk space on the master for
build logs.

The 1ogCompressionMethod controls what type of compression is used for build logs. The default is ‘gz’, and
the other valid option are ‘raw’ (no compression), ‘gz’ or ‘1z4’ (required 1z4 package).

Please find below some stats extracted from 50x “Pyflakes” runs (results may differ according to log type).

Table 2.1: Space saving details

compression | raw log size | compressed log size | space saving | compression speed
bz2 2.981 MB 0.603 MB 79.77% 3.433 MB/s

ez 2.981 MB 0.568 MB 80.95% 6.604 MB/s

1z4 2.981 MB 0.844 MB 71.68% 77.668 MB/s

The 1ogMaxSize parameter sets an upper limit (in bytes) to how large logs from an individual build step can be. The
default value is None, meaning no upper limit to the log size. Any output exceeding 1 ogMaxSize will be truncated,
and a message to this effect will be added to the log’s HEADER channel.

If IogMaxSizeis set, and the output from a step exceeds the maximum, the 71 ogMaxTai1S1ize parameter controls
how much of the end of the build log will be kept. The effect of setting this parameter is that the log will contain the
first JogMaxSize bytes and the last 1ogMaxTailSize bytes of output. Don’t set this value too high, as the the
tail of the log is kept in memory.

The 1ogEncoding parameter specifies the character encoding to use to decode bytestrings provided as logs. It
defaults to ut £-8, which should work in most cases, but can be overridden if necessary. In extreme cases, a callable
can be specified for this parameter. It will be called with byte strings, and should return the corresponding Unicode
string.

This setting can be overridden for a single build step with the 1 ogEncoding step parameter. It can also be overridden
for a single log file by passing the 1ogEncoding parameter to addLog.

Data Lifetime
Horizons

Previously Buildbot implemented a global configuration for horizons. Now it is implemented as an utility Builder, and
shall be configured via JanitorConfigurator

Caches
cl] = {
100,
500,
100,
10,

2.5. Configuration 65

Buildbot Documentation, Release 0.9.7

: 20,
: 20,
10,
100,

The caches configuration key contains the configuration for Buildbot’s in-memory caches. These caches keep
frequently-used objects in memory to avoid unnecessary trips to the database. Caches are divided by object type, and
each has a configurable maximum size.

The default size for each cache is 1, except where noted below. A value of 1 allows Buildbot to make a number of
optimizations without consuming much memory. Larger, busier installations will likely want to increase these values.

The available caches are:

Changes the number of change objects to cache in memory. This should be larger than the number of changes that
typically arrive in the span of a few minutes, otherwise your schedulers will be reloading changes from the
database every time they run. For distributed version control systems, like Git or Hg, several thousand changes
may arrive at once, so setting this parameter to something like 10000 isn’t unreasonable.

This parameter is the same as the deprecated global parameter changeCacheSize. Its default value is 10.

Builds The buildCacheSize parameter gives the number of builds for each builder which are cached in mem-
ory. This number should be larger than the number of builds required for commonly-used status displays (the
waterfall or grid views), so that those displays do not miss the cache on a refresh.

This parameter is the same as the deprecated global parameter buildCacheSize. Its default value is 15.

chdicts The number of rows from the changes table to cache in memory. This value should be similar to the
value for Changes.

BuildRequests The number of BuildRequest objects kept in memory. This number should be higher than the
typical number of outstanding build requests. If the master ordinarily finds jobs for BuildRequests immediately,
you may set a lower value.

SourceStamps the number of SourceStamp objects kept in memory. This number should generally be similar to
the number BuildRequesets.

ssdicts The number of rows from the sourcestamps table to cache in memory. This value should be similar to
the value for SourceStamps.

objectids The number of object IDs - a means to correlate an object in the Buildbot configuration with an identity
in the database—to cache. In this version, object IDs are not looked up often during runtime, so a relatively low
value such as 10 is fine.

usdicts The number of rows from the users table to cache in memory. Note that for a given user there will be a
row for each attribute that user has.

c[’buildCacheSize’] = 15

Merging Build Requests

cl] =

This is a global default value for builders’ collapseRequest s parameter, and controls the merging of build re-
quests.

This parameter can be overridden on a per-builder basis. See Collapsing Build Requests for the allowed values for this
parameter.

66 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

Prioritizing Builders

def prioritizeBuilders (buildmaster, builders):

c['prioritizeBuilders'] = prioritizeBuilders

By default, buildbot will attempt to start builds on builders in order, beginning with the builder with the oldest pending
request. Customize this behavior with the prioritizeBuilders configuration key, which takes a callable. See
Builder Priority Functions for details on this callable.

This parameter controls the order that the build master can start builds, and is useful in situations where there is
resource contention between builders, e.g., for a test database. It does not affect the order in which a builder processes
the build requests in its queue. For that purpose, see Prioritizing Builds.

Setting the PB Port for Workers

c['protocols'] = {"pb": {"port": 10000}}

The buildmaster will listen on a TCP port of your choosing for connections from workers. It can also use this port for
connections from remote Change Sources, status clients, and debug tools. This port should be visible to the outside
world, and you’ll need to tell your worker admins about your choice.

It does not matter which port you pick, as long it is externally visible; however, you should probably use something
larger than 1024, since most operating systems don’t allow non-root processes to bind to low-numbered ports. If your
buildmaster is behind a firewall or a NAT box of some sort, you may have to configure your firewall to permit inbound
connections to this port.

c['protocols'] ['pb'] ['port'] 1is a strports specification string, defined in the twisted.
application.strports module (try pydoc twisted.application.strports to get documentation
on the format).

This means that you can have the buildmaster listen on a localhost-only port by doing:

cl'protocols'] = {"pb": {"port": "tcp:10000:interface=127.0.0.1"}}

This might be useful if you only run workers on the same machine, and they are all configured to contact the build-
master at localhost:10000.

Note: In Buildbot versions <=0.8.8 you might see slavePortnum option. This option contains same value as
c['protocols'] ["pb'] ['"port '] but not recomended to use.

Defining Global Properties

The properties configuration key defines a dictionary of properties that will be available to all builds started by
the buildmaster:

2.5. Configuration 67

Buildbot Documentation, Release 0.9.7

Manhole

If you set manhole to an instance of one of the classes in buildbot .manhole, you can telnet or ssh into the
buildmaster and get an interactive Python shell, which may be useful for debugging buildbot internals. It is probably
only useful for buildbot developers. It exposes full access to the buildmaster’s account (including the ability to modify
and delete files), so it should not be enabled with a weak or easily guessable password.

There are three separate Manhole classes. Two of them use SSH, one uses unencrypted telnet. Two of them use
a username+password combination to grant access, one of them uses an SSH-style authorized_keys file which
contains a list of ssh public keys.

Note: Using any Manhole requires that pycrypto and pyasnl be installed. These are not part of the normal
Buildbot dependencies.

manhole.AuthorizedKeysManhole You construct this with the name of a file that contains one SSH public key per
line, just like ~/ . ssh/authorized_keys. If you provide a non-absolute filename, it will be interpreted
relative to the buildmaster’s base directory.

manhole.PasswordManhole This one accepts SSH connections but asks for a username and password when authen-
ticating. It accepts only one such pair.

manhole.TelnetManhole This accepts regular unencrypted telnet connections, and asks for a username/password
pair before providing access. Because this username/password is transmitted in the clear, and because Manhole
access to the buildmaster is equivalent to granting full shell privileges to both the buildmaster and all the workers
(and to all accounts which then run code produced by the workers), it is highly recommended that you use one
of the SSH manholes instead.

from buildbot.plugins import util

cl] = util.AuthorizedKeysManhole (1234,)
cl] = util.PasswordManhole (1234, ,)
cl] = util.TelnetManhole (1234, ,)

The Manhole instance can be configured to listen on a specific port. You may wish to have this listening port bind to
the loopback interface (sometimes known as 00, localhost, or 127.0.0.1) to restrict access to clients which are running
on the same host.

from buildbot.plugins import util
cl] = util.PasswordManhole (, ,)

To have the Manhole listen on all interfaces, use "tcp:9999" or simply 9999. This port specification uses
twisted.application.strports, so you can make it listen on SSL or even UNIX-domain sockets if you
want.

Note that using any Manhole requires that the TwistedConch (http://twistedmatrix.com/trac/wiki/TwistedConch)
package be installed.

The buildmaster’s SSH server will use a different host key than the normal sshd running on a typical unix host. This
will cause the ssh client to complain about a host key mismatch, because it does not realize there are two separate
servers running on the same host. To avoid this, use a clause like the following in your . ssh/config file:

Host remotehost-buildbot

HostName remotehost

HostKeyAlias remotehost-buildbot

Port 9999

use 'user' if you use PasswordManhole and your name is not 'admin'.

68 Chapter 2. Buildbot Manual

http://twistedmatrix.com/trac/wiki/TwistedConch

Buildbot Documentation, Release 0.9.7

if you use AuthorizedKeysManhole, this probably doesn't matter.
User admin

Using Manhole

After you have connected to a manhole instance, you will find yourself at a Python prompt. You have access to two
objects: master (the BuildMaster) and status (the master’s Status object). Most interesting objects on the master
can be reached from these two objects.

To aid in navigation, the show method is defined. It displays the non-method attributes of an object.

A manhole session might look like:

>>> show (master)
data attributes of <bui

tance at 0Ox7f7a4dak
/buildbot/t/buildbo

laster.BuildMaster in

' /home /du

<type 'instance
None
None
http://localhost:8010/
None

ge_ : <type 'instance'>

configFileName : master.cfg
db ctor'
db_url

>>> show (master.botmaster.builders['win32"'])

data attributes of <Builder ''builder'' at

>>> win32 = _

>>> win32.category = 'w32'

Metrics Options

c['metrics'] = (log_interval=10, periodic_interval=10)

metrics can be a dictionary that configures various aspects of the metrics subsystem. If metrics is None, then
metrics collection, logging and reporting will be disabled.

log_interval determines how often metrics should be logged to twistd.log. It defaults to 60s. If set to 0 or None,
then logging of metrics will be disabled. This value can be changed via a reconfig.

periodic_interval determines how often various non-event based metrics are collected, such as memory usage,
uncollectable garbage, reactor delay. This defaults to 10s. If set to O or None, then periodic collection of this data is
disabled. This value can also be changed via a reconfig.

Read more about metrics in the Metrics section in the developer documentation.

Statistics Service

The Statistics Service (stats service for short) supports for collecting arbitrary data from within a running Buildbot
instance and export it do a number of storage backends. Currently, only InfluxDB (https://influxdata.com/time-series-
platform/influxdb/) is supported as a storage backend. Also, InfluxDB (or any other storage backend) is not a manda-
tory dependency. Buildbot can run without it although StatsService will be of no use in such a case. At present,

2.5. Configuration 69

https://influxdata.com/time-series-platform/influxdb/

Buildbot Documentation, Release 0.9.7

StatsService can keep track of build properties, build times (start, end, duration) and arbitrary data produced
inside Buildbot (more on this later).

Example usage:

captures = [stats.CaptureProperty (,),
stats.CaptureBuildDuration ()]

cl 1 =11
cl] .append (stats.StatsService (

storage_backends=][

stats.InfluxStorageService (, 8086, , , ,

—captures)

1, name=))

The services configuration value should be initialized as a list and a St at sService instance should be appended
to it as shown in the example above.

Statistics Service

class buildbot.statistics.stats_service.StatsService
This is the main class for statistics service. It is initialized in the master configuration as show in the example
above. It takes two arguments:

storage_backends A list of storage backends (see Storage Backends). In the example above, stats.
InfluxStorageService is an instance of a storage backend. Each storage backend is an instances of
subclasses of statsStorageBase.

name The name of this service.

yieldMetricsValue: This method can be used to send arbitrary data for storage. (See Using StatsSer-
vice.yieldMetricsValue for more information.)

Capture Classes

class buildbot.statistics.capture.CaptureProperty
Instance of this class declares which properties must be captured and sent to the Storage Backends. It takes the
following arguments:

builder_ name The name of builder in which the property is recorded.
property_name The name of property needed to be recorded as a statistic.

callback=None (Optional) A custom callback function for this class. This callback function should take in
two arguments - build_properties (dict) and property_name (str) and return a string that will be sent for
storage in the storage backends.

regex=False If this is set to True, then the property name can be a regular expression. All properties
matching this regular expression will be sent for storage.

class buildbot.statistics.capture.CapturePropertyAllBuilders
Instance of this class declares which properties must be captured on all builders and sent to the Storage Backends.
It takes the following arguments:

property_name The name of property needed to be recorded as a statistic.

callback=None (Optional) A custom callback function for this class. This callback function should take in
two arguments - build_properties (dict) and property_name (str) and return a string that will be sent for
storage in the storage backends.

70 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

regex=False If this is set to True, then the property name can be a regular expression. All properties
matching this regular expression will be sent for storage.

class buildbot.statistics.capture.CaptureBuildStartTime
Instance of this class declares which builders’ start times are to be captured and sent to Storage Backends. It
takes the following arguments:

builder_name The name of builder whose times are to be recorded.

callback=None (Optional) A custom callback function for this class. This callback function should take in
a Python datetime object and return a string that will be sent for storage in the storage backends.

class buildbot.statistics.capture.CaptureBuildStartTimeAllBuilders
Instance of this class declares start times of all builders to be captured and sent to Storage Backends. 1t takes the
following arguments:

callback=None (Optional) A custom callback function for this class. This callback function should take in
a Python datetime object and return a string that will be sent for storage in the storage backends.

class buildbot.statistics.capture.CaptureBuildEndTime
Exactly like CaptureBuildStartTime except it declares the builders whose end time is to be recorded.
The arguments are same as CaptureBuildStartTime.

class buildbot.statistics.capture.CaptureBuildEndTimeAllBuilders
Exactly like CaptureBuildStartTimeAllBuilders except it declares all builders’ end time to be
recorded. The arguments are same as CaptureBuildStartTimeAllBuilders.

class buildbot.statistics.capture.CaptureBuildDuration
Instance of this class declares the builders whose build durations are to be recorded. It takes the following
arguments:

builder name The name of builder whose times are to be recorded.

report_in='seconds' Can be one of three: 'seconds', 'minutes’', or 'hours"'. This is the units
in which the build time will be reported.

callback=None (Optional) A custom callback function for this class. This callback function should take in
two Python datetime objects - a start_time and an end_t ime and return a string that will be sent for
storage in the storage backends.

class buildbot.statistics.capture.CaptureBuildDurationAllBuilders
Instance of this class declares build durations to be recorded for all builders. It takes the following arguments:

report_in='seconds' Can be one of three: 'seconds', 'minutes’', or "hours"'. This is the units
in which the build time will be reported.

callback=None (Optional) A custom callback function for this class. This callback function should take in
two Python datetime objects - a start_time and an end_t ime and return a string that will be sent for
storage in the storage backends.

class buildbot.statistics.capture.CaptureData
Instance of this capture class is for capturing arbitrary data that is not stored as build-data. Needs to be used
in conjunction with yieldMetricsValue (See Using StatsService.yieldMetricsValue). Takes the following
arguments:

data_name The name of data to be captured. Same as in yieldMetricsValue.
builder name The name of builder whose times are to be recorded.

callback=None The callback function for this class. = This callback receives the data sent to
yieldMetricsValue as post_data (See Using StatsService.yieldMetricsValue). It must return a
string that is to be sent to the storage backends for storage.

2.5. Configuration 71

Buildbot Documentation, Release 0.9.7

class buildbot.statistics.capture.CaptureDataAllBuilders
Instance of this capture class for capturing arbitrary data that is not stored as build-data on all builders. Needs
to be used in conjunction with yieldMetricsValue (See Using StatsService.yieldMetricsValue). Takes the
following arguments:

data_name The name of data to be captured. Same as in yieldMetricsValue.

callback=None The callback function for this class. This callback receives the data sent to
yieldMetricsValue as post_data (See Using StatsService.yieldMetricsValue). It must return a
string that is to be sent to the storage backends for storage.

Using StatsService.yieldMetricsValue

Advanced users can modify BuildSteps touse StatsService.yieldMetricsValue which will send arbi-
trary data for storage to the StatsService. It takes the following arguments:

data_name The name of the data being sent or storage.

post_data A dictionary of key value pair that is sent for storage. The keys will act as columns in a
database and the value is stored under that column.

buildid The integer build id of the current build. Obtainable in all BuildSteps.

Along with using yieldMetricsValue, the user will also need to use the CaptureData capture class. As an
example, we can add the following to a build step:

’yieldMetricsValue(, o : }, buildid)

Then, we can add in the master configuration a capture class like this:

’captures = [CaptureBuildData (,)]

Pass this captures list to a storage backend (as shown in the example at the top of this section) for capturing this
data.

Storage Backends

Storage backends are responsible for storing any statistics data sent to them. A storage backend will generally be
some sort of a database-server running on a machine. (Note: This machine may be different from the one running
BuildMaster)

Currently, only InfluxDB (https://influxdata.com/time-series-platform/influxdb/) is supported as a storage backend.

class buildbot.statistics.storage_backends.influxdb_client.InfluxStorageService
This class is a Buildbot client to the InfluxDB storage backend. InfluxDB (https://influxdata.com/time-series-
platform/influxdb/) is a distributed, time series database that employs a key-value pair storage system.

It requires the following arguments:

url The URL where the service is running.
port The port on which the service is listening.
user Username of a InfluxDB user.
password Password for user.

db The name of database to be used.

72 Chapter 2. Buildbot Manual

https://influxdata.com/time-series-platform/influxdb/
https://influxdata.com/time-series-platform/influxdb/

Buildbot Documentation, Release 0.9.7

captures A list of objects of Capture Classes. This tells which statistics are to be stored in this storage
backend.

name=None (Optional) The name of this storage backend.
secretsProviders

see Secret Management for details on secret concepts.

Example usage:

cl I =10..1

secretsProviders is a list of secrets storage. See Secret Management to configure an available secret storage
provider.

BuildbotNetUsageData

Since buildbot 0.9.0, buildbot has a simple feature which sends usage analysis info to buildbot.net. This is very
important for buildbot developers to understand how the community is using the tools. This allows to better prioritize
issues, and understand what plugins are actually being used. This will also be a tool to decide whether to keep support
for very old tools. For example buildbot contains support for the venerable CVS, but we have no information whether
it actually works beyond the unit tests. We rely on the community to test and report issues with the old features.

With BuildbotNetUsageData, we can know exactly what combination of plugins are working together, how much
people are customizing plugins, what versions of the main dependencies people run.

We take your privacy very seriously.

BuildbotNetUsageData will never send information specific to your Code or Intellectual Property. No repository url,
shell command values, host names, ip address or custom class names. If it does, then this is a bug, please report.

We still need to track unique number for installation. This is done via doing a shal hash of master’s hostname,
installation path and fqdn. Using a secure hash means there is no way of knowing hostname, path and fqdn given the
hash, but still there is a different hash for each master.

You can see exactly what is sent in the master’s twisted.log. Usage data is sent every time the master is started.
BuildbotNetUsageData can be configured with 4 values:
* c['buildbotNetUsageData'] = None disables the feature

* c['buildbotNetUsageData'] = 'basic' sends the basic information to buildbot including:

versions of buildbot, python and twisted

platform information (CPU, OS, distribution, python flavor (i.e CPython vs PyPy))

mq and database type (mysql or sqlite?)

www plugins usage

Plugins usages: This counts the number of time each class of buildbot is used in your con-
figuration. This counts workers, builders, steps, schedulers, change sources. If the plugin is
subclassed, then it will be prefixed with a >

example of basic report (for the metabuildbot):

2.5. Configuration 73

Buildbot Documentation, Release 0.9.7

{

b

'versions': {

'Python': '2.7.6",

'Twisted': '15.5.0'",

'Buildbot': '0.9.0rc2-176-g5fa9dbf"’
'platform': {

'machine': 'x86_64",

'python_implementation': 'CPython',
'#140-Ubuntu SMP Mon Jul',
'processor’:

'version':

'www_plugins':

}

'x86_64",
'distro:': ('Ubuntu', '14.04', 'trusty')
}I

'db': 'sqglite',

'mg': 'simple',

'plugins': {
'buildbot.schedulers. forcesched.ForceScheduler': 2,
'buildbot.schedulers.triggerable.Triggerable': 1,
'buildbot.config.BuilderConfig': 4,
'buildbot.schedulers.basic.AnyBranchScheduler': 2,
'buildbot.steps.source.git.Git"': 4,
'>>puildbot.steps.trigger.Trigger': 2,
'>>>pbuildbot.worker.base.Worker': 4,
'buildbot.reporters.irc.IRC': 1,
'>>>puildbot.process.buildstep.LoggingBuildStep': 2},

['buildbot_travis',

'waterfall_view']

* c['buildbotNetUsageData']

'full' sends the basic information plus additional information:

— configuration of each builders: how the steps are arranged together. for ex:

{
'builders': [

["buildbot.steps.source.git.Git', '>>>buildbot.process.buildstep.
—~LoggingBuildStep'],

['"buildbot.steps.source.git.Git"', '>>buildbot.steps.trigger.
—~Trigger'],

['buildbot.steps.source.git.Git', '>>>buildbot.process.buildstep.
—LoggingBuildStep'],

['buildbot.steps.source.git.Git', '>>buildbot.steps.trigger.
—Trigger']]
}

* c['buildbotNetUsageData'] = myCustomFunction. You can also specify exactly what to send

using a callback.

