eBuildbot

Buildbot Documentation
Release 2.3.0

Brian Warner

May 06, 2019

Contents

1 Buildbot Tutorial 3
L1 FirstRun . . . oo o e e e e e 3
1.2 First Buildbot run with Docker. 6
1.3 AQuickTour o e e e e e e e 9
1.4 Further Reading e e 17
2 Buildbot Manual 23
2.1 Introduction L. e e e e e e e e e e e e 23
2.2 Installation L e e e 29
2.3 CONCEPLS & v v v e v e 43
2.4 Secret Management i e 52
2.5 Configuration e e e e e e e e e e e e e 55
2.6 CustomizatiOnt i e 258
2.7 Command-line Tool e 285
2.8 RESOUICES . .« . v v o ot e 296
2.9 Optimization v v v v e 296
2.10 Plugin Infrastructure in Buildbot o L 297
2.11 Deployment e e 298
2.12 Upgrading L e e e e e 300
3 Buildbot Development 313
3.1 Development Quick-start 313
3.2 General Documentsl e 315
3.3 APIS . o e e e e e e e e 400
34 CIASSES + v v v o e e e e e e e e e e e e e e e e e e 493
4 Release Notes 533
4.1 Buildbot 2.3.0(2019-05-06) v i i i i e e e e e e e e e e e 533
42 Buildbot 2.2.0 (2019-04-07) . . v v v i i i e e e e e e e e e e 534
43 Buildbot 2.1.0(2019-03-09) o . i i i e e e e e e e e e e e 534
44 Buildbot 2.0.1 (2019-02-06) . . v v v v v it e e e e e e e e e e e e e e 535
45 Buildbot 2.0.0 (2019=02=02) v v v v v e e 535
46 Buildbot 1.8.0 (2019=01-20) « v v v v v e e e e e e e 536
47 Buildbot 1.7.0 (2018-=12-21) . . v v v v i it et e e e e e e e e e e e 537
48 Buildbot 1.6.0 (2018=11-16) . . v v v v i it et et e e e e e e e e e e e e e e 537
49 Buildbot 1.5.0 (2018-10-09) i v v i it e e e e e e e e e e e e 538
410 Buildbot 1.4.0 (2018-09-02) . . v v i v v i i e et e e e e e e e e e e e e 539

4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22
4.23
4.24
4.25
4.26
4.27
4.28
4.29
4.30
431
4.32
4.33
4.34

Older Release Notes

Release Notes for Buildbot O .
Release Notes for Buildbot O .
Release Notes for Buildbot 0 .
Release Notes for Buildbot O .
Release Notes for Buildbot 0O .
Release Notes for Buildbot O .

5.1
52
53
5.4
5.5
5.6
5.7
5.8
59
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21

Buildbot 1 .
Buildbot 1.
Buildbot 1.
Buildbot 1.
Buildbot 1 .
Buildbot 1 .
Buildbot 0.
Buildbot 0.
Buildbot 0.
Buildbot 0.
Buildbot 0 .
Buildbot 0.
Buildbot 0.
Buildbot 0.
Buildbot 0.
Buildbot 0.
Buildbot 0.
Buildbot 0.
Buildbot 0.
Buildbot 0.
Buildbot 0.
Buildbot 0.
Buildbot 0.
Buildbot 0.

W W W W WWWWWWWOwUwWwWWWwwwuowuowuouoreEFEkKFkED>MNW

L0 (20180713 v v et e e
L0(2018-06=10) . v v v i i e e e e e e e e e e e e e
L2(2018-05-15) . i v it e e e e e e e e e e e e e e
L1(2018-04-06) & v v it e e e e e e e e e
L0 (201803710 & v v vt e e
L0 (20180211 v v e e e
L15.p0ostl (2018=01-07). v v v v v e e e e e e e e e e e e e e e
L15(2018-01-02) v v it e e e e e e e e e e e e e e e
1A (2017-12-08) v v it e e e e e e e e e e
L13(2017=11=07) v v oo e e e e
212.00SEL (2017=10-10) % « v v v e e e e e e e
L12(2017-10-05) . o e e e e e e e e e e
L1T(2017-09-08) & v it e e e e e e e e e e e e e e
10 (2017-08-03) v v i i e e e e e e e
L9.p0st2 (2017-07=06) v v v i e e e e e e e e e e e e e e e
L9.postl (2017-07-01) . . i i i i e e e e e e e
2O (2017=06-29) o o v et
LB (2017-06=14) . . i e e e e e e
LT (2017-05-09) . ot e e e e e e e e e e e e e e
6 (2017-04-19) . v i i e e e e e
S5 (201703718 & v v et e
A (201702708 & v et e e
L3(2017-01-11) o v i e e e e e e e e
2(2016=12-13) o v i e e e e e e e e e e e e e e

W W W W W O
o
=
Q
N

L0rcl L e e e e e e e e e

Release Notes for Buildbot 0.9.0b9 e
Release Notes for Buildbot 0.9.0b8 e
Release Notes for Buildbot 0.9.0b7
Release Notes for Buildbot 0.9.0b6 e
Release Notes for Buildbot 0.9.0b5 e
Release Notes for Buildbot 0.9.0b4 e e e
Release Notes for Buildbot 0.9.0b3 e
Release Notes for Buildbot 0.9.0b2 e
Release Notes for Buildbot 0.9.0b1o
Release Notes for Buildbot 0.8.11 e e
Release Notes for Buildbot 0.8.10 e e e
Release Notes for Buildbot 0.8.9 e
Release Notes for Buildbot vO.8.8 e
Release Notes for Buildbot vO.8.7 e
Release Notes for Buildbot v0.8.6pl

6 Indices and Tables

7 Copyright

Python Module Index

Buildmaster Configuration Index

623

625

627

Scheduler Index

Change Source Index

Build Step Index

Reporter Target Index

Configurator Target Index

Build Worker Index

Command Line Index

Data API Event Index

REST/Data API Resource Type Index
REST/Data API Path Index

REST/Data API Actions Index

629

631

633

635

637

639

641

643

645

647

649

Buildbot Documentation, Release 2.3.0

Caution: Buildbot no longer supports Python 2.7 on the Buildbot master.

This is the Buildbot documentation for Buildbot version 2.3.0.

If you are evaluating Buildbot and would like to get started quickly, start with the Tutorial. Regular users of Buildbot
should consult the Manual, and those wishing to modify Buildbot directly will want to be familiar with the Developer’s

Documentation.

Caution: Buildbot no longer supports Python 2.7 on the Buildbot master.

Contents

Buildbot Documentation, Release 2.3.0

2 Contents

CHAPTER 1

Buildbot Tutorial

Contents:

Caution: Buildbot no longer supports Python 2.7 on the Buildbot master.

1.1 First Run

1.1.1 Goal

This tutorial will take you from zero to running your first buildbot master and worker as quickly as possible, without
changing the default configuration.

This tutorial is all about instant gratification and the five minute experience: in five minutes we want to convince you
that this project works, and that you should seriously consider spending time learning the system. In this tutorial no
configuration or code changes are done.