The custom function will take the generated data from full report in the form of a dictionary, and
return a customized report as a jsonable dictionary. You can use this to filter any information you
don’t want to disclose. You can use a custom http_proxy environment variable in order to not send
any data while developing your callback.

Users Options

from buildbot.plugins import util
[]

c['user_managers']

74

Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

cl] .append (util.CommandlineUserManager (username= ,
passwd= ,
port=9990))

user_managers contains a list of ways to manually manage User Objects within Buildbot (see User Objects).
Currently implemented is a commandline tool buildbot user, described at length in user. In the future, a web client
will also be able to manage User Objects and their attributes.

As shown above, to enable the buildbot user tool, you must initialize a CommandlineUserManager instance in your
master.cfg. CommandlineUserManager instances require the following arguments:

username This is the username that will be registered on the PB connection and need to be used when calling
buildbot user.

passwd This is the passwd that will be registered on the PB connection and need to be used when calling buildbot
user.

port The PB connection port must be different than ¢/ ’protocols’][’'pb’]J[’port’] and be specified when calling
buildbot user

Input Validation

import re
cl I =
re.compile (),
re.compile (),
re.compile () s
re.compile (),

This option configures the validation applied to user inputs of various types. This validation is important since these
values are often included in command-line arguments executed on workers. Allowing arbitrary input from untrusted
users may raise security concerns.

The keys describe the type of input validated; the values are compiled regular expressions against which the input will
be matched. The defaults for each type of input are those given in the example, above.

Revision Links

The revlink parameter is used to create links from revision IDs in the web status to a web-view of your source
control system. The parameter’s value must be a callable.

By default, Buildbot is configured to generate revlinks for a number of open source hosting platforms.

The callable takes the revision id and repository argument, and should return an URL to the revision. Note that the
revision id may not always be in the form you expect, so code defensively. In particular, a revision of ”??” may be
supplied when no other information is available.

Note that SourceStamps that are not created from version-control changes (e.g., those created by a Nightly or
Periodic scheduler) may have an empty repository string, if the repository is not known to the scheduler.

Revision Link Helpers

Buildbot provides two helpers for generating revision links. buildbot.revlinks.RevlinkMatcher takes a
list of regular expressions, and replacement text. The regular expressions should all have the same number of capture

2.5. Configuration 75

Buildbot Documentation, Release 0.9.7

groups. The replacement text should have sed-style references to that capture groups (i.e. ‘1’ for the first capture
group), and a single ‘%s’ reference, for the revision ID. The repository given is tried against each regular expression
in turn. The results are the substituted into the replacement text, along with the revision ID to obtain the revision link.

from buildbot.plugins import util
c['revlink'] = util.RevlinkMatch([r'git://notmuchmail . org/git/(.x)"1,
r'http: git.notmuchmail.org/git 1/commit/%s"'")

buildbot.revlinks.RevlinkMultiplexer takes a list of revision link callables, and tries each in turn,
returning the first successful match.

Codebase Generator

all_repositories = {
r'https: hg/hg/mailsuite/mailclient': 'mailexe’,
r'https://hg/hg/mailsuite/mapilib': 'mapilib',
r'https://hg/hg/mailsuite/imaplib': 'imaplib',
r'https://github.com/mailinc/mailsuite/mailclient': 'mailexe',
r'https://github. mailinc/mailsuite/mapilib': 'mapilib',
r'https://github.com/mailinc/mailsuite/imaplib': 'imaplib',
}
def codebaseGenerator (chdict):
return all_repositories[chdict['repository']]
c['codebaseGenerator'] = codebaseGenerator

For any incoming change, the codebase is set to *’. This codebase value is sufficient if all changes come from the same
repository (or clones). If changes come from different repositories, extra processing will be needed to determine the
codebase for the incoming change. This codebase will then be a logical name for the combination of repository and or
branch etc.

The codebaseGenerator accepts a change dictionary as produced by the buildbot.db.changes.
ChangesConnectorComponent, with a changeid equal to None.

Change Sources

* Choosing a Change Source
* Configuring Change Sources
— Repository and Project

* Mail-parsing ChangeSources

Subscribing the Buildmaster

Using Maildirs

Parsing Email Change Messages
— CVSMaildirSource
— SVNCommitEmailMaildirSource

BzrLaunchpadEmailMaildirSource

76 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

PBChangeSource
— Bzr Hook
* P4Source
— Example
» SVNPoller
* Bzr Poller

GitPoller
* HgPoller

GitHubPullrequestPoller

BitbucketPullrequestPoller
* GerritChangeSource
* GerritEventLogPoller

* GerritChangeFilter

* Change Hooks (HTTP Notifications)

A Version Control System maintains a source tree, and tells the buildmaster when it changes. The first step of each
Build is typically to acquire a copy of some version of this tree.

This chapter describes how the Buildbot learns about what Changes have occurred. For more information on VC
systems and Changes, see Version Control Systems.

Changes can be provided by a variety of ChangeSource types, although any given project will typically have only
a single ChangeSource active. This section provides a description of all available ChangeSource types and
explains how to set up each of them.

Choosing a Change Source

There are a variety of ChangeSource classes available, some of which are meant to be used in conjunction with
other tools to deliver Change events from the VC repository to the buildmaster.

As a quick guide, here is a list of VC systems and the ChangeSources that might be useful with
them. Note that some of these modules are in Buildbot’s master/contrib (https://github.com/buildbot/buildbot-
contrib/blob/master/master/contrib) directory, meaning that they have been offered by other users in hopes they may
be useful, and might require some additional work to make them functional.

CVS

e CVSMaildirSource (watching mail sent by master/contrib/buildbot_cvs_mail.py
(https://github.com/buildbot/buildbot-contrib/blob/master/master/contrib/buildbot_cvs_mail.py) script)

* PBChangeSource (listening for connections from buildbot sendchange run in aloginfo script)

e PBChangeSource (listening for connections from a long-running master/contrib/viewcvspoll.py
(https://github.com/buildbot/buildbot-contrib/blob/master/master/contrib/viewcvspoll.py) ~ polling process
which examines the ViewCVS database directly)

* Change Hooks in WebStatus
SVN

2.5. Configuration 77

https://github.com/buildbot/buildbot-contrib/blob/master/master/contrib
https://github.com/buildbot/buildbot-contrib/blob/master/master/contrib/buildbot_cvs_mail.py
https://github.com/buildbot/buildbot-contrib/blob/master/master/contrib/viewcvspoll.py

Buildbot Documentation, Release 0.9.7

Darcs

PBChangeSource (listening for connections from master/contrib/svn_buildbot.py
(https://github.com/buildbot/buildbot-contrib/blob/master/master/contrib/svn_buildbot.py) run in a postcommit
script)

PBChangeSource (listening for connections from a long-running master/contrib/svn_watcher.py
(https://github.com/buildbot/buildbot-contrib/blob/master/master/contrib/svn_watcher.py) or mas-
ter/contrib/svnpoller.py (https://github.com/buildbot/buildbot-contrib/blob/master/master/contrib/svnpoller.py)
polling process

SVNCommitEmailMaildirSource (watching for email sent by commit-email.pl)
SVNPoller (polling the SVN repository)

Change Hooks in WebStatus

PBChangeSource (listening for connections from master/contrib/darcs_buildbot.py
(https://github.com/buildbot/buildbot-contrib/blob/master/master/contrib/darcs_buildbot.py) in a commit
script)

Change Hooks in WebStatus

Mercurial

Change Hooks in WebStatus (including master/contrib/hgbuildbot.py (https://github.com/buildbot/buildbot-
contrib/blob/master/master/contrib/hgbuildbot.py), configurable in a changegroup hook)

BitBucket change hook (specifically designed for BitBucket notifications, but requiring a publicly-accessible
WebStatus)

HgPoller (polling a remote Mercurial repository)
BitbucketPullrequestPoller (polling Bitbucket for pull requests)

Mail-parsing ChangeSources, though there are no ready-to-use recipes

Bzr (the newer Bazaar)

PBChangeSource (listening for connections from master/contrib/bzr_buildbot.py
(https://github.com/buildbot/buildbot-contrib/blob/master/master/contrib/bzr_buildbot.py) run in a post-
change-branch-tip or commit hook)

BzrPoller (polling the Bzr repository)

Change Hooks in WebStatus

Git

* PBChangeSource (listening for connections from master/contrib/git_buildbot.py
(https://github.com/buildbot/buildbot-contrib/blob/master/master/contrib/git_buildbot.py) run in the post-
receive hook)

e PBChangeSource (listening for connections from master/contrib/github_buildbot.py
(https://github.com/buildbot/buildbot-contrib/blob/master/master/contrib/github_buildbot.py), which listens for
notifications from GitHub)

e Change Hooks in WebStatus

* GitHub change hook (specifically designed for GitHub notifications, but requiring a publicly-accessible Web-
Status)

* BitBucket change hook (specifically designed for BitBucket notifications, but requiring a publicly-accessible
WebStatus)

e GitPoller (polling a remote Git repository)

78 Chapter 2. Buildbot Manual

https://github.com/buildbot/buildbot-contrib/blob/master/master/contrib/svn_buildbot.py
https://github.com/buildbot/buildbot-contrib/blob/master/master/contrib/svn_watcher.py
https://github.com/buildbot/buildbot-contrib/blob/master/master/contrib/svnpoller.py
https://github.com/buildbot/buildbot-contrib/blob/master/master/contrib/svnpoller.py
https://github.com/buildbot/buildbot-contrib/blob/master/master/contrib/darcs_buildbot.py
https://github.com/buildbot/buildbot-contrib/blob/master/master/contrib/hgbuildbot.py
https://github.com/buildbot/buildbot-contrib/blob/master/master/contrib/bzr_buildbot.py
https://github.com/buildbot/buildbot-contrib/blob/master/master/contrib/git_buildbot.py
https://github.com/buildbot/buildbot-contrib/blob/master/master/contrib/github_buildbot.py

Buildbot Documentation, Release 0.9.7

e GitHubPullrequestPoller (polling GitHub API for pull requests)

e BitbucketPullrequestPoller (polling Bitbucket for pull requests)
Repo/Gerrit

e GerritChangeSource connects to Gerrit via SSH to get a live stream of changes

e GerritEventLogPoller connects to Gerrit via HTTP with the help of the plugin events-log
(https://gerrit.googlesource.com/plugins/events-log/)

Monotone

e PBChangeSource (listening for connections from monotone—-buildbot . lua, which is available with
Monotone)

All VC systems can be driven by a PBEChangeSource and the buildbot sendchange tool run from some form
of commit script. If you write an email parsing function, they can also all be driven by a suitable mail-parsing source.
Additionally, handlers for web-based notification (i.e. from GitHub) can be used with WebStatus’ change_hook mod-
ule. The interface is simple, so adding your own handlers (and sharing!) should be a breeze.

See chsrc for a full list of change sources.
Configuring Change Sources

The change_source configuration key holds all active change sources for the configuration.

Most configurations have a single ChangeSource, watching only a single tree, e.g.,

from buildbot.plugins import changes

c['change source'] = changes.PBChangeSource ()

For more advanced configurations, the parameter can be a list of change sources:

sourcel =

source2 =

c['change_source'] = [
sourcel, sourcel

]

Repository and Project

ChangeSources will, in general, automatically provide the proper repository attribute for any changes they
produce. For systems which operate on URL-like specifiers, this is a repository URL. Other ChangeSources adapt
the concept as necessary.

Many ChangeSources allow you to specify a project, as well. This attribute is useful when building from sev-
eral distinct codebases in the same buildmaster: the project string can serve to differentiate the different codebases.
Schedulers can filter on project, so you can configure different builders to run for each project.

Mail-parsing ChangeSources

Many projects publish information about changes to their source tree by sending an email message out to a mailing list,
frequently named PROJECT-commits or PROJECT-changes. Each message usually contains a description of
the change (who made the change, which files were affected) and sometimes a copy of the diff. Humans can subscribe
to this list to stay informed about what’s happening to the source tree.

2.5. Configuration 79

https://gerrit.googlesource.com/plugins/events-log/

Buildbot Documentation, Release 0.9.7

The Buildbot can also be subscribed to a -commits mailing list, and can trigger builds in response to Changes that
it hears about. The buildmaster admin needs to arrange for these email messages to arrive in a place where the
buildmaster can find them, and configure the buildmaster to parse the messages correctly. Once that is in place,
the email parser will create Change objects and deliver them to the schedulers (see Schedulers) just like any other
ChangeSource.

There are two components to setting up an email-based ChangeSource. The first is to route the email messages to the
buildmaster, which is done by dropping them into a maildir. The second is to actually parse the messages, which is
highly dependent upon the tool that was used to create them. Each VC system has a collection of favorite change-
emailing tools, and each has a slightly different format, so each has a different parsing function. There is a separate
ChangeSource variant for each parsing function.

Once you’ve chosen a maildir location and a parsing function, create the change source and put it in
change_source:

from buildbot.plugins import changes

cl] = changes.CVSMaildirSource (,
prefix=)

Subscribing the Buildmaster

The recommended way to install the Buildbot is to create a dedicated account for the buildmaster. If you do this, the
account will probably have a distinct email address (perhaps buildmaster @example.org). Then just arrange for this
account’s email to be delivered to a suitable maildir (described in the next section).

If the Buildbot does not have its own account, extension addresses can be used to distinguish between email intended
for the buildmaster and email intended for the rest of the account. In most modern MTAs, the e.g. foo@example.org
account has control over every email address at example.org which begins with “foo”, such that email addressed to
account-foo@ example.org can be delivered to a different destination than account-bar@example.org. qmail does this
by using separate . gmail files for the two destinations (. gmail—-foo and . gmail-bar, with . gmail controlling
the base address and . gmail-default controlling all other extensions). Other MTAs have similar mechanisms.

Thus you can assign an extension address like foo-buildmaster@example.org to the buildmaster, and retain
foo@example.org for your own use.

Using Maildirs

A maildir is a simple directory structure originally developed for qmail that allows safe atomic update without locking.
Create a base directory with three subdirectories: new, tmp, and cur. When messages arrive, they are put into a
uniquely-named file (using pids, timestamps, and random numbers) in tmp. When the file is complete, it is atomically
renamed into new. Eventually the buildmaster notices the file in new, reads and parses the contents, then moves it
into cur. A cronjob can be used to delete files in cur at leisure.

Maildirs are frequently created with the maildirmake tool, but a simple mkdir -p ~/MAILDIR/cur, new,
tmp is pretty much equivalent.

Many modern MTAs can deliver directly to maildirs. The usual . forward or . procmailrc syntax is to name the
base directory with a trailing slash, so something like ~/MAILDIR/. qmail and postfix are maildir-capable MTAs,
and procmail is a maildir-capable MDA (Mail Delivery Agent).

Here is an example procmail config, located in ~/ .procmailrc:

.procmailrc
routes incoming mail to appropriate mailboxes
PATH=/usr/bin:/usr/local/bin

80 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

MAILDIR=$HOME/Mail
LOGFILE=.procmail_log
SHELL=/bin/sh

:0
*

new

If procmail is not setup on a system wide basis, then the following one-line . forward file will invoke it.

!/usr/bin/procmail

For MTAs which cannot put files into maildirs directly, the safecat tool can be executed from a . forward file to
accomplish the same thing.

The Buildmaster uses the linux DNotify facility to receive immediate notification when the maildir’s new directory
has changed. When this facility is not available, it polls the directory for new messages, every 10 seconds by default.

Parsing Email Change Messages

The second component to setting up an email-based ChangeSource is to parse the actual notices. This is highly
dependent upon the VC system and commit script in use.

A couple of common tools used to create these change emails, along with the Buildbot tools to parse them, are:
CVS
Buildbot CVS MailNotifier CVsSMaildirSource
SVN
svnmailer http://opensource.perlig.de/en/svnmailer/
commit—-email.pl SVNCommitEmailMaildirSource
Bzr
Launchpad BzrLaunchpadEmailMaildirSource
Mercurial
NotifyExtension https://www.mercurial-scm.org/wiki/NotifyExtension
Git
post-receive-email http://git.kernel.org/?p=git/git.git;a=blob;f=contrib/hooks/post-receive-email;hb=HEAD
The following sections describe the parsers available for each of these tools.

Most of these parsers accept a prefix= argument, which is used to limit the set of files that the buildmaster pays
attention to. This is most useful for systems like CVS and SVN which put multiple projects in a single repository
(or use repository names to indicate branches). Each filename that appears in the email is tested against the prefix: if
the filename does not start with the prefix, the file is ignored. If the filename does start with the prefix, that prefix is
stripped from the filename before any further processing is done. Thus the prefix usually ends with a slash.

CVSMaildirSource

class buildbot.changes.mail.CVSMaildirSource

2.5. Configuration 81

http://opensource.perlig.de/en/svnmailer/
https://www.mercurial-scm.org/wiki/NotifyExtension
http://git.kernel.org/?p=git/git.git;a=blob;f=contrib/hooks/post-receive-email;hb=HEAD

Buildbot Documentation, Release 0.9.7

This parser works with the master/contrib/buildbot_cvs_mail.py (https://github.com/buildbot/buildbot-
contrib/blob/master/master/contrib/buildbot_cvs_mail.py) script.

The script sends an email containing all the files submitted in one directory. It is invoked by using the CVSROOT /
loginfo facility.

The Buildbot’s CVSMaildirSource knows how to parse these messages and turn them into Change objects. It
takes the directory name of the maildir root. For example:

from buildbot.plugins import changes

c['change_source'] = changes.CVSMaildirSource ("/home/buildbot/Mail')

Configuration of CVS and buildbot_cvs mail.py (https://github.com/buildbot/buildbot-
contrib/blob/master/master/contrib/buildbot_cvs_mail.py)

CVS must be configured to invoke the buildbot_cvs_mail.py (https://github.com/buildbot/buildbot-
contrib/blob/master/master/contrib/buildbot_cvs_mail.py) script when files are checked in. This is done via the
CVS loginfo configuration file.

To update this, first do:

cvs checkout CVSROOT

cd to the CVSROQOT directory and edit the file loginfo, adding a line like:

SomeModule /cvsroot/CVSROOT/buildbot_cvs_mail.py ——-cvsroot :ext:example.com:/cvsroot -
—e buildbot -P SomeModule %Q@{sVv@}

Note: For cvs version 1.12.x, the ——path %p option is required. Version 1.11.x and 1.12.x report the directory path
differently.

The above example you put the buildbot _cvs_mail.py (https://github.com/buildbot/buildbot-
contrib/blob/master/master/contrib/buildbot_cvs_mail.py) script under /cvsroot/CVSROOT. It can be anywhere.
Run the script with ——help to see all the options. At the very least, the options —e (email) and —P (project) should
be specified. The line must end with % { sVv}. This is expanded to the files that were modified.

Additional entries can be added to support more modules.

See buildbot_cvs_mail.py —-help for more information on the available options.

SVNCommitEmailMaildirSource

class buildbot.changes.mail . SVNCommitEmailMaildirSource

SVNCommitEmailMaildirSource parses message sent out by the commit-email.pl script, which is in-
cluded in the Subversion distribution.

It does not currently handle branches: all of the Change objects that it creates will be associated with the default (i.e.
trunk) branch.

from buildbot.plugins import changes

c['change source'] = changes.SVNCommitEmailMaildirSource ("~/maildir-buildbot")

82 Chapter 2. Buildbot Manual

https://github.com/buildbot/buildbot-contrib/blob/master/master/contrib/buildbot_cvs_mail.py
https://github.com/buildbot/buildbot-contrib/blob/master/master/contrib/buildbot_cvs_mail.py
https://github.com/buildbot/buildbot-contrib/blob/master/master/contrib/buildbot_cvs_mail.py

Buildbot Documentation, Release 0.9.7

BzrLaunchpadEmailMaildirSource

class buildbot.changes.mail.BzrLaunchpadEmailMaildirSource

BzrLaunchpadEmailMaildirSource parses the mails that are sent to addresses that subscribe to branch revi-
sion notifications for a bzr branch hosted on Launchpad.

The branch name defaults to 1p: Launchpad path. For example 1p:~maria-captains/maria/5.1.
If only a single branch is used, the default branch name can be changed by setting defaultBranch.

For multiple branches, pass a dictionary as the value of the branchMap option to map specific repository paths to
specific branch names (see example below). The leading 1p: prefix of the path is optional.

The prefix option is not supported (it is silently ignored). Use the branchMap and defaultBranch instead to
assign changes to branches (and just do not subscribe the Buildbot to branches that are not of interest).

The revision number is obtained from the email text. The bzr revision id is not available in the mails sent by Launchpad.
However, it is possible to set the bzr append_revisions_only option for public shared repositories to avoid new pushes
of merges changing the meaning of old revision numbers.

from buildbot.plugins import changes

bm = {
'lp:~maria-captains/maria/5.1': '5.1",
'lp:~maria-captains/maria/6.0" !) !
}
c['change source'] = changes.BzrLaunchpadEmailMaildirSource ("~/maildir-buildbot",
branchMap=bm)
PBChangeSource

class buildbot.changes.pb.PBChangeSource

PBChangeSource actually listens on a TCP port for clients to connect and push change notices into the Buildmaster.
This is used by the built-in buildbot sendchange notification tool, as well as several version-control hook
scripts. This change is also useful for creating new kinds of change sources that work on a push model instead of some
kind of subscription scheme, for example a script which is run out of an email . forward file. This ChangeSource
always runs on the same TCP port as the workers. It shares the same protocol, and in fact shares the same space of
“usernames”’, so you cannot configure a PBChangeSource with the same name as a worker.

If you have a publicly accessible worker port, and are using PBChangeSource, you must establish a secure user-
name and password for the change source. If your sendchange credentials are known (e.g., the defaults), then your
buildmaster is susceptible to injection of arbitrary changes, which (depending on the build factories) could lead to
arbitrary code execution on workers.

The PBChangeSource is created with the following arguments.
port which port to listen on. If None (which is the default), it shares the port used for worker connections.
user The user account that the client program must use to connect. Defaults to change

passwd The password for the connection - defaults to changepw. Do not use this default on a publicly exposed
port!

prefix The prefix to be found and stripped from filenames delivered over the connection, defaulting to None. Any
filenames which do not start with this prefix will be removed. If all the filenames in a given Change are removed,
the that whole Change will be dropped. This string should probably end with a directory separator.

2.5. Configuration 83

Buildbot Documentation, Release 0.9.7

This is useful for changes coming from version control systems that represent branches as parent directo-
ries within the repository (like SVN and Perforce). Use a prefix of trunk/ or project/branches/
foobranch/ to only follow one branch and to get correct tree-relative filenames. Without a prefix, the
PBChangeSource will probably deliver Changes with filenames like t runk/ foo . c instead of just foo. c.
Of course this also depends upon the tool sending the Changes in (like buildbot sendchange) and what
filenames it is delivering: that tool may be filtering and stripping prefixes at the sending end.

For example:

from buildbot.plugins import changes

c['change source'] = changes.PBChangeSource (port=9999, user='laura', passwd='fpga')

The following hooks are useful for sending changes to a PBChangeSource:

Bzr Hook

Bzr is also written in Python, and the Bzr hook depends on Twisted to send the changes.

To install, put master/contrib/bzr_buildbot.py (https://github.com/buildbot/buildbot-
contrib/blob/master/master/contrib/bzr_buildbot.py) in one of your plugins locations a bzr plugins directory
(e.g., ~/ .bazaar/plugins). Then, in one of your bazaar conf files (e.g., ~/ .bazaar/locations.conf),
set the location you want to connect with Buildbot with these keys:

* buildbot_on one of ‘commit’, ‘push, or ‘change’. Turns the plugin on to report changes via commit, changes
via push, or any changes to the trunk. ‘change’ is recommended.

* buildbot_server (required to send to a Buildbot master) the URL of the Buildbot master to which you will
connect (as of this writing, the same server and port to which workers connect).

* buildbot_port (optional, defaults to 9989) the port of the Buildbot master to which you will connect (as of
this writing, the same server and port to which workers connect)

* buildbot_pgm (optional, defaults to not pqm) Normally, the user that commits the revision is the user that
is responsible for the change. When run in a pgm (Patch Queue Manager, see https://launchpad.net/pgm) en-
vironment, the user that commits is the Patch Queue Manager, and the user that committed the parent revision
is responsible for the change. To turn on the pqm mode, set this value to any of (case-insensitive) “Yes”, “Y”,
“True”, or “T”.

* buildbot_dry_run (optional, defaults to not a dry run) Normally, the post-commit hook will attempt to
communicate with the configured Buildbot server and port. If this parameter is included and any of (case-
insensitive) “Yes”, “Y”, “True”, or “T”, then the hook will simply print what it would have sent, but not attempt
to contact the Buildbot master.

* buildbot_send_branch_name (optional, defaults to not sending the branch name) If your Buildbot’s bzr
source build step uses a repourl, do not turn this on. If your buildbot’s bzr build step uses a baseURL, then you
may set this value to any of (case-insensitive) “Yes”, “Y”, “True”, or “T” to have the Buildbot master append
the branch name to the baseURL.

Note: The bzr smart server (as of version 2.2.2) doesn’t know how to resolve bzr:// urls into absolute paths
so any paths in locations.conf won’t match, hence no change notifications will be sent to Buildbot. Setting
configuration parameters globally or in-branch might still work. When Buildbot no longer has a hardcoded password,
it will be a configuration option here as well.

Here’s a simple example that you might have in your ~/ .bazaar/locations.conf.

84 Chapter 2. Buildbot Manual

https://github.com/buildbot/buildbot-contrib/blob/master/master/contrib/bzr_buildbot.py
https://launchpad.net/pqm

Buildbot Documentation, Release 0.9.7

[chroot-*:///var/local/myrepo/mybranch]
buildbot_on =
buildbot_server =

P4Source

The P4Source periodically polls a Perforce (http://www.perforce.com/) depot for changes. It accepts the following
arguments:

p4port The Perforce server to connect to (as host: port).

p4user The Perforce user.

p4passwd The Perforce password.

p4base The base depot path to watch, without the trailing “/...".

p4bin An optional string parameter. Specify the location of the perforce command line binary (p4). You only need
to do this if the perforce binary is not in the path of the Buildbot user. Defaults to p4.

split_file A function that maps a pathname, without the leading p4base, to a (branch, filename) tuple. The
default just returns (None, branchfile), which effectively disables branch support. You should supply a
function which understands your repository structure.

pollInterval How often to poll, in seconds. Defaults to 600 (10 minutes).

project Set the name of the project to be used for the P4Source. This will then be set in any changes generated
by the P4Source, and can be used in a Change Filter for triggering particular builders.

pollAtLaunch Determines when the first poll occurs. True = immediately on launch, False = wait for one polllnter-
val (default).

histmax The maximum number of changes to inspect at a time. If more than this number occur since the last poll,
older changes will be silently ignored.

encoding The character encoding of p4°‘s output. This defaults to “utf8”, but if your commit messages are in
another encoding, specify that here. For example, if you’re using Perforce on Windows, you may need to use
“cp437” as the encoding if “utf8” generates errors in your master log.

server_tz The timezone of the Perforce server, using the usual timezone format (e.g: "Europe/Stockholm")
in case it’s not in UTC.

use_tickets Setto True to use ticket-based authentication, instead of passwords (but you still need to specify
pdpasswd).

ticket_login_interval How often to get a new ticket, in seconds, when use_tickets is enabled. Defaults
to 86400 (24 hours).

Example

This configuration uses the P4APORT, P4USER, and P4PASSWD specified in the buildmaster’s environment. It watches
a project in which the branch name is simply the next path component, and the file is all path components after.

from buildbot.plugins import changes

s = changes.P4Source (p4base= ’
split_file=lambda branchfile: branchfile.split(;1))
cl] = s

2.5. Configuration 85

http://www.perforce.com/

Buildbot Documentation, Release 0.9.7

SVNPoller

class buildbot.changes.svnpoller.SVNPoller

The SVNPoller is a ChangeSource which periodically polls a Subversion (http://subversion.tigris.org/) repository
for new revisions, by running the svn 1og command in a subshell. It can watch a single branch or multiple branches.

SVNPoller accepts the following arguments:

repourl The base URL path to watch, like svn://svn.twistedmatrix.com/svn/Twisted/trunk,
or http://divmod.org/svn/Divmo/, or even file:///home/svn/Repository/Projecth/
branches/1.5/. This must include the access scheme, the location of the repository (both the hostname
for remote ones, and any additional directory names necessary to get to the repository), and the sub-path within
the repository’s virtual filesystem for the project and branch of interest.

The SVNPoller will only pay attention to files inside the subdirectory specified by the complete repourl.

split_file A function to convert pathnames into (branch, relative_pathname) tuples. Use this to
explain your repository’s branch-naming policy to SVNPoller. This function must accept a single string
(the pathname relative to the repository) and return a two-entry tuple. Directory pathnames always end with
a right slash to distinguish them from files, like t runk/src/, or src/. There are a few utility functions in
buildbot.changes.svnpoller that can be used as a split_ file function; see below for details.

For directories, the relative pathname returned by split_file should end with a right slash but an empty
string is also accepted for the root, like ("branches/1.5.x", "") being converted from "branches/
1.5.x/".

The default value always returns (None, path), which indicates that all files are on the trunk.

Subclasses of SVNPoller can override the split_file method instead of using the split_file= argu-
ment.

project Setthe name of the project to be used for the SVNPo11er. This will then be set in any changes generated
by the SVNPoller, and can be used in a Change Filter for triggering particular builders.

svnuser An optional string parameter. If set, the option —user argument will be added to all svn commands. Use
this if you have to authenticate to the svn server before you can do svn info or svn log commands.

svnpasswd Like svnuser, this will cause a option —password argument to be passed to all svn commands.

pollInterval How often to poll, in seconds. Defaults to 600 (checking once every 10 minutes). Lower this if you
want the Buildbot to notice changes faster, raise it if you want to reduce the network and CPU load on your svn
server. Please be considerate of public SVN repositories by using a large interval when polling them.

pollAtLaunch Determines when the first poll occurs. True = immediately on launch, False = wait for one polllnter-
val (default).

histmax The maximum number of changes to inspect at a time. Every pol1lInterval seconds, the SVNPoller
asks for the last hi stmax changes and looks through them for any revisions it does not already know about. If
more than histmax revisions have been committed since the last poll, older changes will be silently ignored.
Larger values of histmax will cause more time and memory to be consumed on each poll attempt. histmax
defaults to 100.

svnbin This controls the svn executable to use. If subversion is installed in a weird place on your system (outside
of the buildmaster’s PATH), use this to tell SVNPol1er where to find it. The default value of syn will almost
always be sufficient.

revlinktmpl This parameter is deprecated in favour of specifying a global revlink option. This parameter allows a
link to be provided for each revision (for example, to websvn or viewvc). These links appear anywhere changes
are shown, such as on build or change pages. The proper form for this parameter is an URL with the portion
that will substitute for a revision number replaced by ’%s’ ‘. For example, 'http://myserver/websvn/
revision.php?rev=%s"' could be used to cause revision links to be created to a websvn repository viewer.

86 Chapter 2. Buildbot Manual

http://subversion.tigris.org/

Buildbot Documentation, Release 0.9.7

cachepath If specified, this is a pathname of a cache file that SVNPoller will use to store its state between
restarts of the master.

extra_args If specified, the extra arguments will be added to the svn command args.

Several split file functions are available for common SVN repository layouts. For a poller that is only monitoring
trunk, the default split file function is available explicitly as split_file_alwaystrunk:

from buildbot.plugins import changes, util

c['change_source'] = changes.SVNPoller (

repourl="svn://svn.twistedmatrix.com/svn/Twisted/trunk",
split_file=util.svn.split_file_alwaystrunk)

For repositories with the /t runk and /branches/BRANCH layout, split_file_branches will do the job:

from buildbot.plugins import changes, util

c['change source'] = changes.SVNPoller (
repourl="https: amanda.svn.sourceforge.net/svnroot/amanda/amanda",
split_file=util.svn.split_file_branches)

When using this splitter the poller will set the project attribute of any changes to the project attribute of the
poller.

For repositories with the @ PROJECT/trunk and PROJECT/branches/BRANCH layout,
split_file_projects_branches will do the job:

from buildbot.plugins import changes, util

c['change source'] = changes.SVNPoller (
repourl="https: amanda.svn.sourceforge.net/svnroot/amanda/",
split_file=util.svn.split_file_projects_branches)

When using this splitter the poller will set the project attribute of any changes to the project determined by the
splitter.

The SVNPoller is highly adaptable to various Subversion layouts. See Customizing SVNPoller for details and some
common scenarios.

Bzr Poller

If you cannot insert a Bzr hook in the server, you can use the BzrPoller. To use it, put mas-
ter/contrib/bzr_buildbot.py (https://github.com/buildbot/buildbot-contrib/blob/master/master/contrib/bzr_buildbot.py)
somewhere that your Buildbot configuration can import it. Even putting it in the same directory as the master.cfg
should work. Install the poller in the Buildbot configuration as with any other change source. Minimally, provide a
URL that you want to poll (bzr://,bzr+ssh://,or 1p:), making sure the Buildbot user has necessary privileges.

from bzr_ buildbot import BzrPoller

1

c['change_source'] = BzrPoller (

url="bzr: hostname/my_project',

poll_interval=300)

The BzrPoller parameters are:

url The URL to poll.

2.5. Configuration 87

https://github.com/buildbot/buildbot-contrib/blob/master/master/contrib/bzr_buildbot.py
https://github.com/buildbot/buildbot-contrib/blob/master/master/contrib/bzr_buildbot.py

Buildbot Documentation, Release 0.9.7

poll_interval The number of seconds to wait between polls. Defaults to 10 minutes.

branch_name Any value to be wused as the branch name. Defaults to None, or specify a
string, or specify the constants from bzr_buildbot.py (https://github.com/buildbot/buildbot-
contrib/blob/master/master/contrib/bzr_buildbot.py) SHORT or FULL to get the short branch name or
full branch address.

blame_merge_author normally, the user that commits the revision is the user that is responsible for the change.
When run in a pqm (Patch Queue Manager, see https://launchpad.net/pgm) environment, the user that commits
is the Patch Queue Manager, and the user that committed the merged, parent revision is responsible for the
change. Set this value to True if this is pointed against a PQM-managed branch.

GitPoller

If you cannot take advantage of post-receive hooks as provided by master/contrib/git_buildbot.py
(https://github.com/buildbot/buildbot-contrib/blob/master/master/contrib/git_buildbot.py) for example, then you
canuse the GitPoller.

The GitPoller periodically fetches from a remote Git repository and processes any changes. It requires its own
working directory for operation. The default should be adequate, but it can be overridden via the workdi r property.

Note: There can only be a single GitPoller pointed at any given repository.

The GitPoller requires Git-1.7 and later. It accepts the following arguments:

repourl the git-url that describes the remote repository, e.g. git@example.com: foobaz/myrepo.git (see
the git fetch help for more info on git-url formats)

branches One of the following:
* alist of the branches to fetch.
* True indicating that all branches should be fetched

* a callable which takes a single argument. It should take a remote refspec (such as 'refs/heads/
master', and return a boolean indicating whether that branch should be fetched.

branch accepts a single branch name to fetch. Exists for backwards compatibility with old configurations.
pollInterval interval in seconds between polls, default is 10 minutes

pollAtLaunch Determines when the first poll occurs. True = immediately on launch, False = wait for one polllnter-
val (default).

buildPushesWithNoCommits Determine if a push on a new branch or update of an already known branch with
already known commits should trigger a build. This is useful in case you have build steps depending on the name
of the branch and you use topic branches for development. When you merge your topic branch into “master”
(for instance), a new build will be triggered. (defaults to False).

gitbin path to the Git binary, defaults to just 'git'

category Set the category to be used for the changes produced by the GitPoller. This will then be set in any
changes generated by the GitPoller, and can be used in a Change Filter for triggering particular builders.

project Set the name of the project to be used for the Gi t Poller. This will then be set in any changes generated
by the GitPoller, and can be used in a Change Filter for triggering particular builders.

usetimestamps parse each revision’s commit timestamp (default is True), or ignore it in favor of the current time
(so recently processed commits appear together in the waterfall page)

88 Chapter 2. Buildbot Manual

https://github.com/buildbot/buildbot-contrib/blob/master/master/contrib/bzr_buildbot.py
https://launchpad.net/pqm
https://github.com/buildbot/buildbot-contrib/blob/master/master/contrib/git_buildbot.py

Buildbot Documentation, Release 0.9.7

encoding Set encoding will be used to parse author’s name and commit message. Default encoding is 'ut£-8"'.
This will not be applied to file names since Git will translate non-ascii file names to unreadable escape sequences.

workdir the directory where the poller should keep its local repository. The defaultis gitpoller_work. If this
is a relative path, it will be interpreted relative to the master’s basedir. Multiple Git pollers can share the same
directory.

only_tags Determines if the GitPoller should poll for new tags in the git repository.

A configuration for the Git poller might look like this:

from buildbot.plugins import changes

cl] = changes.GitPoller (repourl= ,
branches=[, 1)

HgPoller
The HgPol ler periodically pulls a named branch from a remote Mercurial repository and processes any changes. It
requires its own working directory for operation, which must be specified via the workdir property.

The HgPoller requires a working hg executable, and at least a read-only access to the repository it polls (possibly
through ssh keys or by tweaking the hgrc of the system user Buildbot runs as).

The HgPoller will not transmit any change if there are several heads on the watched named branch. This is similar
(although not identical) to the Mercurial executable behaviour. This exceptional condition is usually the result of a
developer mistake, and usually does not last for long. It is reported in logs. If fixed by a later merge, the buildmaster
administrator does not have anything to do: that merge will be transmitted, together with the intermediate ones.

The HgPoller accepts the following arguments:
name the name of the poller. This must be unique, and defaults to the repourl.

repourl the url that describes the remote repository, e.g. http://hg.example.com/projects/myrepo.
Any url suitable for hg pull can be specified.

branch the desired branch to pull, will default to 'default’

workdir the directory where the poller should keep its local repository. It is mandatory for now, although later
releases may provide a meaningful default.

It also serves to identify the poller in the buildmaster internal database. Changing it may result in re-processing
all changes so far.

Several HgPoller instances may share the same workdir for mutualisation of the common history between
two different branches, thus easing on local and remote system resources and bandwidth.

If relative, the workdir will be interpreted from the master directory.
pollInterval interval in seconds between polls, default is 10 minutes

pollAtLaunch Determines when the first poll occurs. True = immediately on launch, False = wait for one polllnter-
val (default).

hgbin path to the Mercurial binary, defaults to just 'hg'

category Set the category to be used for the changes produced by the HgPoller. This will then be set in any
changes generated by the HgPoller, and can be used in a Change Filter for triggering particular builders.

project Set the name of the project to be used for the HgPo 1 1er. This will then be set in any changes generated
by the HgPoller, and can be used in a Change Filter for triggering particular builders.

2.5. Configuration 89

Buildbot Documentation, Release 0.9.7

usetimestamps parse each revision’s commit timestamp (default is True), or ignore it in favor of the current time
(so recently processed commits appear together in the waterfall page)

encoding Set encoding will be used to parse author’s name and commit message. Default encoding is 'ut £-8"'.

A configuration for the Mercurial poller might look like this:

from buildbot.plugins import changes

cl] = changes.HgPoller (repourl= ,
branch= ’
workdir=)

GitHubPullrequestPoller

class buildbot.changes.github.GitHubPullrequestPoller

This GitHubPullrequestPoller periodically polls the GitHub API for new or updated pull requests. The
author, revision, revlink, branch and files fields in the recorded changes are populated with information extracted from
the pull request. This allows to filter for certain changes in files and create a blamelist based on the authors in the
GitHub pull request.