This tutorial assumes that you are running Unix, but might be adaptable to Windows.

Thanks to virtualenv (https://pypi.python.org/pypi/virtualenv), installing buildbot in a standalone environment is very
easy. For those more familiar with Docker (https://docker.com), there also exists a docker version of these instructions.

You should be able to cut and paste each shell block from this tutorial directly into a terminal.

1.1.2 Getting ready

There are many ways to get the code on your machine. We will use the easiest one: via pip in a virtualenv
(https://pypi.python.org/pypi/virtualenv). It has the advantage of not polluting your operating system, as everything
will be contained in the virtualenv.

To make this work, you will need the following installed:

e Python (https://www.python.org/) and the development packages for it

https://pypi.python.org/pypi/virtualenv
https://docker.com
https://pypi.python.org/pypi/virtualenv
https://www.python.org/

Buildbot Documentation, Release 2.3.0

e virtualenv (https://pypi.python.org/pypi/virtualenv)
Preferably, use your distribution package manager to install these.

You will also need a working Internet connection, as virtualenv and pip will need to download other projects from the
Internet. The master and builder daemons will need to be able to connect to github . com via HTTPS to fetch the repo
we’re testing; if you need to use a proxy for this ensure that either the HTTPS_PROXY or ALL_PROXY environment
variable is set to your proxy, e.g., by executing export HTTPS_PROXY=http://localhost:9080 in the shell
before starting each daemon.

Note: Buildbot does not require root access. Run the commands in this tutorial as a normal, unprivileged user.

1.1.3 Creating a master

The first necessary step is to create a virtualenv for our master. We will also use a separate directory to demonstrate
the distinction between a master and worker:

mkdir -p ~/tmp/bb-master
~/tmp/bb-master

On Python 3:

python3 -m venv sandbox
sandbox/bin/activate

Now that we are ready, we need to install buildbot:

pip install —--upgrade pip
pip install

Now that buildbot is installed, it’s time to create the master:

’buildbot create-master master

Buildbot’s activity is controlled by a configuration file. We will use the sample configuration file unchanged:

’mv master/master.cfg.sample master/master.cfg

Finally, start the master:

’buildbot start master

You will now see some log information from the master in this terminal. It should end with lines like these:

2014-11-01 15:52:55+0100 [-] BuildMaster is running
The buildmaster appears to have (re)started correctly.

From now on, feel free to visit the web status page running on the port 8010: http://localhost:8010/
Our master now needs (at least) a worker to execute its commands. For that, head on to the next section!

1.1.4 Creating a worker

The worker will be executing the commands sent by the master. In this tutorial, we are using the buildbot/hello-
world project as an example. As a consequence of this, your worker will need access to the git (https://git-scm.com/)

4 Chapter 1. Buildbot Tutorial

https://pypi.python.org/pypi/virtualenv
http://localhost:8010/
https://git-scm.com/

Buildbot Documentation, Release 2.3.0

command in order to checkout some code. Be sure that it is installed, or the builds will fail.

Same as we did for our master, we will create a virtualenv for our worker next to the other one. It would however be
completely ok to do this on another computer - as long as the worker computer is able to connect to the master one:

mkdir -p ~/tmp/bb-worker
~/tmp/bb-worker

On Python 2:

virtualenv --no-site-packages sandbox
sandbox/bin/activate

On Python 3:

python3 —-m venv sandbox
sandbox/bin/activate

Install the buildbot-worker command:

pip install --upgrade pip
pip install buildbot-worker

pip install setuptools-trial

Now, create the worker:

buildbot-worker create-worker worker localhost example-worker pass

Note: If you decided to create this from another computer, you should replace Localhost with the name of the
computer where your master is running.

The username (example-worker), and password (pass) should be the same as those inmaster/master.cfg;
verify this is the case by looking at the section for ¢ ['workers']:

’cat ../bb-master/master/master.cfg

And finally, start the worker:

’buildbot—worker start worker

Check the worker’s output. It should end with lines like these:

2014-11-01 15:56:51+0100 [-] Connecting to localhost:9989
2014-11-01 15:56:51+0100 [Broker,client] message from master: attached
The worker appears to have (re)started correctly.

Meanwhile, from the other terminal, in the master log (twisted. log in the master directory), you should see lines
like these:

2014-11-01 15:56:51+0100 [Broker,1,127.0.0.1] worker 'example-worker' attaching from_
—IPv4Address (TCP, '127.0.0.1', 54015)

2014-11-01 15:56:51+0100 [Broker,1,127.0.0.1] Got workerinfo from 'example-worker'
2014-11-01 15:56:51+0100 [-] bot attached

You should now be able to go to http://localhost:8010, where you will see a web page similar to:

1.1. First Run 5

http://localhost:8010

Buildbot Documentation, Release 2.3.0

Hello World ClI Hello World CI Home

Home

Grid View Welcome to buildbot

0 builds running currently

Waterfall View

0 recent builds

\fim

Console View

> Builds

Settings

Click on “Builds” at the left to open the submenu and then Builders (http://localhost:8010/#/builders) to see that the
worker you just started has connected to the master:

Hello World CI Hello World C| Builds / Builders

Home Builder Name Builds ©Tags Workers

runtests 1

Show old builders

> Builds

Builders

Your master is now quietly waiting for new commits to hello-world. This doesn’t happen very often though. In the
next section, we’ll see how to manually start a build.

We just wanted to get you to dip your toes in the water. It’s easy to take your first steps, but this is about as far as we
can go without touching the configuration.

You’ve got a taste now, but you’re probably curious for more. Let’s step it up a little in the second tutorial by changing
the configuration and doing an actual build. Continue on to A Quick Tour.

Caution: Buildbot no longer supports Python 2.7 on the Buildbot master.

1.2 First Buildbot run with Docker

Note: Docker can be tricky to get working correctly if you haven’t used it before. If you’re having trouble, first
determine whether it is a Buildbot issue or a Docker issue by running:

6 Chapter 1. Buildbot Tutorial

http://localhost:8010/#/builders

Buildbot Documentation, Release 2.3.0

docker run ubuntu:12.04 apt-get update

If that fails, look for help with your Docker install. On the other hand, if that succeeds, then you may have better luck
getting help from members of the Buildbot community.

Docker (https://www.docker.com) is a tool that makes building and deploying custom environments a breeze. It uses
lightweight linux containers (LXC) and performs quickly, making it a great instrument for the testing community. The
next section includes a Docker pre-flight check. If it takes more that 3 minutes to get the ‘Success’ message for you,
try the Buildbot pip-based first run instead.

1.2.1 Current Docker dependencies
* Linux system, with at least kernel 3.8 and AUFS support. For example, Standard Ubuntu, Debian and Arch
systems.
» Packages: Ixc, iptables, ca-certificates, and bzip2 packages.
* Local clock on time or slightly in the future for proper SSL communication.