The GitHubPullrequestPoller accepts the following arguments:
owner The owner of the GitHub repository. This argument is required.
repo The name of the GitHub repository. This argument is required.

branches List of branches to accept as base branch (e.g. master). Defaults to None and accepts all branches as
base.

pollInterval Poll interval between polls in seconds. Default is 10 minutes.

pollAtLaunch Whether to poll on startup of the buildbot master. Default is False and first poll will occur pollinter-
val seconds after the master start.

category Set the category to be used for the changes produced by the GitHubPullrequestPoller. This will
then be set in any changes generated by the GitHubPullrequestPoller, and can be used in a Change
Filter for triggering particular builders.

project Set the name of the project to be used for the GitHubPullrequestPoller. This will then be set
in any changes generated by the GitHubPullrequestPoller, and can be used in a Change Filter for
triggering particular builders.

baseURL GitHub API endpoint. Default is https://api.github.com.

pullrequest_filter A callable which takes a dict which contains the decoded JSON object of the GitHub pull
request as argument. All fields specified by the GitHub API are accessible. If the callable returns False the pull
request is ignored. Default is True which does not filter any pull requests.

token A GitHub API token to execute all requests to the API authenticated. It is strongly recommended to use a
API token since it increases GitHub API rate limits significantly.

repository_type Set which type of repository link will be in the repository property. Possible values https,
svn, git or svn. This link can then be used in a Source Step to checkout the source.

magic_link Set to True if the changes should contain refs/pulls/<PR #>/merge in the branch property
and a link to the base repository in the repository property. These properties can be used by the Git Hub source
to pull from the special branch in the base repository. Default is False.

920 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

github_property_whitelist A list of fnmatch expressions which match against the flattened pull request
information JSON prefixed with github. For example github . number represents the pull request number.
Available entries can be looked up in the GitHub API Documentation or by examining the data returned for a
pull request by the APIL.

BitbucketPullrequestPoller

class buildbot .changes.bitbucket .BitbucketPullrequestPoller

This BitbucketPullrequestPoller periodically polls Bitbucket for new or up-
dated pull requests. It uses Bitbuckets powerful Pull Request REST API
(https://confluence.atlassian.com/display/BITBUCKET/pullrequests+Resource) to gather the information needed.

The BitbucketPullrequestPoller accepts the following arguments:

owner The owner of the Bitbucket repository. All Bitbucket Urls are of the form https://bitbucket.org/
owner/slug/.

slug The name of the Bitbucket repository.

branch A single branch or a list of branches which should be processed. If it is None (the default) all pull requests
are used.

pollInterval Interval in seconds between polls, default is 10 minutes.

pollAtLaunch Determines when the first poll occurs. True = immediately on launch, False = wait for one
pollInterval (default).

category Set the category to be used for the changes produced by the Bi t bucketPullrequestPoller. This
will then be set in any changes generated by the BitbucketPullrequestPoller, and can be used in a
Change Filter for triggering particular builders.

project Set the name of the project to be used for the Bi t bucketPullrequestPoller. This will then be set
in any changes generated by the BitbucketPullrequestPoller, and can be used in a Change Filter for
triggering particular builders.

pullrequest_filter A callable which takes one parameter, the decoded Python object of the pull request JSON.
If the it returns False the pull request is ignored. It can be used to define custom filters based on the content
of the pull request. See the Bitbucket documentation for more information about the format of the response. By
default the filter always returns True.

usetimestamps parse each revision’s commit timestamp (default is True), or ignore it in favor of the current time
(so recently processed commits appear together in the waterfall page)

encoding Set encoding will be used to parse author’s name and commit message. Default encoding is 'ut£-8"'.

A minimal configuration for the Bitbucket pull request poller might look like this:

from buildbot.plugins import changes

cl] = changes.BitbucketPullrequestPoller (
owner= ,
slug= '

Here is a more complex configuration using a pul lrequest_filter. The pull request is only processed if at least
3 people have already approved it:

def approve_ filter (pr, threshold):
approves = 0
for participant in pr|]:

2.5. Configuration 91

https://confluence.atlassian.com/display/BITBUCKET/pullrequests+Resource

Buildbot Documentation, Release 0.9.7

if participant|]:
approves = approves + 1

if approves < threshold:
return

return

from buildbot.plugins import changes

cl] = changes.BitbucketPullrequestPoller (
owner= ,
slug= ,
branch= ,
project= ,

pullrequest_filter=lambda pr : approve_filter (pr,3),
pollInterval=600,

Warning: Anyone who can create pull requests for the Bitbucket repository can initiate a change, potentially
causing the buildmaster to run arbitrary code.

GerritChangeSource

class buildbot.changes.gerritchangesource.GerritChangeSource

The GerritChangeSource class connects to a Gerrit server by its SSH interface and uses its event source mech-
anism, gerrit stream-events (https://gerrit-documentation.storage.googleapis.com/Documentation/2.2.1/cmd-stream-
events.html).

The GerritChangeSource accepts the following arguments:

gerritserver the dns or ip that host the Gerrit ssh server

gerritport the port of the Gerrit ssh server

username the username to use to connect to Gerrit

identity_file ssh identity file to for authentication (optional). Pay attention to the ssh passphrase
handled_events event to be handled (optional). By default processes patchset-created and ref-updated

debug Print Gerrit event in the log (default False). This allows to debug event content, but will eventually fill your
logs with useless Gerrit event logs.

By default this class adds a change to the Buildbot system for each of the following events:

patchset-created A change is proposed for review. Automatic checks like checkpatch.pl can be auto-
matically triggered. Beware of what kind of automatic task you trigger. At this point, no trusted human has
reviewed the code, and a patch could be specially crafted by an attacker to compromise your workers.

ref—-updated A change has been merged into the repository. Typically, this kind of event can lead to a complete
rebuild of the project, and upload binaries to an incremental build results server.

But you can specify how to handle events:
* Any event with change and patchSet will be processed by universal collector by default.

* In case you’ve specified processing function for the given kind of events, all events of this kind will be processed
only by this function, bypassing universal collector.

92 Chapter 2. Buildbot Manual

https://gerrit-documentation.storage.googleapis.com/Documentation/2.2.1/cmd-stream-events.html

Buildbot Documentation, Release 0.9.7

An example:

from buildbot.plugins import changes

class MyGerritChangeSource (changes.GerritChangeSource) :

def eventReceived patchset_created(, properties, event):

properties = {}
.addChangeFromEvent (properties, event)

This class will populate the property list of the triggered build with the info received from Gerrit server in JSON
format.

Warning: If you selected GerritChangeSource, you must use Gerrit source step: the branch property
of the change will be target_branch/change_id and such a ref cannot be resolved, so the Git source step
would fail.

In case of patchset—-created event, these properties will be:

event . change.branch Branch of the Change

event .change. id Change’s ID in the Gerrit system (the Changeld: in commit comments)
event . change . number Change’s number in Gerrit system

event .change.owner.email Change’s owner email (owner is first uploader)

event .change.owner.name Change’s owner name

event . change.project Project of the Change

event . change. subject Change’s subject

event .change.url URL of the Change in the Gerrit’s web interface

event .patchSet .number Patchset’s version number

event .patchSet.ref Patchset’s Gerrit “virtual branch”

event .patchSet.revision Patchset’s Git commit ID

event .patchSet.uploader.email Patchset uploader’s email (owner is first uploader)
event .patchSet .uploader.name Patchset uploader’s name (owner is first uploader)
event .type Eventtype (patchset-created)

event .uploader.email Patchset uploader’s email

event .uploader.name Patchset uploader’s name

In case of ref-updated event, these properties will be:

event . refUpdate.newRev New Git commit ID (after merger)

event .refUpdate.oldRev Previous Git commit ID (before merger)

event .refUpdate.project Project that was updated

event .refUpdate.refName Branch that was updated

event .submitter.email Submitter’s email (merger responsible)

2.5. Configuration 93

Buildbot Documentation, Release 0.9.7

event .submitter.name Submitter’s name (merger responsible)
event .type Eventtype (ref-updated)

event .submitter.email Submitter’s email (merger responsible)
event . submitter.name Submitter’s name (merger responsible)

A configuration for this source might look like:

from buildbot.plugins import changes

‘hange_source'] = changes.GerritChangeSource (
"gerrit.example.com",
"gerrit_user",

handled_events=["patchset-created", "change-merged"])

See master/docs/examples/git_gerrit.cfg or master/docs/examples/repo_gerrit.cfqgin
the Buildbot distribution for a full example setup of Git+Gerrit or Repo+Gerrit of GerritChangeSource.

GerritEventLogPoller

class buildbot .changes.gerritchangesource.GerritEventLogPoller

The GerritEventLogPoller class is similar to GerritChangeSource but connects to the Gerrit server by
its HTTP interface and uses the events-log (https://gerrit.googlesource.com/plugins/events-log/) plugin.

The GerritEventLogPoller accepts the following arguments:
baseURL the HTTP url where to find Gerrit

auth a requests authentication configuration. if Gerrit is configured with BasicAuth, then it shall be
("login', 'password') if Gerritisconfigured with DigestAuth, then it shall be requests.auth.
HTTPDigestAuth ('login', 'password') from the requests module.

handled events event to be handled (optional). By default processes patchset-created and ref-updated
pollInterval interval in seconds between polls, default is 30 seconds

pollAtLaunch Determines when the first poll occurs. True = immediately on launch (default), False = wait for
one polllnterval.

gitBaseURL The git URL where Gerrit is accessible via git+ssh protocol

debug Print Gerrit event in the log (default False). This allows to debug event content, but will eventually fill your
logs with useless Gerrit event logs.

The same customization can be done as GerritChangeSource for handling special events.

GerritChangeFilter

class buildbot.changes.gerritchangesource.GerritChangeFilter

GerritChangeFilter is aready to use ChangeFilter you can pass to AnyBranchScheduler in order to
filter changes, to create pre-commit builders or post-commit schedulers. It has the same api as Change Filter, except
it has additional eventtype set of filter (can as well be specified as value, list, regular expression or callable)

An example is following:

94 Chapter 2. Buildbot Manual

https://gerrit.googlesource.com/plugins/events-log/

Buildbot Documentation, Release 0.9.7

from buildbot.plugins import schedulers, util

schedulers.AnyBranchScheduler (name="main-precommit",
change_filter=util.GerritChangeFilter (branch="main",
eventtype=
"patchset-created")
treeStableTimer=15%60,
builderNames=["main-precommit"])
schedulers.AnyBranchScheduler (name="main-postcommit",

change_filter=util.GerritChangeFilter ("main", "ref-
—updated"),

treeStableTimer=15%60,

builderNames=["main-postcommit"])

Change Hooks (HTTP Notifications)

Buildbot already provides a web frontend, and that frontend can easily be used to receive HTTP push notifications of
commits from services like GitHub. See Change Hooks for more information.

Schedulers

* Configuring Schedulers
» Scheduler Resiliency

* Change Filters

» Scheduler Types

SingleBranchScheduler

AnyBranchScheduler

Dependent Scheduler

Periodic Scheduler

Nightly Scheduler

Try Schedulers

Triggerable Scheduler

NightlyTriggerable Scheduler

ForceScheduler Scheduler

Schedulers are responsible for initiating builds on builders.

Some schedulers listen for changes from ChangeSources and generate build sets in response to these changes. Others
generate build sets without changes, based on other events in the buildmaster.

2.5. Configuration 95

Buildbot Documentation, Release 0.9.7

Configuring Schedulers

The schedulers configuration parameter gives a list of scheduler instances, each of which causes builds to
be started on a particular set of Builders. The two basic scheduler classes you are likely to start with are
SingleBranchScheduler and Periodic, but you can write a customized subclass to implement more compli-
cated build scheduling.

Scheduler arguments should always be specified by name (as keyword arguments), to allow for future expansion:

sched = SingleBranchScheduler (name= , builderNames=][, 1)

There are several common arguments for schedulers, although not all are available with all schedulers.

name Each Scheduler must have a unique name. This is used in status displays, and is also available in the build
property scheduler.

builderNames This is the set of builders which this scheduler should trigger, specified as a list of names (strings).

properties Thisis adictionary specifying properties that will be transmitted to all builds started by this scheduler.
The owner property may be of particular interest, as its contents (as a list) will be added to the list of “interested
users” (Doing Things With Users) for each triggered build. For example

sched = Scheduler(...,
properties = {
N

b

fileIsImportant A callable which takes one argument, a Change instance, and returns True if the change is
worth building, and False if it is not. Unimportant Changes are accumulated until the build is triggered by an
important change. The default value of None means that all Changes are important.

change_filter The change filter that will determine which changes are recognized by this scheduler; Change
Filters. Note that this is different from fileIsImportant: if the change filter filters out a Change, then it
is completely ignored by the scheduler. If a Change is allowed by the change filter, but is deemed unimportant,
then it will not cause builds to start, but will be remembered and shown in status displays.

codebases When the scheduler processes data from more than one repository at the same time, a corresponding
codebase definition should be passed for each repository.

This parameter can be specified either as a list of strings (simplest form; use if no special overrides are needed)
or as a dictionary of dictionaries (where each dict is a codebase definition as described next).

Each codebase definition is a dictionary with any of the keys: repository, branch, revision. The
codebase definitions are combined in a dictionary keyed by the name of the codebase.

codebases = { : | : ,

by

Important: The codebases parameter is only used to fill in missing details about a codebases when schedul-
ing a build. For example, when a change to codebase A occurs, a scheduler must invent a sourcestamp for
codebase B. The parameter does not act as a filter on incoming changes — use a change filter for that purpose.

Source steps can specify a codebase to which they will apply, and will use the sourcestamp for that codebase.

onlyImportant A boolean that, when True, only adds important changes to the buildset as specified in
the fileIsImportant callable. This means that unimportant changes are ignored the same way a

96 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

change_filter filters changes. This defaults to False and only applies when fileIsImportant is
given.

reason A string that will be used as the reason for the triggered build.

The remaining subsections represent a catalog of the available scheduler types. All these schedulers are defined in
modules under buildbot.schedulers, and the docstrings there are the best source of documentation on the
arguments taken by each one.

Scheduler Resiliency

In a multi-master configuration, schedulers with the same name can be configured on multiple masters. Only one
instance of the scheduler will be active. If that instance becomes inactive, due to its master being shut down or failing,
then another instance will become active after a short delay. This provides resiliency in scheduler configurations, so
that schedulers are not a single point of failure in a Buildbot infrastructure.

The Data API and web Ul display the master on which each scheduler is running.

There is currently no mechanism to control which master’s scheduler instance becomes active. The behavior is non-
deterministic, based on the timing of polling by inactive schedulers. The failover is non-revertive.

Change Filters

Several schedulers perform filtering on an incoming set of changes. The filter can most generically be specified as a
ChangeFilter. Setup a ChangeFilter like this:

from buildbot.plugins import util
my_filter = util.ChangeFilter (project_re= , branch=)

and then add it to a scheduler with the change_filter parameter:

sch = SomeSchedulerClass (...,
change_filter=my_filter)

There are five attributes of changes on which you can filter:

project the project string, as defined by the ChangeSource.

repository the repository in which this change occurred.

branch the branch on which this change occurred. Note that ‘trunk’ or ‘master’ is often denoted by None.
category the category, again as defined by the ChangeSource.

codebase the change’s codebase.

For each attribute, the filter can look for a single, specific value:

’my_filter = util.ChangeFilter (project=)

or accept any of a set of values:

’my_filter = util.ChangeFilter (project=] , 1)

or apply a regular expression, using the attribute name with a “_re” suffix:

2.5. Configuration 97

Buildbot Documentation, Release 0.9.7

my_filter util.ChangeFilter (category_re=)

import re
my_filter = util.ChangeFilter (category_re=re.compile (, re.I))

buildbot.status.web.hooks.github.GitHubEventHandler has a special github_distinct
property that can be used to filter whether or not non-distinct changes should be considered. For example, if a commit
is pushed to a branch that is not being watched and then later pushed to a watched branch, by default, this will be
recorded as two separate Changes. In order to record a change only the first time the commit appears, you can install
a custom ChangeFilter like this:

ChangeFilter (filter_fn = lambda c: c.properties.getProperty ()

For anything more complicated, define a Python function to recognize the strings you want:

def my_branch_fn (branch) :
return branch in branches_to_build and branch not in branches_to_ignore
my_filter = util.ChangeFilter (branch_fn=my_branch_fn)

The special argument £ilter_fn can be used to specify a function that is given the entire Change object, and returns
a boolean.

The entire set of allowed arguments, then, is

project project_re project_fn
repository | repository_re | repository_fn
branch branch_re branch_fn

category category_re category_fn
codebase codebase_re codebase_fn
filter_fn

A Change passes the filter only if all arguments are satisfied. If no filter object is given to a scheduler, then all changes
will be built (subject to any other restrictions the scheduler enforces).

Scheduler Types

The remaining subsections represent a catalog of the available Scheduler types. All these Schedulers are defined in
modules under buildbot.schedulers, and the docstrings there are the best source of documentation on the
arguments taken by each one.

SingleBranchScheduler

This is the original and still most popular scheduler class. It follows exactly one branch, and starts a configurable
tree-stable-timer after each change on that branch. When the timer expires, it starts a build on some set of Builders.
This scheduler accepts a fileIsImportant function which can be used to ignore some Changes if they do not
affect any important files.

If treeStableTimer is not set, then this scheduler starts a build for every Change that matches its
change_filter and statsfies fileIsImportant. If treeStableTimer is set, then a build is triggered for
each set of Changes which arrive within the configured time, and match the filters.

Note: The behavior of this scheduler is undefined, if treeStableTimer is set, and changes from multiple
branches, repositories or codebases are accepted by the filter.

98 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

Note: The codebases argument will filter out codebases not specified there, but won ¢t filter based on the branches
specified there.

The arguments to this scheduler are:
name

builderNames

properties
fileIsImportant
change_filter
onlyImportant

reason

treeStableTimer The scheduler will wait for this many seconds before starting the build. If new changes are
made during this interval, the timer will be restarted, so really the build will be started after a change and then
after this many seconds of inactivity.

If treeStableTimer is None, then a separate build is started immediately for each Change.

fileIsImportant A callable which takes one argument, a Change instance, and returns True if the change is
worth building, and False if it is not. Unimportant Changes are accumulated until the build is triggered by an
important change. The default value of None means that all Changes are important.

categories (deprecated; use change filter) A list of categories of changes that this scheduler will respond to. If
this is specified, then any non-matching changes are ignored.

branch (deprecated; use change_filter) The scheduler will pay attention to this branch, ignoring Changes that oc-
cur on other branches. Setting branch equal to the special value of None means it should only pay attention
to the default branch.

Note: None is a keyword, not a string, so write None and not "None".

Example:

from buildbot.plugins import schedulers, util

quick = schedulers.SingleBranchScheduler (

name="qguick",

change_filter=util.ChangeFilter (branch="'master'),

treeStableTimer=60,

builderNames=["quick-1inux", "guick-netbsd"])
full = schedulers.SingleBranchScheduler (

name="full",

change_filter=util.ChangeFilter (branch="master'),

treeStableTimer=5%60,

builderNames=["full-1inux", "full-netbsd", "full-0SX"])
c['schedulers'] = [quick, full]

In this example, the two quick builders are triggered 60 seconds after the tree has been changed. The full builds do
not run quite so quickly (they wait 5 minutes), so hopefully if the quick builds fail due to a missing file or really
simple typo, the developer can discover and fix the problem before the full builds are started. Both schedulers only
pay attention to the default branch: any changes on other branches are ignored. Each scheduler triggers a different set
of Builders, referenced by name.

2.5. Configuration 99

Buildbot Documentation, Release 0.9.7

Note: The old names for this scheduler, buildbot .scheduler.Scheduler and buildbot.schedulers.
basic.Scheduler, are deprecated in favor of using buildbot .plugins:

from buildbot.plugins import schedulers

However if you must use a fully qualified name, it is buildbot.schedulers.basic.
SingleBranchScheduler.

AnyBranchScheduler

This scheduler uses a tree-stable-timer like the default one, but uses a separate timer for each branch.

If treeStableTimer is not set, then this scheduler is indistinguishable from SingleBranchScheduler. If
treeStableTimer is set, then a build is triggered for each set of Changes which arrive within the configured time,
and match the filters.

The arguments to this scheduler are:
name

builderNames

properties

fileIsImportant
change_filter
onlyImportant

reason See Configuring Schedulers.

treeStableTimer The scheduler will wait for this many seconds before starting the build. If new changes are
made on the same branch during this interval, the timer will be restarted.

branches (deprecated; use change_filter) Changes on branches not specified on this list will be ignored.

categories (deprecated; use change filter) A list of categories of changes that this scheduler will respond to. If
this is specified, then any non-matching changes are ignored.

Dependent Scheduler

It is common to wind up with one kind of build which should only be performed if the same source code was suc-
cessfully handled by some other kind of build first. An example might be a packaging step: you might only want
to produce .deb or RPM packages from a tree that was known to compile successfully and pass all unit tests. You
could put the packaging step in the same Build as the compile and testing steps, but there might be other reasons to
not do this (in particular you might have several Builders worth of compiles/tests, but only wish to do the packaging
once). Another example is if you want to skip the full builds after a failing quick build of the same source code. Or, if
one Build creates a product (like a compiled library) that is used by some other Builder, you’d want to make sure the
consuming Build is run after the producing one.

You can use dependencies to express this relationship to the Buildbot. There is a special kind of scheduler named
Dependent that will watch an upstream scheduler for builds to complete successfully (on all of its Builders). Each
time that happens, the same source code (i.e. the same SourceStamp) will be used to start a new set of builds, on a
different set of Builders. This downstream scheduler doesn’t pay attention to Changes at all. It only pays attention to
the upstream scheduler.

100 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

If the build fails on any of the Builders in the upstream set, the downstream builds will not fire. Note that, for
SourceStamps generated by a Dependent scheduler, the revision is None, meaning HEAD. If any changes are
committed between the time the upstream scheduler begins its build and the time the dependent scheduler begins its
build, then those changes will be included in the downstream build. See the Triggerable scheduler for a more
flexible dependency mechanism that can avoid this problem.

The keyword arguments to this scheduler are:

name

builderNames

properties See Configuring Schedulers.

upstream The upstream scheduler to watch. Note that this is an instance, not the name of the scheduler.

Example:

from buildbot.plugins import schedulers

tests = schedulers.SingleBranchScheduler (name="just-tests",
treeStableTimer=5%60,
builderNames=["full-1inux",

"full-netbsd",
"full-0SX"1])
package = schedulers.Dependent (name="build-package",
upstream=tests,
builderNames=["make

0al , ake—-deb"

c['schedulers'] = [tests, package]

Periodic Scheduler

This simple scheduler just triggers a build every N seconds.
The arguments to this scheduler are:

name

builderNames

properties

onlyImportant

createAbsoluteSourceStamps This option only has effect when using multiple codebases. When True, it
uses the last seen revision for each codebase that does not have a change. When False, the default value,
codebases without changes will use the revision from the codebases argument.

onlyIfChanged If this is true, then builds will not be scheduled at the designated time unless the specified branch
has seen an important change since the previous build.

reason See Configuring Schedulers.
periodicBuildTimer The time, in seconds, after which to start a build.

Example:

from buildbot.plugins import schedulers

nightly = schedulers.Periodic (name="daily",
builderNames=["full-solaris"],
periodicBuildTimer=24x60%60)

c['schedulers'] = [nightly]

2.5. Configuration 101

Buildbot Documentation, Release 0.9.7

The scheduler in this example just runs the full solaris build once per day. Note that this scheduler only lets you control
the time between builds, not the absolute time-of-day of each Build, so this could easily wind up an evening or every
afternoon scheduler depending upon when it was first activated.

Nightly Scheduler

This is highly configurable periodic build scheduler, which triggers a build at particular times of day, week, month, or
year. The configuration syntax is very similar to the well-known crontab format, in which you provide values for
minute, hour, day, and month (some of which can be wildcards), and a build is triggered whenever the current time
matches the given constraints. This can run a build every night, every morning, every weekend, alternate Thursdays,
on your boss’s birthday, etc.

Pass some subset of minute, hour, dayOfMonth, month, and dayOfWeek; each may be a single number or
a list of valid values. The builds will be triggered whenever the current time matches these values. Wildcards are
represented by a “*’ string. All fields default to a wildcard except ‘minute’, so with no fields this defaults to a build
every hour, on the hour. The full list of parameters is:

name
builderNames
properties
fileIsImportant
change_filter
onlyImportant
reason
codebases

createAbsoluteSourceStamps This option only has effect when using multiple codebases. When True, it
uses the last seen revision for each codebase that does not have a change. When False, the default value,
codebases without changes will use the revision from the codebases argument.

onlyIfChanged If this is true, then builds will not be scheduled at the designated time unless the change filter has
accepted an important change since the previous build.

branch (deprecated; use change_filter and codebases) The branch to build when the time comes, and the
branch to filter for if change_ filter is not specified. Remember that a value of None here means the default
branch, and will not match other branches!

minute The minute of the hour on which to start the build. This defaults to 0, meaning an hourly build.

hour The hour of the day on which to start the build, in 24-hour notation. This defaults to *, meaning every hour.
dayOfMonth The day of the month to start a build. This defaults to =, meaning every day.

month The month in which to start the build, with January = 1. This defaults to », meaning every month.

dayOfWeek The day of the week to start a build, with Monday = 0. This defaults to %, meaning every day of the
week.

For example, the following master . cfg clause will cause a build to be started every night at 3:00am:

from buildbot.plugins import schedulers
cl] .append (
schedulers.Nightly (name= ,
branch= ,

102 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

builderNames=[, 1,
hour=3, minute=0))

This scheduler will perform a build each Monday morning at 6:23am and again at 8:23am, but only if someone has
committed code in the interim:

c['schedulers'].append(
schedulers.Nightly (name='BeforeWork"',
branch="default’,
builderNames=['builderl'],
dayOfWeek=0, hour=[6,8], minute=23,
onlyIfChanged=True))

The following runs a build every two hours, using Python’s range function:

c.schedulers.append (
timed.Nightly (name= ,
branch=None,
builderNames=|[1,
hour= (0, 24, 2)))

Finally, this example will run only on December 24th:

cl] .append (
timed.Nightly (name= ,

branch=None,
builderNames=[, 1,
month=12,
dayOfMonth=24,
hour=12,
minute=0))

Try Schedulers

This scheduler allows developers to use the buildbot try command to trigger builds of code they have not yet
committed. See t ry for complete details.

Two implementations are available: Try Jobdir and Try Userpass. The former monitors a job directory,
specified by the jobdir parameter, while the latter listens for PB connections on a specific port, and authenticates
against userport.

The buildmaster must have a scheduler instance in the config file’s schedulers list to receive try requests. This lets
the administrator control who may initiate these trial builds, which branches are eligible for trial builds, and which
Builders should be used for them.

The scheduler has various means to accept build requests. All of them enforce more security than the usual buildmaster
ports do. Any source code being built can be used to compromise the worker accounts, but in general that code must
be checked out from the VC repository first, so only people with commit privileges can get control of the workers.
The usual force-build control channels can waste worker time but do not allow arbitrary commands to be executed by
people who don’t have those commit privileges. However, the source code patch that is provided with the trial build
does not have to go through the VC system first, so it is important to make sure these builds cannot be abused by a
non-committer to acquire as much control over the workers as a committer has. Ideally, only developers who have
commit access to the VC repository would be able to start trial builds, but unfortunately the buildmaster does not, in
general, have access to VC system’s user list.

As aresult, the try scheduler requires a bit more configuration. There are currently two ways to set this up:

2.5. Configuration 103

Buildbot Documentation, Release 0.9.7

jobdir (ssh) This approach creates a command queue directory, called the jobdir, in the buildmaster’s working
directory. The buildmaster admin sets the ownership and permissions of this directory to only grant write
access to the desired set of developers, all of whom must have accounts on the machine. The buildbot try
command creates a special file containing the source stamp information and drops it in the jobdir, just like a
standard maildir. When the buildmaster notices the new file, it unpacks the information inside and starts the
builds.

The config file entries used by ‘buildbot try’ either specify a local queuedir (for which write and mv are used)
or a remote one (using scp and ssh).

The advantage of this scheme is that it is quite secure, the disadvantage is that it requires fiddling outside the
buildmaster config (to set the permissions on the jobdir correctly). If the buildmaster machine happens to also
house the VC repository, then it can be fairly easy to keep the VC userlist in sync with the trial-build userlist.
If they are on different machines, this will be much more of a hassle. It may also involve granting developer
accounts on a machine that would not otherwise require them.

To implement this, the worker invokes ssh -1 username host buildbot tryserver ARGS, pass-
ing the patch contents over stdin. The arguments must include the inlet directory and the revision information.

user+password (PB) In this approach, each developer gets a username/password pair, which are all listed in the
buildmaster’s configuration file. When the developer runs buildbot try, their machine connects to the
buildmaster via PB and authenticates themselves using that username and password, then sends a PB command
to start the trial build.

The advantage of this scheme is that the entire configuration is performed inside the buildmaster’s config file.
The disadvantages are that it is less secure (while the cred authentication system does not expose the password
in plaintext over the wire, it does not offer most of the other security properties that SSH does). In addition,
the buildmaster admin is responsible for maintaining the username/password list, adding and deleting entries as
developers come and go.

For example, to set up the jobdir style of trial build, using a command queue directory of MASTERDIR/ jobdir (and
assuming that all your project developers were members of the developers unix group), you would first set up that
directory:

mkdir -p MASTERDIR/jobdir MASTERDIR/jobdir/new MASTERDIR/jobdir/cur MASTERDIR/jobdir/
—tmp

chgrp developers MASTERDIR/jobdir MASTERDIR/jobdir/x

chmod g+rwx,o-rwx MASTERDIR/jobdir MASTERDIR/jobdir/*

and then use the following scheduler in the buildmaster’s config file:

from buildbot.plugins import schedulers

s = schedulers.Try_Jobdir (name= ,
builderNames=[, ,
I
jobdir=)
cl] = [s]

Note that you must create the jobdir before telling the buildmaster to use this configuration, otherwise you will get an
error. Also remember that the buildmaster must be able to read and write to the jobdir as well. Be sure to watch the
twistd. log file (Logfiles) as you start using the jobdir, to make sure the buildmaster is happy with it.

Note: Patches in the jobdir are encoded using netstrings, which place an arbitrary upper limit on patch size of 99999
bytes. If your submitted try jobs are rejected with BadJobfile, try increasing this limit with a snippet like this in your
master.cfg:

from twisted.protocols.basic import NetstringReceiver
NetstringReceiver .MAX_LENGTH = 1000000

104 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

To use the username/password form of authentication, create a Try_Userpass instance instead. It takes the same
builderNames argument as the Try_Jobdir form, but accepts an additional port argument (to specify the TCP
port to listen on) and a userpass list of username/password pairs to accept. Remember to use good passwords for
this: the security of the worker accounts depends upon it:

from buildbot.plugins import schedulers

s = schedulers.Try_Userpass (name="try2",
builderNames=["full-linux", "full-netbsd",
"full-0SX"],
port=8031,
userpass=[("alice", "pwl"), ("bob", "pw2")])
c['schedulers'] = [s]

Like most places in the buildbot, the port argument takes a strports specification. See twisted.application.
strports for details.

Triggerable Scheduler

The Triggerable scheduler waits to be triggered by a Trigger step (see Triggering Schedulers) in another
build. That step can optionally wait for the scheduler’s builds to complete. This provides two advantages over
Dependent schedulers. First, the same scheduler can be triggered from multiple builds. Second, the ability to
wait for Triggerable‘s builds to complete provides a form of “subroutine call”, where one or more builds can
“call” a scheduler to perform some work for them, perhaps on other workers. The Triggerable scheduler sup-
ports multiple codebases. The scheduler filters out all codebases from Trigger steps that are not configured in the
scheduler.

The parameters are just the basics:

name

builderNames

properties

reason

codebases See Configuring Schedulers.

This class is only useful in conjunction with the Tr1igger step. Here is a fully-worked example:

from buildbot.plugins import schedulers, util, steps

checkin = schedulers.SingleBranchScheduler (name="checkin™,
branch=None,
treeStableTimer=5%60,

builderNames=["checkin"])
nightly = schedulers.Nightly (name="'nightly',
branch=None,
builderNames=['nightly'],

hour=3, minute=0)

mktarball = schedulers.Triggerable (name="mktarball", builderNames=["mktarball"])
build = schedulers.Triggerable (name="build-all-platforms",
builderNames=["build-all-platforms"])
test = schedulers.Triggerable (name="distributed-test",
builderNames=["distributed-test"])

package = schedulers.Triggerable (name="package-all-platforms",

2.5. Configuration 105

Buildbot Documentation, Release 0.9.7

builderNames=["package-all-platforms"])
[mktarball, checkin, nightly, build, test, package]

Q
f
f
]

checkin_factory = util.BuildFactory ()
checkin_factory.addStep (steps.Trigger (schedulerNames=['mktarball'],
wailtForFinish=True))
checkin_factory.addStep (steps.Trigger (schedulerNames=['build-all-platforms'],
waitForFinish=True))
checkin_factory.addStep (steps.Trigger (schedulerNames=["'dis
wailtForFinish=True))

stributed-test'],

nightly_factory = util.BuildFactory ()

nightly_factory.addStep (steps.Trigger (schedulerNames=['mktarball'],
wailtForFinish=True))

nightly_factory.addStep (steps.Trigger (schedulerNames=['build-all-platforms'],
waitForFinish=True))

nightly_factory.addStep (steps.Trigger (schedulerNames=['package-all-platforms'],
waltForFinish=True))

NightlyTriggerable Scheduler

class buildbot.schedulers.timed.NightlyTriggerable

The NightlyTriggerable scheduler is a mix of the Night 1y and Triggerable schedulers. This scheduler
triggers builds at a particular time of day, week, or year, exactly as the Night 1y scheduler. However, the source
stamp set that is used that provided by the last Trigger step that targeted this scheduler.

The parameters are just the basics:

name

builderNames

properties

codebases See Configuring Schedulers.
minute

hour

dayOfMonth

month

dayOfWeek See Nightly.

This class is only useful in conjunction with the Trigger step. Note that waitForFinishisignored by Trigger
steps targeting this scheduler.

Here is a fully-worked example:

from buildbot.plugins import schedulers, util, steps

checkin = schedulers.SingleBranchScheduler (name="checkin",
branch=None,
treeStableTimer=5%60,
builderNames=["checkin"])
nightly = schedulers.NightlyTriggerable (name='nightly",

106 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

builderNames=['nightly'],
hour=3, minute=0)

c['schedulers'] = [checkin, nightly]

checkin_factory = util.BuildFactory ([
steps.Test (),
steps.Trigger (schedulerNames=["'nightly'])

1

nightly_factory = util.BuildFactory ([
steps.ShellCommand (command=['make', 'package'])

1)

ForceScheduler Scheduler

The ForceScheduler scheduler is the way you can configure a force build form in the web Ul

In the /#/builders/:builderid web page, you will see, on the top right of the page, one button for each
ForceScheduler scheduler that was configured for this builder. If you click on that button, a dialog will let you
choose various parameters for requesting a new build.

The Buildbot framework allows you to customize exactly how the build form looks, which builders have a force build
form (it might not make sense to force build every builder), and who is allowed to force builds on which builders.

How you do so is by configuring a ForceScheduler, and add it into the list schedulers.
The scheduler takes the following parameters:
name

Name of the scheduler (should be an Identifier).
builderNames

List of builders where the force button should appear. See Configuring Schedulers.
reason

A parameter allowing the user to specify the reason for the build. The default value is a string parameter
with a default value “force build”.

reasonString

A string that will be used to create the build reason for the forced build. This string can contain the
placeholders % (owner) s and % (reason) s, which represents the value typed into the reason field.

username

A parameter specifying the username associated with the build (aka owner). The default value is a
username parameter.

codebases

A list of strings or CodebaseParameter specifying the codebases that should be presented. The default is
a single codebase with no name (i.e. codebases=[""]).

properties

2.5. Configuration 107

Buildbot Documentation, Release 0.9.7

A list of parameters, one for each property. These can be arbitrary parameters, where the parameter’s
name is taken as the property name, or AnyPropertyParameter, which allows the web user to spec-
ify the property name. The default value is an empty list.

buttonName
The name of the “submit” button on the resulting force-build form. This defaults to the name of scheduler.

An example may be better than long explanation. What you need in your config file is something like:

from buildbot.plugins import schedulers, util

sch = schedulers.ForceScheduler (
name="force",
buttonName="pushMe!",
label="My nic ce form",
builderNames=["my-builder"],

codebases=]
util.CodebaseParameter (

nn
14

name="Main rey

branch=util.ChoiceStringParameter (
name="branch",
ter", "hest"],

er"),

choices=["mas
default="mas

revision=util.FixedParameter (name="revision", default=""),
repository=util.FixedParameter (name=" sitory", default=""),
project=util.FixedParameter (name="project", default=""),

),
1y

reason=util.StringParameter (name="r
label="r¢ on:",
required=True, size=80),

username=util.UserNameParameter (label="your name:",
size=80),

properties=|[
util.NestedParameter (name="options", label="Build Options", layout="vertical",
— fields=[
util.StringParameter (name="pull url",

label="optionally give a public Git pull url:",
default="", size=80),
util.BooleanParameter (name="1 > build_cl
label="force a make

default=False)

108 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

This will result in the following UI:

My nice Force form

Your name:

reason:

Main repository

ap

branch master

Build Options

optionally give
a public Git
pull url:

_| force a make clean

Cancel Start Build

Authorization

The force scheduler uses the web interface’s authorization framework to determine which user has the right to force
which build. Here is an example of code on how you can define which user has which right:

user_mapping = {
re.compile ("projectl-builder"): ["projectl-maintainer", "john"] ,
re.compile ("project2-builder"): ["project2-maintainer", "jack"],
re.compile(".+«"): ["root"]

def force_auth (user, status) :
global user_mapping
for r,users in user_mapping.items() :
if r.match(status.name) :
if user in users:
return True
return False

use authz_cfg in your WebStatus setup
authz_cfg=authz.Authz (

auth=my_auth,

forceBuild = force_auth,

2.5. Configuration 109

Buildbot Documentation, Release 0.9.7

ForceScheduler Parameters

Most of the arguments to ForceScheduler are “parameters”. Several classes of parameters are available, each
describing a different kind of input from a force-build form.

All parameter types have a few common arguments:
name (required)

The name of the parameter. For properties, this will correspond to the name of the property that your
parameter will set. The name is also used internally as the identifier for in the HTML form.

label (optional; default is same as name)
The label of the parameter. This is what is displayed to the user.
tablabel (optional; default is same as label)

The label of the tab if this parameter is included into a tab layout NestedParameter. This is what is
displayed to the user.

default (optional; default: “”)

The default value for the parameter, that is used if there is no user input.
required (optional; default: False)

If this is true, then an error will be shown to user if there is no input in this field

The parameter types are:

NestedParameter

NestedParameter (name= , label= layout= , fields=J[...
b ’]) ’

This parameter type is a special parameter which contains other parameters. This can be used to group a set of param-
eters together, and define the layout of your form. You can recursively include NestedParameter into NestedParameter,
to build very complex UL

It adds the following arguments:
layout (optional, default: “vertical”)
The layout defines how the fields are placed in the form.
The layouts implemented in the standard web application are:

* simple: fields are displayed one by one without alignment. They take the horizontal space that
they need.

e vertical: all fields are displayed vertically, aligned in columns (as per the column attribute of
the NestedParameter)

e tabs: Each field gets its own tab (http://getbootstrap.com/components/#nav-tabs). This can
be used to declare complex build forms which won’t fit into one screen. The children fields are
usually other NestedParameters with vertical layout.

columns (optional, accepted values are 1,2,3,4)

The number of columns to use for a vertical layout. If omitted, it is set to 1 unless there are more than 3
visible child fields in which case it is set to 2.

110 Chapter 2. Buildbot Manual

http://getbootstrap.com/components/#nav-tabs

Buildbot Documentation, Release 0.9.7

FixedParameter

FixedParameter (name= , default=),

This parameter type will not be shown on the web form, and always generate a property with its default value.

StringParameter

StringParameter (name= ,
label= ’
default="", size=80)

This parameter type will show a single-line text-entry box, and allow the user to enter an arbitrary string. It adds the
following arguments:

regex (optional)
A string that will be compiled as a regex, and used to validate the input of this parameter.
size (optional; default: 10)

The width of the input field (in characters).

TextParameter

StringParameter (name= ,
label= ,
default= , cols=60, rows=b5)

This parameter type is similar to StringParameter, except that it is represented in the HTML form as a textarea,
allowing multi-line input. It adds the StringParameter arguments, this type allows:

cols (optional; default: 80)
The number of columns the textarea will have.
rows (optional; default: 20)
The number of rows the textarea will have
This class could be subclassed in order to have more customization e.g.
* developer could send a list of Git branches to pull from
¢ developer could send a list of Gerrit changes to cherry-pick,
¢ developer could send a shell script to amend the build.

Beware of security issues anyway.

IntParameter

IntParameter (name= ’
label= , default=2)

This parameter type accepts an integer value using a text-entry box.