* This tutorial uses docker-compose to run a master, a worker, and a postgresql database server

1.2.2 Installation

* Use the Docker installation instructions (https://docs.docker.com/engine/installation/) for your operating system.

* Make sure you install docker-compose. As root or inside a virtualenv, run:

’pip install docker-compose

 Test docker is happy in your environment:

’sudo docker run —-i busybox /bin/echo Success

1.2.3 Building and running Buildbot

git clone --depth 1 https://github.com/buildbot/buildbot-docker—example-config

buildbot-docker-example-config/simple
docker—compose up

You should now be able to go to http://localhost:8010 and see a web page similar to:

1.2. First Buildbot run with Docker 7

https://www.docker.com
https://docs.docker.com/engine/installation/
http://localhost:8010

Buildbot Documentation, Release 2.3.0

Hello World ClI Hello World CI Home

Home

Grid View Welcome to buildbot

0 builds running currently

Waterfall View

0 recent builds

ole View

> Builds

Settings

Click on “Builds” at the left to open the submenu and then Builders (http://localhost:8010/#/builders) to see that the
worker you just started has connected to the master:

Hello World CI Hello World C| Builds / Builders

Builder Name Builds ©Tags Workers

runtests 1

Show old builders

> Builds

Builders

1.2.4 Overview of the docker-compose configuration

This docker-compose configuration is made as a basis for what you would put in production
* Separated containers for each component
¢ A solid database backend with postgresql
* A buildbot master that exposes its configuration to the docker host
* A buildbot worker that can be cloned in order to add additional power
» Containers are linked together so that the only port exposed to external is the web server
¢ The default master container is based on Alpine linux for minimal footprint

* The default worker container is based on more widely known Ubuntu distribution, as this is the container you
want to customize.

* Download the config from a tarball accessible via a web server

8 Chapter 1. Buildbot Tutorial

http://localhost:8010/#/builders

Buildbot Documentation, Release 2.3.0

1.2.5 Playing with your Buildbot containers

If you’ve come this far, you have a Buildbot environment that you can freely experiment with.

In order to modify the configuration, you need to fork the project on github https://github.com/buildbot/
buildbot-docker-example-config Then you can clone your own fork, and start the docker-compose again.

To modify your config, edit the master.cfg file, commit your changes, and push to your fork. You can use the com-
mand buildbot check-config in order to make sure the config is valid before the push. You will need to change
docker-compose.yml the variable BUILDBOT_CONFIG_URL in order to point to your github fork.

The BUILDBOT_CONFIG_URL may point to a .tar . gz file accessible from HTTP. Several git servers like github
can generate that tarball automatically from the master branch of a git repository If the BUILDBOT_CONFIG_URL
does not end with . tar.gz, it is considered to be the URL to amaster.cfqg file accessible from HTTP.

1.2.6 Customize your Worker container

It is advised to customize you worker container in order to suit your project’s build dependencies and need. An
example DockerFile is available which the buildbot community uses for its own CI purposes:

https://github.com/buildbot/metabbotcfg/blob/nine/docker/metaworker/Dockerfile

1.2.7 Multi-master

A multi-master environment can be setup using the multimaster/docker-compose.ymnl file in the example
repository

Build the Buildbot container (it will take a few minutes to download packages) cd buildbot-docker-
example-config/simple docker-compose up -d docker-compose scale buildbot=4

1.2.8 Going forward

You’ve got a taste now, but you’re probably curious for more. Let’s step it up a little in the second tutorial by changing
the configuration and doing an actual build. Continue on to A Quick Tour.

Caution: Buildbot no longer supports Python 2.7 on the Buildbot master.

1.3 A Quick Tour

1.3.1 Goal

This tutorial will expand on the First Run tutorial by taking a quick tour around some of the features of buildbot that
are hinted at in the comments in the sample configuration. We will simply change parts of the default configuration
and explain the activated features.

As a part of this tutorial, we will make buildbot do a few actual builds.
This section will teach you how to:
» make simple configuration changes and activate them

¢ deal with configuration errors

1.3. A Quick Tour 9

https://github.com/buildbot/buildbot-docker-example-config
https://github.com/buildbot/buildbot-docker-example-config
https://github.com/buildbot/metabbotcfg/blob/nine/docker/metaworker/Dockerfile

Buildbot Documentation, Release 2.3.0

e force builds
¢ enable and control the IRC bot
* enable ssh debugging

e add a ‘try’ scheduler

1.3.2 Setting Project Name and URL

Let’s start simple by looking at where you would customize the buildbot’s project name and URL.
We continue where we left off in the First Run tutorial.

Open a new terminal, and first enter the same sandbox you created before (where SEDITOR is your editor of choice
like vim, gedit, or emacs):

~/tmp/bb-master
sandbox/bin/activate
SEDITOR master/master.cfg

Now, look for the section marked PROJECT IDENTITY which reads:

c['title'] = "Hello World CI"
c['titleURL'] = "https://buildbot.github.io/hello-world/"

If you want, you can change either of these links to anything you want to see what happens when you change them.

After making a change go into the terminal and type:

buildbot reconfig master

You will see a handful of lines of output from the master log, much like this:

2011-12-04 10:11:09-0600 [-] loading configuration from /home/dustin/tmp/buildbot/
—master/master.cfg

2011-12-04 10:11:09-0600 [-] configuration update started

2011-12-04 10:11:09-0600 [-] builder runtests is unchanged

2011-12-04 10:11:09-0600 [-] removing IStatusReceiver <WebStatus on port tcp:8010 at
—~0x2aee368>

2011-12-04 10:11:09-0600 [-] (TCP Port 8010 Closed)

2011-12-04 10:11:09-0600 [-] Stopping factory <buildbot.status.web.baseweb.
—RotateLogSite instance at 0x2e36638>

2011-12-04 10:11:09-0600 [-] adding IStatusReceiver <WebStatus on port tcp:8010 at_
—0x2c2d950>

2011-12-04 10:11:09-0600 [-] RotatelLogSite starting on 8010

2011-12-04 10:11:09-0600 [-] Starting factory <buildbot.status.web.baseweb.
—RotateLogSite instance at 0x2e36el8>

2011-12-04 10:11:09-0600 [-] Setting up http.log rotating 10 files of 10000000 bytes,,
—each

2011-12-04 10:11:09-0600 [-] WebStatus using (/home/dustin/tmp/buildbot/master/public_
—html)

2011-12-04 10:11:09-0600 [-] removing O old schedulers, updating 0, and adding O
2011-12-04 10:11:09-0600 [-] adding 1 new changesources, removing 1

(continues on next page)

10 Chapter 1. Buildbot Tutorial

Buildbot Documentation, Release 2.3.0

(continued from previous page)

2011-12-04 10:11:09-0600 [-] gitpoller: using workdir '/home/dustin/tmp/buildbot/
—master/gitpoller-workdir'

2011-12-04 10:11:09-0600 [-] GitPoller repository already exists

2011-12-04 10:11:09-0600 [-] configuration update complete

Reconfiguration appears to have completed successfully.

The important lines are the ones telling you that it is loading the new configuration at the top, and the one at the bottom
saying that the update is complete.

Now, if you go back to the waterfall page (http://localhost:8010/#/waterfall), you will see that the project’s name is
whatever you may have changed it to and when you click on the URL of the project name at the bottom of the page it
should take you to the link you put in the configuration.

1.3.3 Configuration Errors
It is very common to make a mistake when configuring buildbot, so you might as well see now what happens in that
case and what you can do to fix the error.

Open up the config again and introduce a syntax error by removing the first single quote in the two lines you changed,
so they read:

cl[title'] = "Hello World CI"
c[titleURL'] = "https://buildbot.github.io/hello-world/"

This creates a Python SyntaxError. Now go ahead and reconfig the buildmaster:

buildbot reconfig master

This time, the output looks like:

2015-08-14 18:40:46+0000 [-] beginning configuration update

2015-08-14 18:40:46+0000 [-] Loading configuration from '/data/buildbot/master/master.
—cfg'

2015-08-14 18:40:46+0000 [-] error while parsing config file:

Traceback (most recent call last):
File "/usr/local/lib/python2.7/dist-packages/buildbot/master.py", line 265,
—~in reconfig
d = self.doReconfig/()
File "/usr/local/lib/python2.7/dist-packages/twisted/internet/defer.py",
—~line 1274, in unwindGenerator
return _inlineCallbacks (None, gen, Deferred())
File "/usr/local/lib/python2.7/dist-packages/twisted/internet/defer.py",
—line 1128, in _inlineCallbacks
result = g.send(result)
File "/usr/local/lib/python2.7/dist-packages/buildbot/master.py", line 289,
—in doReconfig
self.configFileName)
—-—— <exception caught here> —-—-
File "/usr/local/lib/python2.7/dist-packages/buildbot/config.py", line 156,
—~1in loadConfig
exec f in localDict
exceptions.SyntaxError: EOL while scanning string literal (master.cfg, line_
—103)

(continues on next page)

1.3. A Quick Tour 11

http://localhost:8010/#/waterfall

Buildbot Documentation, Release 2.3.0

(continued from previous page)

2015-08-14 18:40:46+0000 [-] error while parsing config file: EOL while scanning,
—string literal (master.cfg, line 103) (traceback in logfile)
2015-08-14 18:40:46+0000 [-] reconfig aborted without making any changes

Reconfiguration failed. Please inspect the master.cfg file for errors,
correct them, then try 'buildbot reconfig' again.

This time, it’s clear that there was a mistake in the configuration. Luckily, the Buildbot master will ignore the wrong
configuration and keep running with the previous configuration.

The message is clear enough, so open the configuration again, fix the error, and reconfig the master.

1.3.4 Your First Build

By now you’re probably thinking: “All this time spent and still not done a single build? What was the name of this
project again?”

On the Builders (http://localhost:8010/#/builders) page, click on the runtests link. You’ll see a builder page, and a blue
“force” button that will bring up the following dialog box:

Your name:

force build

Repositc

Revision

Cancel Start Build

Click Start Build - there’s no need to fill in any of the fields in this case. Next, click on view in waterfall
(http://localhost:8010/#/waterfall7show=runtests).

You will now see:

12 Chapter 1. Buildbot Tutorial

http://localhost:8010/#/builders
http://localhost:8010/#/waterfall?show=runtests

Buildbot Documentation, Release 2.3.0

Buildbot: Pyflakes Buildbot: Pyflakes Builders / runtests

Home

> Builds

Builders

Last Ch

Build Masters

1.3.5 Enabling the IRC Bot

Buildbot includes an IRC bot that you can tell to join a channel and control to report on the status of buildbot.

Note: Security Note

Please note that any user having access to your irc channel or can PM the bot will be able to create or stop builds bug

#3377 (http://trac.buildbot.net/ticket/3377).

First, start an IRC client of your choice, connect to irc.freenode.net and join an empty channel. In this example we

will use #buildbot-test, so go join that channel. (Note: please do not join the main buildbot channel!)

Edit master.cfqg and look for the BUILDBOT SERVICES section. At the end of that section add the lines:

c['services'].append(reporters.IRC (host="irc.freenode.net"™, nick="bbtest",
channels=["#bulldbot-test"]))

Reconfigure the build master then do:

grep -1 irc master/twistd.log

The log output should contain a line like this:

2016-11-13 15:53:06+0100 [-] Starting factory <buildbot.reporters.irc.
—IrcStatusFactory instance at 0x7f£f2b4b72710>

2016-11-13 15:53:19+0100 [IrcStatusBot,client] <buildbot.reporters.irc.IrcStatusBot,
—object at 0x7ff2b5075750>: I have Jjoined #buildbot-test

1.3. A Quick Tour

13

http://trac.buildbot.net/ticket/3377
http://trac.buildbot.net/ticket/3377

Buildbot Documentation, Release 2.3.0

You should see the bot now joining in your IRC client. In your IRC channel, type:

’bbtest: commands

to get a list of the commands the bot supports.

Let’s tell the bot to notify certain events, to learn which EVENTS we can notify on:

’bbtest: help notify

Now let’s set some event notifications:

<@lsblakk> bbtest: notify on started finished failure
< bbtest> The following events are being notified: ['started', 'failure', 'finished']

Now, go back to the web interface and force another build. Alternatively, ask the bot to force a build:

<@lsblakk> bbtest: force build --codebase= runtests
< bbtest> build #1 of runtests started
< bbtest> Hey! build runtests #1 is complete: Success [finished]

You can also see the new builds in the web interface.

Buildbot: Pyflakes Buildbot: Pyflakes Builders / runtests
Home -
e
Grid View
08182017~ 2 ,
16:5
OB/18:2017 |
1307

Console

> Builds

Builde

About

The full documentation is available at TRC.

1.3.6 Setting Authorized Web Users

The default configuration allows everyone to perform any task like creating or stopping builds via the web interface.
To restrict this to a user, look for:

14 Chapter 1. Buildbot Tutorial

Buildbot Documentation, Release 2.3.0

cl] = (port=8010,
plugins= (waterfall_view={}, console_view={}))
and append:
cl 10] = util.Authz(
allowRules = [

util.AnyEndpointMatcher (role=)
J 4

roleMatchers = [
util.RolesFromUsername (roles=[], usernames=|[1)

cl 10] = util.UserPasswordAuth ([(,) 1)

For more details, see Authentication plugins.

1.3.7 Debugging with Manhole

You can do some debugging by using manhole, an interactive Python shell. It exposes full access to the buildmaster’s
account (including the ability to modify and delete files), so it should not be enabled with a weak or easily guessable
password.