2.5. Configuration 111

Buildbot Documentation, Release 0.9.7

BooleanParameter

BooleanParameter (name= ,
label= , default=False)

This type represents a boolean value. It will be presented as a checkbox.

UserNameParameter

UserNameParameter (label= , size=80)

This parameter type accepts a username. If authentication is active, it will use the authenticated user instead of
displaying a text-entry box.

size (optional; default: 10) The width of the input field (in characters).

need_email (optional; default True) If true, require a full email address rather than arbitrary text.

ChoiceStringParameter

ChoiceStringParameter (name= ’
choices=][, 1, default=)

This parameter type lets the user choose between several choices (e.g the list of branches you are supporting, or the
test campaign to run). If multiple is false, then its result is a string - one of the choices. If multiple is true, then
the result is a list of strings from the choices.

Note that for some use cases, the choices need to be generated dynamically. This can be done via subclass-
ing and overriding the ‘getChoices’ member function. An example of this is provided by the source for the
InheritBuildParameter class.

Its arguments, in addition to the common options, are:
choices

The list of available choices.
strict (optional; default: True)

If true, verify that the user’s input is from the list. Note that this only affects the validation of the form
request; even if this argument is False, there is no HTML form component available to enter an arbitrary
value.

multiple
If true, then the user may select multiple choices.

Example:

ChoiceStringParameter (name= ’
label= ’
default=default_tests,
multiple=True,
strict=True,
choices=|[’ ’

112 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

builderl.factory.addStep (Trigger (name="Trigger tests",
schedulerNames=Property ("forced tests")))

CodebaseParameter

CodebaseParameter (codebase="myrepo™)

This is a parameter group to specify a sourcestamp for a given codebase.
codebase

The name of the codebase.
branch (optional; default: StringParameter)

A parameter specifying the branch to build. The default value is a string parameter.
revision (optional; default: StringParameter)

A parameter specifying the revision to build. The default value is a string parameter.
repository (optional; default: StringParameter)

A parameter specifying the repository for the build. The default value is a string parameter.
project (optional; default: StringParameter)

A parameter specifying the project for the build. The default value is a string parameter.

InheritBuildParameter

Note: InheritBuildParameter is not yet ported to data API, and cannot be used with buildbot nine yet(bug #3521
(http://trac.buildbot.net/ticket/3521)).

This is a special parameter for inheriting force build properties from another build. The user is presented with a list of
compatible builds from which to choose, and all forced-build parameters from the selected build are copied into the
new build. The new parameter is:

compatible_builds

A function to find compatible builds in the build history. This function is given the master Status
instance as first argument, and the current builder name as second argument, or None when forcing all
builds.

Example:

def get_compatible_builds (status, builder):
if builder is None:
return ["cannot generate build list here"]

builds = []

for builder in ["bui
builder_status = status.getBuilder (builder)
for num in (1,40):

derl", "builder2"]:

2.5. Configuration 113

http://trac.buildbot.net/ticket/3521

Buildbot Documentation, Release 0.9.7

b = builder_status.getBuild (—num)

if not b:
continue
if b.getResults() == FAILURE:
continue
builds.append(builder+"/"+ (b.getNumber ()))

return builds

sched = Scheduler(...,
properties=|[
InheritBuildParameter (
name="inherit",
label="promote a build for merge",
compatible_builds=get_compatible_builds,
required = True),

1

WorkerChoiceParameter

Note: WorkerChoiceParameter is not yet ported to data API, and cannot be used with buildbot nine yet(bug #3521
(http://trac.buildbot.net/ticket/3521)).

This parameter allows a scheduler to require that a build is assigned to the chosen worker. The choice is as-
signed to the workername property for the build. The enforceChosenWorker functor must be assigned to the
canStartBuild parameter for the Builder.

Example:

from buildbot.plugins import util

ForceScheduler (

properties=|[
WorkerChoiceParameter (),

BuilderConfig(

canStartBuild=util.enforceChosenWorker,

AnyPropertyParameter

This parameter type can only be used in properties, and allows the user to specify both the property name and
value in the web form.

This Parameter is here to reimplement old Buildbot behavior, and should be avoided. Stricter parameter name and
type should be preferred.

114 Chapter 2. Buildbot Manual

http://trac.buildbot.net/ticket/3521

Buildbot Documentation, Release 0.9.7

Workers

The workers configuration key specifies a list of known workers. In the common case, each worker is defined by an
instance of the Worker class. It represents a standard, manually started machine that will try to connect to the buildbot
master as a worker. Buildbot also supports “on-demand”, or latent, workers, which allow buildbot to dynamically start
and stop worker instances.

* Defining Workers
* Worker Options

e Local Workers

e Latent Workers

Defining Workers
A Worker instance is created with a workername and a workerpassword. These are the same two values that
need to be provided to the worker administrator when they create the worker.

The workername must be unique, of course. The password exists to prevent evildoers from interfering with the buildbot
by inserting their own (broken) workers into the system and thus displacing the real ones.

Workers with an unrecognized workername or a non-matching password will be rejected when they attempt to connect,
and a message describing the problem will be written to the log file (see Logfiles).

A configuration for two workers would look like:

from buildbot.plugins import worker

cl] =10
worker .Worker (,)
worker.Worker (,)

Worker Options

Worker objects can also be created with an optional properties argument, a dictionary specifying properties that
will be available to any builds performed on this worker. For example:

cl 1 =1
worker.Worker (’ ’
properties={ : 1)y

The Worker constructor can also take an optional max_builds parameter to limit the number of builds that it will
execute simultaneously:

cl] =10
worker .Worker (, , max_builds=2)

2.5. Configuration 115

Buildbot Documentation, Release 0.9.7

Master-Worker TCP Keepalive

By default, the buildmaster sends a simple, non-blocking message to each worker every hour. These keepalives ensure
that traffic is flowing over the underlying TCP connection, allowing the system’s network stack to detect any problems
before a build is started.

The interval can be modified by specifying the interval in seconds using the keepalive_interval parameter of
Worker:

cl] =10
worker.Worker (, ,
keepalive_interval=3600)

The interval can be set to None to disable this functionality altogether.

When Workers Go Missing

Sometimes, the workers go away. One very common reason for this is when the worker process is started once
(manually) and left running, but then later the machine reboots and the process is not automatically restarted.

If you’d like to have the administrator of the worker (or other people) be notified by email when the worker has been
missing for too long, just add the notify_on_missing= argument to the Worker definition. This value can be a
single email address, or a list of addresses:

cl] =1
worker.Worker (’ ’
notify_on_missing=)

By default, this will send email when the worker has been disconnected for more than one hour. Only one email per
connection-loss event will be sent. To change the timeout, use missing_timeout= and give it a number of seconds
(the default is 3600).

You can have the buildmaster send email to multiple recipients: just provide a list of addresses instead of a single one:

cl 1 =1
worker.Worker (' ’
notify_on_missing=[’

missing_timeout=300)

The email sent this way will use a MailNotifier (see MailNotifier) status target, if one is configured. This
provides a way for you to control the from address of the email, as well as the relayhost (aka smarthost) to use as an
SMTP server. If no MailNotifier is configured on this buildmaster, the worker-missing emails will be sent using
a default configuration.

Note that if you want to have a MailNotifier for worker-missing emails but not for regular build emails, just
create one with builders=[], as follows:

from buildbot.plugins import status, worker

m = status.MailNotifier (fromaddr= , builders=][],
relayhost=)

cl] .append (m)

cl] =10

116 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

worker.Worker ('bot-solaris', solarispasswd',
notify_on_missing="boblexample.com")

Local Workers
For smaller setups, you may want to just run the workers on the same machine as the master. To simplify the main-
tainance, you may even want to run them in the same process.

This is what LocalWorker is for. Instead of configuring a worker .Worker, you have to configure a worker.
LocalWorker. As the worker is running on the same process, password is not necessary. You can run as many local
workers as long as your machine CPU and memory is allowing.

A configuration for two workers would look like:

from buildbot.plugins import worker

c['workers'] = [
worker.LocalWorker ('bot1'),
worker.LocalWorker ('bot2"),

In order to use local workers you need to have buildbot-worker package installed.

Latent Workers
The standard buildbot model has workers started manually. The previous section described how to configure the master
for this approach.

Another approach is to let the buildbot master start workers when builds are ready, on-demand. Thanks to services
such as Amazon Web Services’ Elastic Compute Cloud (“AWS EC2”), this is relatively easy to set up, and can be very
useful for some situations.

The workers that are started on-demand are called “latent” workers. As of this writing, buildbot ships with an abstract
base class for building latent workers, and a concrete implementation for AWS EC2 and for libvirt.

Common Options
The following options are available for all latent workers.
build_wait_timeout This option allows you to specify how long a latent worker should wait after a build for

another build before it shuts down. It defaults to 10 minutes. If this is set to 0 then the worker will be shut down
immediately. If it is less than O it will never automatically shutdown.

Supported Latent Workers

As of time of writing, Buildbot supports the following latent workers:

Amazon Web Services Elastic Compute Cloud (“AWS EC2”)

class buildbot .worker.ec?2.EC2LatentWorker

2.5. Configuration 117

Buildbot Documentation, Release 0.9.7

EC2 (http://aws.amazon.com/ec2/) is a web service that allows you to start virtual machines in an Amazon data center.
Please see their website for details, including costs. Using the AWS EC2 latent workers involves getting an EC2
account with AWS and setting up payment; customizing one or more EC2 machine images (“AMIs”) on your desired
operating system(s) and publishing them (privately if needed); and configuring the buildbot master to know how to
start your customized images for “substantiating” your latent workers.

This document will guide you through setup of a AWS EC2 latent worker:

* Get an AWS EC2 Account

* Create an AMI

* Configure the Master with an EC2LatentWorker
* Volumes

* VPC Support

* Spot instances

Get an AWS EC2 Account

To start off, to use the AWS EC2 latent worker, you need to get an AWS developer account and sign up for EC2.
Although Amazon often changes this process, these instructions should help you get started:

1. Go to http://aws.amazon.com/ and click to “Sign Up Now” for an AWS account.

2. Once you are logged into your account, you need to sign up for EC2. Instructions for how to do this have
changed over time because Amazon changes their website, so the best advice is to hunt for it. After signing up
for EC2, it may say it wants you to upload an x.509 cert. You will need this to create images (see below) but it
is not technically necessary for the buildbot master configuration.

3. You must enter a valid credit card before you will be able to use EC2. Do that under ‘Payment Method’.

4. Make sure you're signed up for EC2 by going to Your Account — Account Activity and verifying EC2 is listed.

Create an AMI

Now you need to create an AMI and configure the master. You may need to run through this cycle a few times to get
it working, but these instructions should get you started.

Creating an AMI is out of the scope of this document. The EC2 Getting Started Guide
(http://docs.amazonwebservices.com/AWSEC2/latest/GettingStartedGuide/) is a good resource for this task.
Here are a few additional hints.

e When an instance of the image starts, it needs to automatically start a buildbot worker that connects to your
master (to create a buildbot worker, Creating a worker; to make a daemon, Launching the daemons).

* You may want to make an instance of the buildbot worker, configure it as a standard worker in the master (i.e.,
not as a latent worker), and test and debug it that way before you turn it into an AMI and convert to a latent
worker in the master.

Configure the Master with an EC2LatentWorker

Now let’s assume you have an AMI that should work with the EC2LatentWorker. It’s now time to set up your
buildbot master configuration.

118 Chapter 2. Buildbot Manual

http://aws.amazon.com/ec2/
http://aws.amazon.com/
http://docs.amazonwebservices.com/AWSEC2/latest/GettingStartedGuide/

Buildbot Documentation, Release 0.9.7

You will need some information from your AWS account: the Access Key Id and the Secret Access Key. If you’ve built
the AMI yourself, you probably already are familiar with these values. If you have not, and someone has given you
access to an AMI, these hints may help you find the necessary values:

¢ While logged into your AWS account, find the “Access Identifiers” link (either on the left, or via Your Account
— Access Identifiers.

* On the page, you’ll see alphanumeric values for “Your Access Key Id:” and “Your Secret Access Key:”.
Make a note of these. Later on, we’ll call the first one your identifier and the second one your
secret_identifier.

When creating an EC2LatentWorker in the buildbot master configuration, the first three arguments are required.
The name and password are the first two arguments, and work the same as with normal workers. The next argument
specifies the type of the EC2 virtual machine (available options as of this writing include m1.small, ml.large,
ml.xlarge, cl.medium, and cl.xlarge; see the EC2 documentation for descriptions of these machines).

Here is the simplest example of configuring an EC2 latent worker. It specifies all necessary remaining values explicitly
in the instantiation.

from buildbot.plugins import worker
cl['workers'] = [

worker.EC2LatentWorker ('botl', 'sekrit', 'ml.large',
ami='ami-12345",
identifier="publickey',
secret_identifier='privatekey'
keypair_name='latent buildbot_worker',
security_name='latent buildbot_worker',

)

The ami argument specifies the AMI that the master should start. The identifier argument specifies the AWS
Access Key Id, and the secret_identifier specifies the AWS Secret Access Key. Both the AMI and the account
information can be specified in alternate ways.

Note: Whoever has your identifier and secret_identifier values canrequest AWS work charged to your
account, so these values need to be carefully protected. Another way to specify these access keys is to put them in a
separate file. Buildbot supports the standard AWS credentials file. You can then make the access privileges stricter for
this separate file, and potentially let more people read your main configuration file. If your master is running in EC2,
you can also use IAM roles for EC2 to delegate permissions.

keypair_name and security_name allow you to specify different names for these AWS EC2 values.

You can make an .aws directory in the home folder of the user running the buildbot master. In that directory,
create a file called credentials. The format of the file should be as follows, replacing identifier and
secret_identifier with the credentials obtained before.

[default]
aws_access_key_id = identifier
aws_secret_access_key = secret_identifier

If you are using IAM roles, no config file is required. Then you can instantiate the worker as follows.

from buildbot.plugins import worker
cl['workers'] = [
worker.EC2LatentWorker ('botl', 'sekrit', 'ml.large',
ami='ami-12345",
keypair_name='latent buildbot _worker',

2.5. Configuration 119

Buildbot Documentation, Release 0.9.7

security_name=

)

Previous examples used a particular AMLI. If the Buildbot master will be deployed in a process-controlled environment,

it may be convenient to specify the AMI more flexibly. Rather than specifying an individual AMI, specify one or two
AMI filters.

In all cases, the AMI that sorts last by its location (the S3 bucket and manifest name) will be preferred.

One available filter is to specify the acceptable AMI owners, by AWS account number (the 12 digit number, usually
rendered in AWS with hyphens like “1234-5678-9012", should be entered as in integer).

from buildbot.plugins import worker

botl = worker.EC2LatentWorker (, , ,
valid_ami_owners=[11111111111,

222222222227,

identifier= ,
secret_identifier=
keypair_name=
security_name=

)

The other available filter is to provide a regular expression string that will be matched against each AMI’s location
(the S3 bucket and manifest name).

from buildbot.plugins import worker
botl = worker.EC2LatentWorker (

14 4 4
valid_ami_location_regex=
identifier=
secret_identifier=

’

keypair_name=
security_name=

)

The regular expression can specify a group, which will be preferred for the sorting. Only the first group is used;
subsequent groups are ignored.

from buildbot.plugins import worker
botl = worker.EC2LatentWorker (

4 4 r
valid_ami_location_regex=
identifier= ,
secret_identifier=
keypair_name=
security_name=

)

If the group can be cast to an integer, it will be. This allows 10 to sort after 1, for instance.

from buildbot.plugins import worker
botl = worker.EC2LatentWorker (

14 14 14
valid_ami_location_regex=
identifier= ,
secret_identifier=
keypair_name=

120 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

security_name= ,

)

In addition to using the password as a handshake between the master and the worker, you may want to use a firewall
to assert that only machines from a specific IP can connect as workers. This is possible with AWS EC2 by using the
Elastic IP feature. To configure, generate a Elastic IP in AWS, and then specify it in your configuration using the
elastic_ip argument.

from buildbot.plugins import worker

cl 1 =10
worker.EC2LatentWorker (, , ,
’

identifier= ,
secret_identifier= ,
elastic_ip= ,
keypair_name= ,
security_name= ,

)

One other way to configure a worker is by settings AWS tags. They can for example be used to have a more restrictive
security IAM (http://aws.amazon.com/iam/) policy. To get Buildbot to tag the latent worker specify the tag keys and
values in your configuration using the tags argument.

from buildbot.plugins import worker

cl 1 =1
worker.EC2LatentWorker (, , ,
’
identifier= ,
secret_identifier= ,
keypair_name= ,
security_name= ,
tags={ : })

If the worker needs access to additional AWS resources, you can also enable your workers to access them via an EC2
instance profile. To use this capability, you must first create an instance profile separately in AWS. Then specify its
name on EC2LatentWorker via instance_profile_name.

from buildbot.plugins import worker

cl I =1
worker.EC2LatentWorker (’ ’ ’
ami= ’
keypair_name= ’
security_name= ’

instance_profile_name=

)

You may also supply your own boto3.Session object to allow for more flexible session options (ex. cross-account) To
use this capability, you must first create a boto3.Session object. Then provide it to EC2LatentWorker via session
argument.

import boto3
from buildbot.plugins import worker

session = boto3.session.Session()

2.5. Configuration 121

http://aws.amazon.com/iam/

Buildbot Documentation, Release 0.9.7

cl 1 =10
worker.EC2LatentWorker (' ’ ’
ami= ’
keypair_name= ’
security_name= ’

session=session

)

The EC2LatentWorker supports all other configuration from the standard Worker. The missing_ timeout
and notify_on_missing specify how long to wait for an EC2 instance to attach before considering the attempt to
have failed, and email addresses to alert, respectively. missing_timeout defaults to 20 minutes.

Volumes

If you want to attach existing volumes to an ec2 latent worker, use the volumes attribute. This mechanism can be
valuable if you want to maintain state on a conceptual worker across multiple start/terminate sequences. volumes
expects a list of (volume_id, mount_point) tuples to attempt attaching when your instance has been created.

If you want to attach new ephemeral volumes, use the the block_device_map attribute. This follows the AWS API
syntax, essentially acting as a passthrough. The only distinction is that the volumes default to deleting on termination
to avoid leaking volume resources when workers are terminated. See boto documentation for further details.

from buildbot.plugins import worker

cl] =10
worker.EC2LatentWorker (, ’ ’
ami= ’
keypair_name= ’
security_name= ’
block_device_map= [
4
{
H ’
1000,
100
}
]
)
]
VPC Support

If you are managing workers within a VPC, your worker configuration must be modified from above. You must specify
the id of the subnet where you want your worker placed. You must also specify security groups created within your
VPC as opposed to classic EC2 security groups. This can be done by passing the ids of the vpc security groups. Note,
when using a VPC, you can not specify classic EC2 security groups (as specified by security_name).

from buildbot.plugins import worker

cl 1 =10
worker.EC2LatentWorker (, , ,
ami= ,
keypair_name= ,
subnet_id= ,
security_group_ids=][,]

122 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

Spot instances

If you would prefer to use spot instances for running your builds, you can accomplish that by passing in a True value
to the spot__instance parameter to the EC2LatentWorker constructor. Additionally, you may want to specify
max_spot_price and price_multiplier in order to limit your builds’ budget consumption.

from buildbot.plugins import worker
cl 1 =1
worker.EC2LatentWorker (, , ,
, region= B
identifier= ,
secret_identifier= ,
elastic_ip= ,
keypair_name= ,
security_name= ,
placement= , spot_instance=True,
max_spot_price=0.09,
price_multiplier=1.15,
product_description=)

This example would attempt to create a ml.large spot instance in the us-west-2b region costing no more than
$0.09/hour. The spot prices for ‘Linux/UNIX’ spot instances in that region over the last 24 hours will be averaged
and multiplied by the price_multiplier parameter, then a spot request will be sent to Amazon with the above
details. If the multiple exceeds the max_spot_price, the bid price will be the max_spot_price.

Either max_spot_price or price_multiplier, but not both, may be None. If price_multiplier is
None, then no historical price information is retrieved; the bid price is simply the specified max_spot_price. If
the max_spot_price is None, then the multiple of the historical average spot prices is used as the bid price with
no limit.

Libvirt

class buildbot .worker.libvirt .LibVirtWorker

libvirt (http://www.libvirt.org/) is a virtualization API for interacting with the virtualization capabilities of recent
versions of Linux and other OSes. It is LGPL and comes with a stable C API, and Python bindings.