To use this you will need to install an additional package or two to your virtualenv:

~/tmp/bb-master
sandbox/bin/activate
pip install -U pip
pip install cryptography pyasnl

You will also need to generate an SSH host key for the Manhole server.

mkdir -p /data/ssh_host_keys
ckeygen -t rsa —-f /data/ssh_host_keys/ssh_host_rsa_key

In your master.cfg find:

c = BuildmasterConfig = {}

Insert the following to enable debugging mode with manhole:

from buildbot import manhole
cl] = manhole.PasswordManhole (, ’
", ssh_hostkey_dir=)

After restarting the master, you can ssh into the master and get an interactive Python shell:

ssh -pl234 admin@127.0.0.1

Note: The pyasnl-0.1.1 release has a bug which results in an exception similar to this on startup:

exceptions.TypeError: argument 2 must be long, not int

If you see this, the temporary solution is to install the previous version of pyasnl:

1.3. A Quick Tour 15

Buildbot Documentation, Release 2.3.0

pip install pyasnl-0.0.13b

If you wanted to check which workers are connected and what builders those workers are assigned to you could do:

>>> master.workers.workers

{'example-worker': <Worker 'example-worker', current builders: runtests>}

Objects can be explored in more depth using dir(x) or the helper function show(x).

1.3.8 Adding a ‘try’ scheduler

Buildbot includes a way for developers to submit patches for testing without committing them to the source code
control system. (This is really handy for projects that support several operating systems or architectures.)

To set this up, add the following lines to master.cfg:

from buildbot.scheduler import Try_Userpass

c['schedulers'] = []
c['schedulers'].append(Try_Userpass (
name='try',
builderNames=['runtests'],
port=5555,
userpass=[('sampleuser', 'samplepass')]))

Then you can submit changes using the ¢ ry command.

Let’s try this out by making a one-line change to hello-world, say, to make it trace the tree by default:

git clone https://github.com/buildbot/hello-world.git hello-world-git
hello-world-git/hello
SEDITOR __init__ .py

Then run buildbot’s t ry command as follows:

~/tmp/bb-master
sandbox/bin/activate
buildbot try —--connect=pb --master=127.0.0.1:5555 —--username=sampleuser --—
—passwd=samplepass —-vc=git

This will do git diff for you and send the resulting patch to the server for build and test against the latest sources
from Git.

Now go back to the waterfall (http://localhost:8010/#/waterfall) page, click on the runtests link, and scroll down. You
should see that another build has been started with your change (and stdout for the tests should be chock-full of parse
trees as a result). The “Reason” for the job will be listed as “‘try’ job”, and the blamelist will be empty.

To make yourself show up as the author of the change, use the ——who=emailaddr option on buildbot try to
pass your email address.

To make a description of the change show up, use the ——properties=comment="this is a comment"
option on buildbot try.

To use ssh instead of a private username/password database, see Try_Jobdir.

16 Chapter 1. Buildbot Tutorial

http://localhost:8010/#/waterfall

Buildbot Documentation, Release 2.3.0

Caution: Buildbot no longer supports Python 2.7 on the Buildbot master.

1.4 Further Reading

See the following user-contributed tutorials for other highlights and ideas:

Caution: Buildbot no longer supports Python 2.7 on the Buildbot master.

1.4.1 Buildbot in 5 minutes - a user-contributed tutorial

(Ok, maybe 10.)

Buildbot is really an excellent piece of software, however it can be a bit confusing for a newcomer (like me when I
first started looking at it). Typically, at first sight it looks like a bunch of complicated concepts that make no sense and
whose relationships with each other are unclear. After some time and some reread, it all slowly starts to be more and
more meaningful, until you finally say “oh!” and things start to make sense. Once you get there, you realize that the
documentation is great, but only if you already know what it’s about.

This is what happened to me, at least. Here I'm going to (try to) explain things in a way that would have helped me
more as a newcomer. The approach I’'m taking is more or less the reverse of that used by the documentation, that is,
I’m going to start from the components that do the actual work (the builders) and go up the chain from there up to
change sources. I hope purists will forgive this unorthodoxy. Here I'm trying to clarify the concepts only, and will not
go into the details of each object or property; the documentation explains those quite well.

Installation

I won’t cover the installation; both Buildbot master and worker are available as packages for the major distributions,
and in any case the instructions in the official documentation are fine. This document will refer to Buildbot 0.8.5
which was current at the time of writing, but hopefully the concepts are not too different in other versions. All the
code shown is of course python code, and has to be included in the master.cfg master configuration file.

We won'’t cover the basic things such as how to define the workers, project names, or other administrative information
that is contained in that file; for that, again the official documentation is fine.

Builders: the workhorses

Since Buildbot is a tool whose goal is the automation of software builds, it makes sense to me to start from where we
tell Buildbot how to build our software: the builder (or builders, since there can be more than one).

Simply put, a builder is an element that is in charge of performing some action or sequence of actions, normally
something related to building software (for example, checking out the source, or make all), but it can also run
arbitrary commands.

A builder is configured with a list of workers that it can use to carry out its task. The other fundamental piece of
information that a builder needs is, of course, the list of things it has to do (which will normally run on the chosen
worker). In Buildbot, this list of things is represented as a Bui 1dFactory object, which is essentially a sequence of
steps, each one defining a certain operation or command.

Enough talk, let’s see an example. For this example, we are going to assume that our super software project can be
built using a simple make all, and there is another target make packages that creates rpm, deb and tgz packages

1.4. Further Reading 17

Buildbot Documentation, Release 2.3.0

of the binaries. In the real world things are usually more complex (for example there may be a configure step, or
multiple targets), but the concepts are the same; it will just be a matter of adding more steps to a builder, or creating
multiple builders, although sometimes the resulting builders can be quite complex.

So to perform a manual build of our project we would type this from the command line (assuming we are at the root
of the local copy of the repository):

$ make clean
$ svn update
$ make all

$ make packages

$ scp packages/x.rpm packages/x.deb packages/x.tgz someuser@somehost:/repository

Here we’re assuming the repository is SVN, but again the concepts are the same with git, mercurial or any other VCS.

Now, to automate this, we create a builder where each step is one of the commands we typed above. A step can be
a shell command object, or a dedicated object that checks out the source code (there are various types for different
repositories, see the docs for more info), or yet something else:

from buildbot.plugins import steps, util

makeclean = steps.ShellCommand (name= ,
command= [, 1,
description=)
checkout = steps.SVN(baseURL= ,
mode= ,
username= ,
password= ,

haltOnFailure=True)

makeall = steps.ShellCommand (name= ,
command= [, 1,
haltOnFailure=True,
description=)
makepackages = steps.ShellCommand (name= ,
command= [, 1,
haltOnFailure=True,
description=)
uploadpackages = steps.ShellCommand (name= ,

(continues on next page)

18 Chapter 1. Buildbot Tutorial

Buildbot Documentation, Release 2.3.0

(continued from previous page)

description= ,
command=
— ’

haltOnFailure=True)

f_simplebuild = util.BuildFactory ()
f_simplebuild.addStep (makeclean)
f_simplebuild.addStep (checkout)
f_simplebuild.addStep (makeall)
f_simplebuild.addStep (makepackages)
f_simplebuild.addStep (uploadpackages)

cl] =1
util.BuilderConfig (name= , workernames=|[, ,
'], factory=f_simplebuild)

So our builder is called simplebuild and can run on either of workerl, worker2 and worker3. If our repos-
itory has other branches besides trunk, we could create another one or more builders to build them; in the example,
only the checkout step would be different, in that it would need to check out the specific branch. Depending on how
exactly those branches have to be built, the shell commands may be recycled, or new ones would have to be created if
they are different in the branch. You get the idea. The important thing is that all the builders be named differently and
all be added to the c ['builders'] value (as can be seen above, it is a list of BuilderConfig objects).

Of course the type and number of steps will vary depending on the goal; for example, to just check that a commit
doesn’t break the build, we could include just up to the make all step. Or we could have a builder that performs
a more thorough test by also doing make test or other targets. You get the idea. Note that at each step except the
very first we use haltOnFailure=True because it would not make sense to execute a step if the previous one
failed (ok, it wouldn’t be needed for the last step, but it’s harmless and protects us if one day we add another step after
it).

Schedulers

Now this is all nice and dandy, but who tells the builder (or builders) to run, and when? This is the job of the scheduler,
which is a fancy name for an element that waits for some event to happen, and when it does, based on that information
decides whether and when to run a builder (and which one or ones). There can be more than one scheduler. I’'m being
purposely vague here because the possibilities are almost endless and highly dependent on the actual setup, build
purposes, source repository layout and other elements.

So a scheduler needs to be configured with two main pieces of information: on one hand, which events to react to, and
on the other hand, which builder or builders to trigger when those events are detected. (It’s more complex than that,
but if you understand this, you can get the rest of the details from the docs).

A simple type of scheduler may be a periodic scheduler: when a configurable amount of time has passed, run a certain
builder (or builders). In our example, that’s how we would trigger a build every hour:

from buildbot.plugins import schedulers

hourlyscheduler = schedulers.Periodic (name= ,
builderNames=[1,
periodicBuildTimer=3600)

(continues on next page)

1.4. Further Reading 19

Buildbot Documentation, Release 2.3.0

(continued from previous page)

cl] = [hourlyscheduler]

That’s it. Every hour this hourly scheduler will run the simplebuild builder. If we have more than one builder
that we want to run every hour, we can just add them to the builderNames list when defining the scheduler
and they will all be run. Or since multiple scheduler are allowed, other schedulers can be defined and added to
c['schedulers'] in the same way.

Other types of schedulers exist; in particular, there are schedulers that can be more dynamic than the periodic one. The
typical dynamic scheduler is one that learns about changes in a source repository (generally because some developer
checks in some change), and triggers one or more builders in response to those changes. Let’s assume for now that the
scheduler “magically” learns about changes in the repository (more about this later); here’s how we would define it:

from buildbot.plugins import schedulers

trunkchanged = schedulers.SingleBranchScheduler (name= ,
change_filter=util.
—ChangeFilter (branch=None) ,
treeStableTimer=300,
builderNames=[1)

cl] = [trunkchanged]

This scheduler receives changes happening to the repository, and among all of them, pays attention to those happening
in “trunk” (that’s what branch=None means). In other words, it filters the changes to react only to those it’s
interested in. When such changes are detected, and the tree has been quiet for 5 minutes (300 seconds), it runs the
simplebuild builder. The treeStableTimer helps in those situations where commits tend to happen in bursts,
which would otherwise result in multiple build requests queuing up.

What if we want to act on two branches (say, trunk and 7.2)? First we create two builders, one for each branch (see
the builders paragraph above), then we create two dynamic schedulers:

from buildbot.plugins import schedulers

trunkchanged = schedulers.SingleBranchScheduler (name= ,
change_filter=util.
—ChangeFilter (branch=None) ,
treeStableTimer=300,

builderNames=[1)
branch72changed = schedulers.SingleBranchScheduler (name= ’
change_filter=util.
—ChangeFilter (branch=),
treeStableTimer=300,
builderNames=[1)
cl] = [trunkchanged, branch72changed]

The syntax of the change filter is VCS-dependent (above is for SVN), but again once the idea is clear, the documenta-
tion has all the details. Another feature of the scheduler is that it can be told which changes, within those it’s paying
attention to, are important and which are not. For example, there may be a documentation directory in the branch the
scheduler is watching, but changes under that directory should not trigger a build of the binary. This finer filtering is

20 Chapter 1. Buildbot Tutorial

Buildbot Documentation, Release 2.3.0

implemented by means of the fileIsImportant argument to the scheduler (full details in the docs and - alas - in
the sources).

Change sources

Earlier we said that a dynamic scheduler “magically” learns about changes; the final piece of the puzzle are change
sources, which are precisely the elements in Buildbot whose task is to detect changes in the repository and commu-
nicate them to the schedulers. Note that periodic schedulers don’t need a change source, since they only depend on
elapsed time; dynamic schedulers, on the other hand, do need a change source.

A change source is generally configured with information about a source repository (which is where changes happen);
a change source can watch changes at different levels in the hierarchy of the repository, so for example it is possible
to watch the whole repository or a subset of it, or just a single branch. This determines the extent of the information
that is passed down to the schedulers.

There are many ways a change source can learn about changes; it can periodically poll the repository for changes, or
the VCS can be configured (for example through hook scripts triggered by commits) to push changes into the change
source. While these two methods are probably the most common, they are not the only possibilities; it is possible for
example to have a change source detect changes by parsing some email sent to a mailing list when a commit happens,
and yet other methods exist. The manual again has the details.

To complete our example, here’s a change source that polls a SVN repository every 2 minutes:

from buildbot.plugins import changes, util

svnpoller = changes.SVNPoller (repourl= ’
svnuser= ,
svnpasswd= ,
pollinterval=120,
split_file=util.svn.split_file_branches)

cl] = svnpoller

This poller watches the whole “coolproject” section of the repository, so it will detect changes in all the branches. We
could have said:

’repourl

or:

’repourl

to watch only a specific branch.

To watch another project, you need to create another change source — and you need to filter changes by project. For
instance, when you add a change source watching project ‘superproject’ to the above example, you need to change:

trunkchanged = schedulers.SingleBranchScheduler (name= ,
change_filter=
—ChangeFilter (branch=None) ,

to e.g.:

trunkchanged = schedulers.SingleBranchScheduler (name= ,
change_filter=

—ChangeFilter (project= ,_branch=None)

(continues on next page)

1.4. Further Reading 21

Buildbot Documentation, Release 2.3.0

(continued from previous page)

else coolproject will be built when there’s a change in superproject.

Since we’re watching more than one branch, we need a method to tell in which branch the change occurred when we
detect one. This is what the split_file argument does, it takes a callable that Buildbot will call to do the job.
The split_file_branches function, which comes with Buildbot, is designed for exactly this purpose so that’s what the
example above uses.

And of course this is all SVN-specific, but there are pollers for all the popular VCSs.