This means we know have an API which when tied to buildbot allows us to have workers that run under Xen, QEMU,
KVM, LXC, OpenVZ, User Mode Linux, VirtualBox and VMWare.

The libvirt code in Buildbot was developed against libvirt 0.7.5 on Ubuntu Lucid. It is used with KVM to test Python
code on VMs, but obviously isn’t limited to that. Each build is run on a new VM, images are temporary and thrown
away after each build.

This document will guide you through setup of a libvirt latent worker:

o Setting up libvirt

* Configuring your base image

2.5. Configuration 123

http://www.libvirt.org/

Buildbot Documentation, Release 0.9.7

* Configuring your Master

Setting up libvirt

We won’t show you how to set up libvirt as it is quite different on each platform, but there are a few things you should
keep in mind.

* If you are using the system libvirt, your buildbot master user will need to be in the libvirtd group.
* If you are using KVM, your buildbot master user will need to be in the KVM group.

* You need to think carefully about your virtual network first. Will NAT be enough? What IP will my VMs need
to connect to for connecting to the master?

Configuring your base image

You need to create a base image for your builds that has everything needed to build your software. You need to
configure the base image with a buildbot worker that is configured to connect to the master on boot.

Because this image may need updating a lot, we strongly suggest scripting its creation.

If you want to have multiple workers using the same base image it can be annoying to duplicate the image just to
change the buildbot credentials. One option is to use libvirt’s DHCP server to allocate an identity to the worker:
DHCEP sets a hostname, and the worker takes its identity from that.

Doing all this is really beyond the scope of the manual, but there is a vmbuilder (https://github.com/buildbot/buildbot-
contrib/blob/master/master/contrib/libvirt/vmbuilder) script and a network.xml (https://github.com/buildbot/buildbot-
contrib/blob/master/master/contrib/libvirt/network.xml) file to create such a DHCP server in master/contrib/
(https://github.com/buildbot/buildbot-contrib/blob/master/master/contrib/) (Contrib Scripts) that should get you
started:

sudo apt-get install ubuntu-vm-builder
sudo contrib/libvirt/vmbuilder

Should create an ubuntu/ folder with a suitable image in it.

virsh net-define contrib/libvirt/network.xml
virsh net-start buildbot-network

Should set up a KVM compatible libvirt network for your buildbot VM’s to run on.

Configuring your Master

If you want to add a simple on demand VM to your setup, you only need the following. We set the username to
minionl, the password to sekrit. The base image is called base_image and a copy of it will be made for the
duration of the VM’s life. That copy will be thrown away every time a build is complete.

from buildbot.plugins import worker, util
cl 1] =10
worker.LibVirtWorker (’ ’
util.Connection ()

124 Chapter 2. Buildbot Manual

https://github.com/buildbot/buildbot-contrib/blob/master/master/contrib/libvirt/vmbuilder
https://github.com/buildbot/buildbot-contrib/blob/master/master/contrib/libvirt/network.xml
https://github.com/buildbot/buildbot-contrib/blob/master/master/contrib/

Buildbot Documentation, Release 0.9.7

You can use virt-manager to define minionl with the correct hardware. If you don’t, buildbot won’t be able to find
a VM to start.

LibVirtWorker accepts the following arguments:

name Both a buildbot username and the name of the virtual machine.

password A password for the buildbot to login to the master with.

connection Connection instance wrapping connection to libvirt.

hd_image The path to a libvirt disk image, normally in qcow2 format when using KVM.

base_image If given a base image, buildbot will clone it every time it starts a VM. This means you always have a
clean environment to do your build in.

xml If a VM isn’t predefined in virt-manager, then you can instead provide XML like that used with virsh
define. The VM will be created automatically when needed, and destroyed when not needed any longer.

OpenStack

class buildbot .worker.openstack.OpenStackLatentWorker

OpenStack (http://openstack.org/) is a series of interconnected components that facilitates managing compute, storage,
and network resources in a data center. It is available under the Apache License and has a REST interface along with
a Python client.

This document will guide you through setup of an OpenStack latent worker:

* Install dependencies
* Get an Account in an OpenStack cloud

* Create an Image

* Configure the Master with an OpenStackLatentWorker

Install dependencies

OpenStackLatentWorker requires python-novaclient to work, you can install it with pip install python-novaclient.

Get an Account in an OpenStack cloud

Setting up OpenStack is outside the domain of this document. There are four account details necessary for the Buildbot
master to interact with your OpenStack cloud: username, password, a tenant name, and the auth URL to use.

Create an Image

OpenStack supports a large number of image formats. OpenStack maintains a short list of prebuilt images; if the de-
sired image is not listed, The OpenStack Compute Administration Manual (http://docs.openstack.org/trunk/openstack-
compute/admin/content/index.html) is a good resource for creating new images. You need to configure the image with
a buildbot worker to connect to the master on boot.

2.5. Configuration 125

http://openstack.org/
http://docs.openstack.org/trunk/openstack-compute/admin/content/index.html

Buildbot Documentation, Release 0.9.7

Configure the Master with an OpenStackLatentWorker

With the configured image in hand, it is time to configure the buildbot master to create OpenStack instances of it. You
will need the aforementioned account details. These are the same details set in either environment variables or passed
as options to an OpenStack client.

OpenStackLatentWorker accepts the following arguments:
name The worker name.

password A password for the worker to login to the master with.
flavor The flavor ID to use for the instance.

image A string containing the image UUID to use for the instance. A callable may instead be passed. It will be
passed the list of available images and must return the image to use.

Os_username
os_password
Os_tenant_name

os_auth_url The OpenStack authentication needed to create and delete instances. These are the same as the
environment variables with uppercase names of the arguments.

block_devices A list of dictionaries. Each dictionary specifies a block device to set up during instance creation.
The values support using properties from the build and will be rendered when the instance is started.

Supported keys
uuid (required): The image, snapshot, or volume UUID.

volume_size (optional): Size of the block device in GiB. If not specified, the minimum size in GiB to
contain the source will be calculated and used.

device_name (optional): defaults to vda. The name of the device in the instance; e.g. vda or xda.

source_type (optional): defaults to image. The origin of the block device. Valid values are image,
snapshot, or volume.

destination_type (optional): defaults to volume. Destination of block device: volume or local.

delete_on_termination (optional): defaults to True. Controls if the block device will be deleted when
the instance terminates.

boot_index (optional): defaults to O. Integer used for boot order.

meta A dictionary of string key-value pairs to pass to the instance. These will be available under the metadata key
from the metadata service.

nova_args (optional) A dict that will be appended to the arguments when creating a VM. Buildbot uses the Open-
Stack Nova version 2 API by default (see client_version).

client_version (optional) A string containing the Nova client version to use. Defaults to 2. Supports using
2 .X, where X is a micro-version. Use 1.1 for the previous, deprecated, version. If using 1.1, note that an
older version of novaclient will be needed so it won’t switch to using 2.

Here is the simplest example of configuring an OpenStack latent worker.

from buildbot.plugins import worker

cl] =10
worker.OpenStackLatentWorker (, ,
flavor=1l, image= ,
0s_username= , Os_password= ,

126 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

os_tenant_name='tenant',
os_auth_url="http: 127.0.0.1:353E v2.0

The image argument also supports being given a callable. The callable will be passed the list of available images and
must return the image to use. The invocation happens in a separate thread to prevent blocking the build master when
interacting with OpenStack.

from buildbot.plugins import worker
def find_image (images) :

def key_f£fn (x):
return x.created

candidate_images = (images, key=key_fn)

return candidate_images[0]

c['workers'] = [
worker.OpenStackLatentWorker ('bot2', 'sekrit',
flavor=1, image=find_image,
os_username='user', os_password='password',
os_tenant_name='tenant',

os_auth_url='http: 7.0.0.1:3535° 2.0")

The block_devices argument is minimally manipulated to provide some defaults and passed directly to novaclient.
The simplest example is an image that is converted to a volume and the instance boots from that volume. When the
instance is destroyed, the volume will be terminated as well.

from buildbot.plugins import worker
cl['workers'] = [
worker.OpenStackLatentWorker ('bo

)1 'calkrd

flavor=1l, image='8ac9d4ald-5e03 345 bl',
os_username='user', os_password='passworc
os_tenant_name='tenant',

os_auth_url='http: 27.0.0.1:3535° 2.0,

block_devices=]
{'uuid': '3f0b8868-67e7-4a5b-b685-2824709bd486",
olume_size': 10}1])

The nova_args can be used to specify additional arguments for the novaclient. For example network mappings,
which is required if your OpenStack tenancy has more than one network, and default cannot be determined. Please
refer to your OpenStack manual whether it wants net-id or net-name.

Other useful parameters are availability_zone, security_groups and config_drive. Refer to Python
bindings to the OpenStack Nova API (http://docs.openstack.org/developer/python-novaclient/) for more information.
It is found on section Servers, method create.

from buildbot.plugins import worker

workers'] = [

worker.OpenStackLatentWorker ('bot2', 'sekrit',
flavor=1l, image='S d4ad-5e03-48!}

1

cl

aC:

os_username='user', os_password='pa:
os_tenant_name='tenant',
os_auth_url='http: 127.0.0.1:35357/v2.0",

2.5. Configuration 127

http://docs.openstack.org/developer/python-novaclient/
http://docs.openstack.org/developer/python-novaclient/

Buildbot Documentation, Release 0.9.7

nova_args={

[

h

OpenStackLatentWorker supports all other configuration from the standard Worker. The
missing_timeout and notify_on_missing specify how long to wait for an OpenStack instance to at-
tach before considering the attempt to have failed and email addresses to alert, respectively. missing_timeout
defaults to 20 minutes.

Docker latent worker

class buildbot.worker.docker.DockerLatentWorker
class buildbot.plugins.worker.DockerLatentWorker

Docker (https://docker.com) is an open-source project that automates the deployment of applications inside software
containers. The DockerLatentWorker attempts to instantiate a fresh image for each build to assure consistency
of the environment between builds. Each image will be discarded once the worker finished processing the build queue
(i.e. becomes idle). See build_wait_timeout to change this behavior.

This document will guide you through the setup of such workers.

* Docker Installation
* Image Creation

* Reuse same image for different workers

* Master Setup

Docker Installation

An easy way to try Docker is through installation of dedicated Virtual machines. Two of them stands out:
* CoreOS (https://coreos.com/)
* boot2docker (http://boot2docker.io/)

Beside, it is always possible to install Docker next to the buildmaster. Beware that in this case, overall performance
will depend on how many builds the computer where you have your buildmaster can handle as everything will happen
on the same one.

Note: It is not necessary to install Docker in the same environment as your master as we will make use to the Docker
API through docker-py (https://pypi.python.org/pypi/docker-py). More in master setup.

CoreOS

CoreOS is targeted at building infrastructure and distributed systems. In order to get the latent worker
working with CoreOS, it is necessary to expose the docker socket (https://coreos.com/docs/launching-
containers/building/customizing-docker/) outside of the Virtual Machine. If you installed it via Vagrant

128 Chapter 2. Buildbot Manual

https://docker.com
https://coreos.com/
http://boot2docker.io/
https://pypi.python.org/pypi/docker-py
https://coreos.com/docs/launching-containers/building/customizing-docker/
https://coreos.com/docs/running-coreos/platforms/vagrant/

Buildbot Documentation, Release 0.9.7

(https://coreos.com/docs/running-coreos/platforms/vagrant/), it is also necessary to uncomment the following line in
your config. rb file:

’$expose4docker7tcp=7375

The following command should allow you to confirm that your Docker socket is now available via the network:

’docker -H tcp://127.0.0.1:2375 ps

boot2docker

boot2docker is one of the fastest ways to boot to Docker. As it is meant to be used from outside of the Virtual Machine,
the socket is already exposed. Please follow the installation instructions on how to find the address of your socket.

Image Creation

Our build master will need the name of an image to perform its builds. Each time a new build will be requested, the
same base image will be used again and again, actually discarding the result of the previous build. If you need some
persistant storage between builds, you can use Volumes.

Each Docker image has a single purpose. Our worker image will be running a buildbot worker.

Docker uses Dockerfiles to describe the steps necessary to build an image. The following example will build
a minimal worker. This example is voluntarily simplistic, and should probably not be used in production, see next
paragraph.

FROM
RUN apt-get update && apt-get install -y
python-dev
python-pip
RUN pip install buildbot-worker
RUN groupadd -r buildbot && useradd -r -g buildbot buildbot
RUN mkdir /worker && chown buildbot:buildbot /worker

USER buildbot

WORKDIR

RUN buildbot-worker create-worker . <master-hostname> <workername> <workerpassword>
ENTRYPOINT

CMD

On line 11, the hostname for your master instance, as well as the worker name and password is setup. Don’t forget to
replace those values with some valid ones for your project.

It is a good practice to set the ENTRYPOINT to the worker executable, and the CMD to ["start",
"——nodaemon"]. This way, no parameter will be required when starting the image.

When your Dockerfile is ready, you can build your first image using the following command (replace myworkername
with a relevant name for your case):

docker build -t myworkername - < Dockerfile

2.5. Configuration 129

Buildbot Documentation, Release 0.9.7

Reuse same image for different workers

Previous simple example hardcodes the worker name into the dockerfile, which will not work if you want to share
your docker image between workers.

You can find in buildbot source code in master/contrib/docker (https://github.com/buildbot/buildbot-
contrib/blob/master/master/contrib/docker) one example configurations:

pythonnode_worker (https://github.com/buildbot/buildbot-contrib/blob/master/master/contrib/docker/pythonnode_worker/)
a worker with Python and node installed, which demonstrate how to reuse the base worker to create variations
of build environments. It is based on the official buildbot /buildbot-worker image.

The master setups several environment variables before starting the workers:
BUILDMASTER The address of the master the worker shall connect to
BUILDMASTER_PORT The port of the master’s worker ‘pb’ protocol.
WORKERNAME The name the worker should use to connect to master

WORKERPASS The password the worker should use to connect to master

Master Setup

We will rely on docker-py to connect our master with docker. Now is the time to install it in your master environment.

Before adding the worker to your master configuration, it is possible to validate the previous steps by starting the newly
created image interactively. To do this, enter the following lines in a Python prompt where docker-py is installed:

>>> import docker
>>> docker_socket =

>>> client = docker.client.Client (base_url=docker_socket)
>>> worker_image =

>>> container = client.create_container (worker_image)

>>> client.start (container| 1)

>>>

>>> client.stop (container|
>>> client.wait (container]|

- —

It is now time to add the new worker to the master configuration under workers.

The following example will add a Docker latent worker for docker running at the following address: tcp://
localhost :2375, the worker name will be docker, its password: password, and the base image name will
be my_project_worker:

from buildbot.plugins import worker
cl 1 =1
worker.DockerLatentWorker (, ,
docker_host= ,
image=)

password (mandatory) The worker password part of the Latent Workers APL. If the password is None, then it will
be automatically generated from random number, and transmitted to the container via environment variable.

In addition to the arguments available for any Latent Workers, DockerLatentWorker will accept the following
extra ones:

docker_host (mandatory) This is the address the master will use to connect with a running Docker instance.

130 Chapter 2. Buildbot Manual

https://github.com/buildbot/buildbot-contrib/blob/master/master/contrib/docker
https://github.com/buildbot/buildbot-contrib/blob/master/master/contrib/docker/pythonnode_worker/

Buildbot Documentation, Release 0.9.7

image

This is the name of the image that will be started by the build master. It should start a worker. This option
can be a renderable, like Interpolate, so that it generates from the build request properties.

command (optional) This will override the command setup during image creation.
volumes (optional) See Setting up Volumes

dockerfile (optionalif image is given) This is the content of the Dockerfile that will be used to build the specified
image if the image is not found by Docker. It should be a multiline string.

Note: Incase image and dockerfile are given, no attempt is made to compare the image with the content
of the Dockerfile parameter if the image is found.

version (optional, default to the highest version known by docker-py) This will indicates wich API version must
be used to communicate with Docker.

tls (optional) This allow to use TLS when connecting with the Docker socket. This should be a docker.tls.
TLSConfig object. See docker-py’s own documentation (https://docker-py.readthedocs.io/en/1.10.4/tls/) for
more details on how to initialise this object.

followStartupLogs (optional, defaults to false) This transfers docker container’s log inside master logs during
worker startup (before connection). This can be useful to debug worker startup. e.g network issues, etc.

masterFQDN (optional, defaults to socket.getfqdn()) Address of the master the worker should connect to. Use if you
master machine does not have proper fqdn. This value is passed to the docker image via environment variable
BUILDMASTER

hostconfig (optional) Extra host configuration parameters passed as a dictionary used to create HostConfig object.
See docker-py’s HostConfig documentation (https://docker-py.readthedocs.io/en/1.10.4/hostconfig/) for all the
supported options.

Setting up Volumes

The volume parameter allows to share directory between containers, or between a container and the host system.
Refer to Docker documentation for more information about Volumes.

The format of that variable has to be an array of string. Each string specify a volume in the following format:
volumename:bindname. The volume name has to be appended with :ro if the volume should be mounted
read-only.

Note: This is the same format as when specifying volumes on the command line for docker’s own —v option.

Hyper latent worker

Hyper (https://hyper.sh) is a CaaS solution for hosting docker container in the cloud, billed to the second. It forms a
very cost efficient solution to run your CI in the cloud.

Buildbot supports using Hyper (https://hyper.sh) to host your latent workers.
class buildbot .worker.hyper.HyperLatentWorker

class buildbot.plugins.worker.HyperLatentWorker

2.5. Configuration 131

https://docker-py.readthedocs.io/en/1.10.4/tls/
https://docker-py.readthedocs.io/en/1.10.4/hostconfig/
https://hyper.sh
https://hyper.sh

Buildbot Documentation, Release 0.9.7

The HyperLatentWorker attempts to instantiate a fresh image for each build to assure consistency of the environ-
ment between builds. Each image will be discarded once the worker finished processing the build queue (i.e. becomes
idle). See build_wait_timeout to change this behavior.

In addition to the arguments available for any Latent Workers, HyperLatentWorker will accept the following extra
ones:

password (mandatory) The worker password part of the Latent Workers APL. If the password is None, then it will
be automatically generated from random number, and transmitted to the container via environment variable.

hyper_host (mandatory) This is the address the hyper infra endpoint will use to start docker containers.

image (mandatory) This is the name of the image that will be started by the build master. It should start a worker.
This option can be a renderable, like /nferpolate, so that it generates from the build request properties. Images
are by default pulled from the public DockerHub (https://hub.docker.com/) docker registry. You can consult the
hyper documentation to know how to configure a custom registry. HyperLatentWorker does not support starting
a worker built from a Dockerfile.

masterFQDN (optional, defaults to socket.getfqdn()) Address of the master the worker should connect to. Use if you
master machine does not have proper fqdn. This value is passed to the docker image via environment variable
BUILDMASTER

If the value contains a colon (:), then BUILDMASTER and BUILDMASTER_PORT environment variables
will be passed, following scheme: masterFQDN="$BUILDMASTER: SBUILDMASTER_PORT"

This feature is useful for testing behind a proxy using ngrok command like: ngrok tcp 9989 ngrok
config can the be retrieved with following snippet:

from future.moves.urllib.parse import urlparse

import requests

r = requests.get () . Json ()
masterFQDN = urlparse (r[1) .netloc

hyper_accesskey (mandatory) Access key to use as part of the creds to access hyper.
hyper_secretkey (mandatory) Secret key to use as part of the creds to access hyper.

hyper_size (optional, defaults to s3) Size of the container to use as per HyperPricing
(https://hyper.sh/pricing.html)

Marathon latent worker

Marathon (https://mesosphere.github.io/marathon/) Marathon is a production-grade container orchestration platform
for Mesosphere’s Data-center Operating System (DC/OS) and Apache Mesos.

Buildbot supports using Marathon (https://mesosphere.github.io/marathon/) to host your latent workers. It requires
either txrequests (https://pypi.python.org/pypi/txrequests) or treq (https://pypi.python.org/pypi/treq) to be installed to
allow interaction with http server. See HTTPClientService for details.

class buildbot.worker.marathon.MarathonLatentWorker
class buildbot.plugins.worker.MarathonLatentWorker

The MarathonLatentWorker attempts to instantiate a fresh image for each build to assure consistency of the
environment between builds. Each image will be discarded once the worker finished processing the build queue (i.e.
becomes idle). See build_wait_timeout to change this behavior.