But note: if you have many projects, branches, and builders it probably pays to not hardcode all the schedulers and
builders in the configuration, but generate them dynamically starting from list of all projects, branches, targets etc.
and using loops to generate all possible combinations (or only the needed ones, depending on the specific setup), as
explained in the documentation chapter about Customization.

Reporters

Now that the basics are in place, let’s go back to the builders, which is where the real work happens. Reporters are
simply the means Buildbot uses to inform the world about what’s happening, that is, how builders are doing. There
are many reporters: a mail notifier, an IRC notifier, and others. They are described fairly well in the manual.

One thing I’ve found useful is the ability to pass a domain name as the lookup argument to amailNotifier, which
allows you to take an unqualified username as it appears in the SVN change and create a valid email address by
appending the given domain name to it:

from buildbot.plugins import reporter

notifier = reporter.MailNotifier (fromaddr= ,
sendToInterestedUsers=True,
lookup=)

cl] .append (notifier)

The mail notifier can be customized at will by means of the messageFormatter argument, which is a class that
Buildbot calls to format the body of the email, and to which it makes available lots of information about the build. For
more details, look into the Reporters section of the Buildbot manual.

Conclusion

Please note that this article has just scratched the surface; given the complexity of the task of build automation,
the possibilities are almost endless. So there’s much, much more to say about Buildbot. However, hopefully this
is a preparation step before reading the official manual. Had I found an explanation as the one above when I was
approaching Buildbot, I’d have had to read the manual just once, rather than multiple times. Hope this can help
someone else.

(Thanks to Davide Brini for permission to include this tutorial, derived from one he originally posted at http:
/fbackreference.org .)

Caution: Buildbot no longer supports Python 2.7 on the Buildbot master.

This is the Buildbot manual for Buildbot version 2.3.0.

22 Chapter 1. Buildbot Tutorial

http://backreference.org
http://backreference.org

CHAPTER 2

Buildbot Manual

Caution: Buildbot no longer supports Python 2.7 on the Buildbot master.

2.1 Introduction

Buildbot is a system to automate the compile/test cycle required by most software projects to validate code changes. By
automatically rebuilding and testing the tree each time something has changed, build problems are pinpointed quickly,
before other developers are inconvenienced by the failure. The guilty developer can be identified and harassed without
human intervention. By running the builds on a variety of platforms, developers who do not have the facilities to test
their changes everywhere before checkin will at least know shortly afterwards whether they have broken the build or
not. Warning counts, lint checks, image size, compile time, and other build parameters can be tracked over time, are
more visible, and are therefore easier to improve.

The overall goal is to reduce tree breakage and provide a platform to run tests or code-quality checks that are too
annoying or pedantic for any human to waste their time with. Developers get immediate (and potentially public)
feedback about their changes, encouraging them to be more careful about testing before checkin.

Features:
* run builds on a variety of worker platforms
« arbitrary build process: handles projects using C, Python, whatever
* minimal host requirements: Python and Twisted
» workers can be behind a firewall if they can still do checkout
* status delivery through web page, email, IRC, other protocols
* track builds in progress, provide estimated completion time
« flexible configuration by subclassing generic build process classes
* debug tools to force a new build, submit fake Changes, query worker status

* released under the GPL (https://opensource.org/licenses/gpl-2.0.php)

23

https://opensource.org/licenses/gpl-2.0.php

Buildbot Documentation, Release 2.3.0

2.1.1 History and Philosophy

The Buildbot was inspired by a similar project built for a development team writing a cross-platform embedded system.
The various components of the project were supposed to compile and run on several flavors of unix (linux, solaris,
BSD), but individual developers had their own preferences and tended to stick to a single platform. From time to time,
incompatibilities would sneak in (some unix platforms want to use st ring. h, some prefer st rings.h), and then
the tree would compile for some developers but not others. The Buildbot was written to automate the human process
of walking into the office, updating a tree, compiling (and discovering the breakage), finding the developer at fault, and
complaining to them about the problem they had introduced. With multiple platforms it was difficult for developers to
do the right thing (compile their potential change on all platforms); the Buildbot offered a way to help.

Another problem was when programmers would change the behavior of a library without warning its users, or change
internal aspects that other code was (unfortunately) depending upon. Adding unit tests to the codebase helps here: if
an application’s unit tests pass despite changes in the libraries it uses, you can have more confidence that the library
changes haven’t broken anything. Many developers complained that the unit tests were inconvenient or took too long
to run: having the Buildbot run them reduces the developer’s workload to a minimum.

In general, having more visibility into the project is always good, and automation makes it easier for developers to do
the right thing. When everyone can see the status of the project, developers are encouraged to keep the tree in good
working order. Unit tests that aren’t run on a regular basis tend to suffer from bitrot just like code does: exercising
them on a regular basis helps to keep them functioning and useful.

The current version of the Buildbot is additionally targeted at distributed free-software projects, where resources and
platforms are only available when provided by interested volunteers. The workers are designed to require an absolute
minimum of configuration, reducing the effort a potential volunteer needs to expend to be able to contribute a new test
environment to the project. The goal is for anyone who wishes that a given project would run on their favorite platform
should be able to offer that project a worker, running on that platform, where they can verify that their portability code
works, and keeps working.

2.1.2 System Architecture

The Buildbot consists of a single buildmaster and one or more workers, connected in a star topology. The buildmaster
makes all decisions about what, when, and how to build. It sends commands to be run on the workers, which simply
execute the commands and return the results. (certain steps involve more local decision making, where the overhead
of sending a lot of commands back and forth would be inappropriate, but in general the buildmaster is responsible for
everything).

The buildmaster is usually fed Changes by some sort of version control system (Change Sources and Changes),
which may cause builds to be run. As the builds are performed, various status messages are produced, which are then
sent to any registered Reporters.

24 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 2.3.0

REPOSITORY NOTIFIERS
*Subversion *Email
*Mercurial . Poll BUILD +Web Status
*Bazaar P CHANGES =l MASTER STATUS —> | _IRC
eDarcs «Status Client
«GIT
«CVS

COMMANDS CoOMMANDS

The buildmaster is configured and maintained by the buildmaster admin, who is generally the project team member
responsible for build process issues. Each worker is maintained by a worker admin, who do not need to be quite as

involved. Generally workers are run by anyone who has an interest in seeing the project work well on their favorite
platform.

Worker Connections

The workers are typically run on a variety of separate machines, at least one per platform of interest. These machines
connect to the buildmaster over a TCP connection to a publicly-visible port. As a result, the workers can live behind a
NAT box or similar firewalls, as long as they can get to buildmaster. The TCP connections are initiated by the worker
and accepted by the buildmaster, but commands and results travel both ways within this connection. The buildmaster
is always in charge, so all commands travel exclusively from the buildmaster to the worker.

To perform builds, the workers must typically obtain source code from a CVS/SVN/etc repository. Therefore they
must also be able to reach the repository. The buildmaster provides instructions for performing builds, but does not
provide the source code itself.