In addition to the arguments available for any Latent Workers, MarathonLatentWorker will accept the following
extra ones:

132 Chapter 2. Buildbot Manual

https://hub.docker.com/
https://hyper.sh/pricing.html
https://mesosphere.github.io/marathon/
https://mesosphere.github.io/marathon/
https://pypi.python.org/pypi/txrequests
https://pypi.python.org/pypi/treq

Buildbot Documentation, Release 0.9.7

marathon_url (mandatory) This is the URL to Marathon (https://mesosphere.github.io/marathon/) server. Its
REST API will be used to start docker containers.

marathon_auth (optional) This is the optional ('userid', 'password') BasicAuth credential. If
txrequests (https://pypi.python.org/pypi/txrequests) is installed, this can be a requests authentication plugin
(http://docs.python-requests.org/en/master/user/authentication/).

image (mandatory) This is the name of the image that will be started by the build master. It should start a worker.
This option can be a renderable, like Interpolate, so that it generates from the build request properties. Images
are by pulled from the default docker registry. MarathonLatentWorker does not support starting a worker built
from a Dockerfile.

masterFQDN (optional, defaults to socket.getfqdn()) Address of the master the worker should connect to. Use if you
master machine does not have proper fqdn. This value is passed to the docker image via environment variable
BUILDMASTER

If the value contains a colon (:), then BUILDMASTER and BUILDMASTER_PORT environment variables
will be passed, following scheme: masterFQDN="$BUILDMASTER: SBUILDMASTER_PORT"

marathon_extra_config (optional, defaults to {}") Extra configuration to be passed to Marathon API
(http://mesosphere.github.io/marathon/docs/rest-api.html#post-v2-apps). This implementation will setup the
minimal configuration to run a worker (docker image, BRIDGED network) It will let the default for everything
else, including memory size, volume mounting, etc. This configuration is voluntarily very raw so that it is easy
to use new marathon features. This dictionary will be merged into the Buildbot generated config, and recur-
sively override it. See Marathon API (http://mesosphere.github.io/marathon/docs/rest-api.html#post-v2-apps)
documentation to learn what to include in this config.

Dangers with Latent Workers

Any latent worker that interacts with a for-fee service, such as the EC2LatentWorker, brings significant risks.
As already identified, the configuration will need access to account information that, if obtained by a criminal, can
be used to charge services to your account. Also, bugs in the buildbot software may lead to unnecessary charges.
In particular, if the master neglects to shut down an instance for some reason, a virtual machine may be running
unnecessarily, charging against your account. Manual and/or automatic (e.g. nagios with a plugin using a library like
boto) double-checking may be appropriate.

A comparatively trivial note is that currently if two instances try to attach to the same latent worker, it is likely that the
system will become confused. This should not occur, unless, for instance, you configure a normal worker to connect
with the authentication of a latent buildbot. If this situation does occurs, stop all attached instances and restart the
master.

Builder Configuration

* Collapsing Build Requests
* Prioritizing Builds

e Virtual Builders

The builders configuration key is a list of objects giving configuration for the Builders. For more information on
the function of Builders in Buildbot, see the Concepts chapter. The class definition for the builder configuration is in
buildbot.config. However there is a much simpler way to use it, so in the configuration file, its use looks like:

2.5. Configuration 133

https://mesosphere.github.io/marathon/
https://pypi.python.org/pypi/txrequests
http://docs.python-requests.org/en/master/user/authentication/
http://mesosphere.github.io/marathon/docs/rest-api.html#post-v2-apps
http://mesosphere.github.io/marathon/docs/rest-api.html#post-v2-apps

Buildbot Documentation, Release 0.9.7

from buildbot.plugins import util

cl 1 =1
util.BuilderConfig (name= , workernames=][,], factory=f_qguick),
util.BuilderConfig (name= , workername= , factory=f_thorough),

BuilderConfig takes the following keyword arguments:
name This specifies the Builder’s name, which is used in status reports.
workername

workernames These arguments specify the worker or workers that will be used by this Builder. All workers names
must appear in the workers configuration parameter. Each worker can accommodate multiple builders. The
workernames parameter can be a list of names, while workername can specify only one worker.

factory Thisisabuildbot.process.factory.BuildFactory instance which controls how the build is
performed by defining the steps in the build. Full details appear in their own section, Build Factories.

Other optional keys may be set on each BuilderConfig:

builddir Specifies the name of a subdirectory of the master’s basedir in which everything related to this builder
will be stored. This holds build status information. If not set, this parameter defaults to the builder name, with
some characters escaped. Each builder must have a unique build directory.

workerbuilddir Specifies the name of a subdirectory (under the worker’s configured base directory) in which
everything related to this builder will be placed on the worker. This is where checkouts, compiles, and tests
are run. If not set, defaults to builddir. If a worker is connected to multiple builders that share the same
workerbuilddir, make sure the worker is set to run one build at a time or ensure this is fine to run multiple
builds from the same directory simultaneously.

tags If provided, this is a list of strings that identifies tags for the builder. Status clients can limit themselves to a
subset of the available tags. A common use for this is to add new builders to your setup (for a new module, or
for a new worker) that do not work correctly yet and allow you to integrate them with the active builders. You
can tag these new builders with a test tag, make your main status clients ignore them, and have only private
status clients pick them up. As soon as they work, you can move them over to the active tag.

nextWorker If provided, this is a function that controls which worker will be assigned future jobs. The function
is passed three arguments, the Builder object which is assigning a new job, a list of WorkerForBuilder
objects and the BuildRequest. The function should return one of the WorkerForBuilder objects, or
None if none of the available workers should be used. As an example, for each worker in the list, worker.
worker will be aWorker object, and worker.worker.workername is the worker’s name. The function
can optionally return a Deferred, which should fire with the same results.

nextBuild If provided, this is a function that controls which build request will be handled next. The function
is passed two arguments, the Builder object which is assigning a new job, and a list of BuildRequest
objects of pending builds. The function should return one of the Bui 1dRequest objects, or None if none of
the pending builds should be started. This function can optionally return a Deferred which should fire with the
same results.

canStartBuild If provided, this is a function that can veto whether a particular worker should be used for a given
build request. The function is passed three arguments: the Builder, aWorker, and a BuildRequest. The
function should return True if the combination is acceptable, or False otherwise. This function can optionally
return a Deferred which should fire with the same results.

See canStartBuild Functions for a concrete example.
locks This argument specifies a list of locks that apply to this builder; see Interlocks.

env A Builder may be given a dictionary of environment variables in this parameter. The variables are used in
ShellCommand steps in builds created by this builder. The environment variables will override anything in

134 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

the worker’s environment. Variables passed directly to a ShellCommand will override variables of the same
name passed to the Builder.

For example, if you have a pool of identical workers it is often easier to manage variables like PATH from
Buildbot rather than manually editing it inside of the workers’ environment.

f = factory.BuildFactory
f.addStep (ShellCommand (

command=["bash', './configure']))
f.addStep (Compile())

cl'builders'] = [
BuilderConfig (name='test', factory=f,
workernames=["'workerl', 'worker2', 'worker3', 'worker4'],
env={'PATH': '/opt/local/bin:/opt/app/bin:/usr/local/bin:/usr/bin'}),

Unlike most builder configuration arguments, this argument can contain renderables.

collapseRequests Specifies how build requests for this builder should be collapsed. See Collapsing Build Re-
quests, below.

properties A builder may be given a dictionary of Build Properties specific for this builder in this parameter.
Those values can be used later on like other properties. Interpolate.

description A builder may be given an arbitrary description, which will show up in the web status on the builder’s
page.

Collapsing Build Requests

When more than one build request is available for a builder, Buildbot can “collapse” the requests into a single build.
This is desirable when build requests arrive more quickly than the available workers can satisfy them, but has the
drawback that separate results for each build are not available.

Requests are only candidated for a merge if both requests have exactly the same codebases.

This behavior can be controlled globally, using the collapseRequest s parameter, and on a per-Builder basis,
using the collapseRequests argument to the Builder configuration. If collapseRequests is given, it
completely overrides the global configuration.

Possible values for both collapseRequests configurations are:
True Requests will be collapsed if their sourcestamp are compatible (see below for definition of compatible).
False Requests will never be collapsed.

callable (builder, reql, req2) Requests will be collapsed if the callable returns true. See Collapse Re-
quest Functions for detailed example.

Sourcestamps are compatible if all of the below conditions are met:
* Their codebase, branch, project, and repository attributes match exactly
* Neither source stamp has a patch (e.g., from a try scheduler)

* FEither both source stamps are associated with changes, or neither are associated with changes but they have
matching revisions.

2.5. Configuration 135

Buildbot Documentation, Release 0.9.7

Prioritizing Builds

The BuilderConfig parameter nextBuild can be use to prioritize build requests within a builder. Note that this
is orthogonal to Prioritizing Builders, which controls the order in which builders are called on to start their builds. The
details of writing such a function are in Build Priority Functions.

Such a function can be provided to the BuilderConfig as follows:

def pickNextBuild(builder, requests):

c['builders'] = [

BuilderConfig(name='test', factory=f,
nextBuild=pickNextBuild,
workernames=['workerl', 'worker2',6 'worker3', 'workeri'l]),

Virtual Builders

Dynamic Trigger is a method which allows to trigger the same builder, with different parameters. This
method is used by frameworks which store the build config along side the source code like Buildbot_travis
(https://github.com/buildbot/buildbot_travis). The drawback of this method is that it is difficult to extract statistics
for similar builds. The standard dashboards are not working well due to the fact that all the builds are on the same
builder.

In order to overcome those drawbacks, Buildbot has the concept of virtual builder. If a build has the property
virtual_builder_name, it will automatically attach to that builder instead of the original builder. That cre-
ated virtual builder is not attached to any master and is only used for better sorting in the UI and better statistics. The
original builder and worker configuration is still used for all other build behaviors.

The virtual builder metadata is configured with the following properties:
e virtual builder name: The name of the virtual builder.
e virtual_builder_description: The description of the virtual builder.

e virtual_builder_tags: The tags for the virtual builder.

Build Factories

Each Builder is equipped with a build factory, which defines the steps used to perform that particular type of
build. This factory is created in the configuration file, and attached to a Builder through the factory element of its
dictionary.

The steps used by these builds are defined in the next section, Build Steps.

Note: Build factories are used with builders, and are not added directly to the buildmaster configuration dictionary.

* Defining a Build Factory

* Dynamic Build Factories

* Predefined Build Factories

136 Chapter 2. Buildbot Manual

https://github.com/buildbot/buildbot_travis

Buildbot Documentation, Release 0.9.7

Defining a Build Factory

A BuildFactory defines the steps that every build will follow. Think of it as a glorified script. For example, a
build factory which consists of an SVN checkout followed by a make build would be configured as follows:

from buildbot.plugins import util, steps

f = util.BuildFactory ()
f.addStep (steps.SVN (repourl= , mode=))
f.addStep (steps.Compile (command=[P 1))

This factory would then be attached to one builder (or several, if desired):

cl] .append (
BuilderConfig (name= , workernames=[, 1, factory=f))

It is also possible to pass a list of steps into the BuildFactory when it is created. Using addStep is usually
simpler, but there are cases where it is more convenient to create the list of steps ahead of time, perhaps using some
Python tricks to generate the steps.

from buildbot.plugins import steps, util
all_steps = [
steps.CVS (cvsroot=CVSROOT, cvsmodule= , mode=),

steps.Compile (command= [, 1),

]
f = util.BuildFactory (all_steps)

Finally, you can also add a sequence of steps all at once:

f.addSteps (all_steps)

Attributes

The following attributes can be set on a build factory after it is created, e.g.,

f = util.BuildFactory ()
f.useProgress = False

useProgress (defaults to True): if True, the buildmaster keeps track of how long each step takes, so it can
provide estimates of how long future builds will take. If builds are not expected to take a consistent amount of
time (such as incremental builds in which a random set of files are recompiled or tested each time), this should
be set to False to inhibit progress-tracking.

workdir (defaults to ‘build’): workdir given to every build step created by this factory as default. The workdir can
be overridden in a build step definition.

If this attribute is set to a string, that string will be used for constructing the workdir (worker base + builder
builddir + workdir). The attribute can also be a Python callable, for more complex cases, as described in
Factory Workdir Functions.

Dynamic Build Factories

In some cases you may not know what commands to run until after you checkout the source tree. For those cases you
can dynamically add steps during a build from other steps.

2.5. Configuration 137

Buildbot Documentation, Release 0.9.7

The Build object provides 2 functions to do this:

addStepsAfterCurrentStep (self, step_factories) This adds the steps after the step that is cur-
rently executing.

addStepsAfterLastStep (self, step_factories) This adds the steps onto the end of the build.
Both functions only accept as an argument a list of steps to add to the build.

For example lets say you have a script checked in into your source tree called build.sh. When this script is called with
the argument ——1ist-stages it outputs a newline separated list of stage names. This can be used to generate at
runtime a step for each stage in the build. Each stage is then run in this example using . /build.sh —--run-stage
<stage name>.

from buildbot.plugins import util, steps
from buildbot.process import buildstep, logobserver
from twisted.internet import defer

class GenerateStagesCommand (buildstep.ShellMixin, steps.BuildStep):

def _ init_ (, **xkwargs) :
kwargs = .setupShellMixin (kwargs)
steps.BuildStep.__init__ (, *%*kwargs)
.observer = logobserver.BufferLogObserver ()
.addLogObserver ('stdio', .Observer)

def extract_stages(, stdout):
stages = []
for line in stdout.split('\n'"):
stage = (line.strip())
if stage:
stages.append (stage)
return stages

@defer.inlineCallbacks

def run () :
cmd = yield .makeRemoteShellCommand ()
yield .runCommand (cmd)
result = cmd.results()
if result == util.SUCCESS:
.build.addStepsAfterCurrentStep ([
steps.ShellCommand (name=stage, command=["./build.sh", "—-—run-stage",
—stagel])
for stage in .extract_stages (.observer.getStdout ())

1)
defer.returnValue (result)

f = util.BuildFactory ()

f.addStep (steps.Git (repourl=repourl))

f.addStep (GenerateStagesCommand (
name="Generate build stages",

command=["./build.sh", "-—-list-stages"],

haltOnFailure=True))

138 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 0.9.7

Predefined Build Factories

Buildbot includes a few predefined build factories that perform common build sequences. In practice, these are rarely
used, as every site has slightly different requirements, but the source for these factories may provide examples for
implementation of those requirements.

GNUAutoconf

class buildbot.process.factory.GNUAutoconf

GNU Autoconf (http://www.gnu.org/software/autoconf/) is a software portability tool, intended to make it possible to
write programs in C (and other languages) which will run on a variety of UNIX-like systems. Most GNU software is
built using autoconf. It is frequently used in combination with GNU automake. These tools both encourage a build
process which usually looks like this:

% CONFIG_ENV=foo ./configure --with-flags
make all
make check

o\

o°

(except of course the Buildbot always skips the make install part).

The Buildbot’s buildbot.process. factory.GNUAutoconf factory is designed to build projects which use
GNU autoconf and/or automake. The configuration environment variables, the configure flags, and command lines
used for the compile and test are all configurable, in general the default values will be suitable.

Example:

f = util.GNUAutoconf (source=source.SVN (repourl=URL, mode=),
flags=][1)

Required Arguments:
source This argument must be a step specification tuple that provides a BuildStep to generate the source tree.
Optional Arguments:

configure The command used to configure the tree. Defaults to . /configure. Accepts either a string or a list
of shell argv elements.

configureEnv The environment used for the initial configuration step. This accepts a dictionary which will be
merged into the worker’s normal environment. This is commonly used to provide things like CFLAGS="-02
—g" (to turn off debug symbols during the compile). Defaults to an empty dictionary.

configureFlags A list of flags to be appended to the argument list of the configure command. This is commonly
used to enable or disable specific features of the autoconf-controlled package, like ["-—-without-x"] to
disable windowing support. Defaults to an empty list.

reconf use autoreconf to generate the ./configure file, set to True to use a buildbot default autoreconf command, or
define the command for the ShellCommand.

compile this is a shell command or list of argv values which is used to actually compile the tree. It defaults to make
all. If set to None, the compile step is skipped.

test this is a shell command or list of argv values which is used to run the tree’s self-tests. It defaults to make
check. If set to None, the test step is skipped.

distcheck this is a shell command or list of argv values which is used to run the packaging test. It defaults to
make distcheck. If set to None, the test step is skipped.

2.5. Configuration 139

http://www.gnu.org/software/autoconf/

Buildbot Documentation, Release 0.9.7

BasicBuildFactory

class buildbot .process.factory.BasicBuildFactory

This is a subclass of GNUAutoconf which assumes the source is in CVS, and uses mode='full' and
method="'clobber' to always build from a clean working copy.

BasicSVN

class buildbot.process.factory.BasicSVN

This class is similar to QuickBuildFactory, but uses SVN instead of CVS.

QuickBuildFactory

class buildbot .process.factory.QuickBuildFactory

The QuickBuildFactory class is a subclass of GNUAutoconf which assumes the source is in CVS, and uses
mode="incremental' to get incremental updates.

The difference between a full build and a quick build is that quick builds are generally done incrementally, starting
with the tree where the previous build was performed. That simply means that the source-checkout step should be
given amode="incremental' flag, to do the source update in-place.

In addition to that, this class sets the useProgress flag to False. Incremental builds will (or at least the ought
to) compile as few files as necessary, so they will take an unpredictable amount of time to run. Therefore it would be
misleading to claim to predict how long the build will take.

This class is probably not of use to new projects.

CPAN

class buildbot .process.factory.CPAN

Most Perl modules available from the CPAN (http://www.cpan.org/) archive use the MakeMaker module to provide
configuration, build, and test services. The standard build routine for these modules looks like:

% perl Makefile.PL

(except again Buildbot skips the install step)

Buildbot provides a CPAN factory to compile and test these projects.

Arguments:

source (required): A step specification tuple, like that used by GNUAutoconf.

perl A string which specifies the perl executable to use. Defaults to just perl.

Distutils

class buildbot.process.factory.Distutils

140 Chapter 2. Buildbot Manual

http://www.cpan.org/

Buildbot Documentation, Release 0.9.7

Most Python modules use the distutils package to provide configuration and build services. The standard build
process looks like:

o\

python ./setup.py build
% python ./setup.py install

Unfortunately, although Python provides a standard unit-test framework named unittest, to the best of my knowl-
edge distutils does not provide a standardized target to run such unit tests. (Please let me know if I'm wrong, and
I will update this factory.)

The Distutils factory provides support for running the build part of this process. It accepts the same source=
parameter as the other build factories.

Arguments:
source (required): A step specification tuple, like that used by GNUAutoconf.
python A string which specifies the python executable to use. Defaults to just python.

test Provides a shell command which runs unit tests. This accepts either a string or a list. The default value is None,
which disables the test step (since there is no common default command to run unit tests in distutils modules).

Trial

class buildbot .process. factory.Trial

Twisted provides a unit test tool named trial which provides a few improvements over Python’s built-in unittest
module. Many Python projects which use Twisted for their networking or application services also use trial for their
unit tests. These modules are usually built and tested with something like the following:

o°

python ./setup.py build
PYTHONPATH=build/lib.linux-1686-2.3 trial -v PROJECTNAME.test
python ./setup.py install

oe

o\

Unfortunately, the build/1ib directory into which the built/copied .py files are placed is actually architecture-
dependent, and I do not yet know of a simple way to calculate its value. For many projects it is sufficient to import
their libraries in place from the tree’s base directory (PYTHONPATH=.).

In addition, the PROJECTNAME value where the test files are located is project-dependent: it is usually just the
project’s top-level library directory, as common practice suggests the unit test files are put in the test sub-module.
This value cannot be guessed, the Trial class must be told where to find the test files.

The Trial class provides support for building and testing projects which use distutils and trial. If the test module
name is specified, trial will be invoked. The library path used for testing can also be set.

One advantage of trial is that the Buildbot happens to know how to parse trial output, letting it identify which tests
passed and which ones failed. The Buildbot can then provide fine-grained reports about how many tests have failed,
when individual tests fail when they had been passing previously, etc.

Another feature of trial is that you can give it a series of source .py files, and it will search them for special
test-case—name tags that indicate which test cases provide coverage for that file. Trial can then run just the
appropriate tests. This is useful for quick builds, where you want to only run the test cases that cover the changed
functionality.

Arguments:

testpath Provides a directory to add to PYTHONPATH when running the unit tests, if tests are being run. Defaults
to . to include the project files in-place. The generated build library is frequently architecture-dependent, but
may simply be build/1ib for pure-Python modules.

2.5. Configuration 141

Buildbot Documentation, Release 0.9.7

python which Python executable to use. This list will form the start of the argv array that will launch tr