REPOSITORY

*Subversion
* Mercurial
*Bazaar

" eDarcs

«GIT

«CVS

BUILD
MASTER

COMMANDS

RESULTS CHECKOUT/UPDATE

Buildmaster Architecture

The buildmaster consists of several pieces:

2.1. Introduction 25

Buildbot Documentation, Release 2.3.0

(Guer(Gme(Gne

/'--- = N
, .
{ CHANGE)

SCHEDULER ESCHEDULER |
Y

Y
T 1

T, P S Bu
 Buwn \ '\\Rl-f__.UrHI/J '\\REC!_IET _/é II'I'j\ S
I REI:UE‘;_ J T R f LALLS
Ny \ ReQuesT, /

¥ Qe ¥ Qe &

| BUILDER BUILDERYJ | BUILDER
I Y Y
1

Buln) - Bu
\BUILD) A (Bui) A
R :;jﬁLlILD_: I"QEII_'__[E"I M __;l' [BHIL}' '._E|..|| Esl

o A g

- | WORKER || WORKER
: FOR FOR
- | BUILDER || BUILDER

"

[

"

"

"

[

"
=

- | WORKER || WORKER
: FOR FOR
- | BUILDER || BUILDER

WORKER

WORKER

Change Sources Which create a Change object each time something is modified in the VC repository. Most
ChangeSources listen for messages from a hook script of some sort. Some sources actively poll the repository
on a regular basis. All Changes are fed to the schedulers.

Schedulers Which decide when builds should be performed. They collect Changes into BuildRequests, which
are then queued for delivery to Builders until a worker is available.

Builders Which control exactly how each build is performed (with a series of BuildSteps, configured in a
BuildFactory). Each Build is run on a single worker.

Status plugins Which deliver information about the build results through protocols like HTTP, mail, and IRC.

Each Builder is configured with a list of Workers that it will use for its builds. These workers are expected
to behave identically: the only reason to use multiple Workers for a single Builder is to provide a measure of
load-balancing.

Within a single Worker, each Builder creates its own WorkerForBuilder instance. These
WorkerForBuilders operate independently from each other. Each gets its own base directory to work in. It
is quite common to have many Builders sharing the same worker. For example, there might be two workers: one

26 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 2.3.0

for 1386, and a second for PowerPC. There may then be a pair of Builders that do a full compile/test run, one for
each architecture, and a lone Bui 1der that creates snapshot source tarballs if the full builders complete successfully.
The full builders would each run on a single worker, whereas the tarball creation step might run on either worker (since
the platform doesn’t matter when creating source tarballs). In this case, the mapping would look like:

Builder (full-i386) —-> Workers (worker—-1386)
Builder (full-ppc) —-> Workers (worker—-ppc)
Builder (source-tarball) -> Workers (worker-i386, worker-ppc)

and each Worker would have two WorkerForBuilders inside it, one for a full builder, and a second for the
source-tarball builder.

Once a WorkerForBuilder is available, the Builder pulls one or more BuildRequests off its incoming
queue. (It may pull more than one if it determines that it can merge the requests together; for example, there may be
multiple requests to build the current HEAD revision). These requests are merged into a single Bui 1d instance, which
includes the SourceStamp that describes what exact version of the source code should be used for the build. The
Build is then randomly assigned to a free WorkerForBuilder and the build begins.

The behaviour when BuildRequests are merged can be customized, Collapsing Build Requests.
Status Delivery Architecture

The buildmaster maintains a central Status object, to which various status plugins are connected. Through this
Status object, a full hierarchy of build status objects can be obtained.

2.1. Introduction 27

Buildbot Documentation, Release 2.3.0

.-/'Egj_:;\. STATUS

(Reaesr) PLUGINS

> e e m]

|

QueLE

--+=-+Waterfall

- I -» Mail Notif er

BUILDER p---{ BUILDER 1°IRC

STATUS

>| IRC SERVER
> MTA
-->| BROWSER

P
/ \ BuiLp BuiLp
"@U'L_[}f'"" STATUS STATUS

r
1
1
1
|
1
I
1
1
1
1
1
I
1
1
1
1
1
]
]
1
]

i
-

The configuration file controls which status plugins are active. Each status plugin gets a reference to the top-level
Status object. From there they can request information on each Builder, Build, Step, and LogFile. This
query-on-demand interface is used by the html.Waterfall plugin to create the main status page each time a web
browser hits the main URL.

The status plugins can also subscribe to hear about new Builds as they occur: this is used by the MailNotifier
to create new email messages for each recently-completed Build.

The Status object records the status of old builds on disk in the buildmaster’s base directory. This allows it to return
information about historical builds.

There are also status objects that correspond to Schedulers and Workers. These allow status plugins to report
information about upcoming builds, and the online/offline status of each worker.

28 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 2.3.0

2.1.3 Control Flow

A day in the life of the Buildbot:

¢ A developer commits some source code changes to the repository. A hook script or commit trigger of some
sort sends information about this change to the buildmaster through one of its configured Change Sources.
This notification might arrive via email, or over a network connection (either initiated by the buildmaster as it
subscribes to changes, or by the commit trigger as it pushes Changes towards the buildmaster). The Change
contains information about who made the change, what files were modified, which revision contains the change,
and any checkin comments.

 The buildmaster distributes this change to all of its configured schedulers. Any important changes cause the
tree-stable-timer to be started, and the Change is added to a list of those that will go into a new Build.
When the timer expires, a Build is started on each of a set of configured Builders, all compiling/testing the
same source code. Unless configured otherwise, all Builds run in parallel on the various workers.

e The Build consists of a series of Steps. Each Step causes some number of commands to be invoked on
the remote worker associated with that Builder. The first step is almost always to perform a checkout of
the appropriate revision from the same VC system that produced the Change. The rest generally perform a
compile and run unit tests. As each Step runs, the worker reports back command output and return status to
the buildmaster.

e As the Build runs, status messages like “Build Started”, “Step Started”, “Build Finished”, etc, are published
to a collection of Status Targets. One of these targets is usually the HTML Waterfall display, which shows
a chronological list of events, and summarizes the results of the most recent build at the top of each column.
Developers can periodically check this page to see how their changes have fared. If they see red, they know that
they’ve made a mistake and need to fix it. If they see green, they know that they’ve done their duty and don’t
need to worry about their change breaking anything.

e IfaMailNotifier status target is active, the completion of a build will cause email to be sent to any devel-
opers whose Changes were incorporated into this Build. The MailNotifier can be configured to only
send mail upon failing builds, or for builds which have just transitioned from passing to failing. Other status
targets can provide similar real-time notification via different communication channels, like IRC.

Caution: Buildbot no longer supports Python 2.7 on the Buildbot master.

2.2 Installation

Caution: Buildbot no longer supports Python 2.7 on the Buildbot master.

2.2.1 Buildbot Components

Buildbot is shipped in two components: the buildmaster (called buildbot for legacy reasons) and the worker. The
worker component has far fewer requirements, and is more broadly compatible than the buildmaster. You will need
to carefully pick the environment in which to run your buildmaster, but the worker should be able to run just about
anywhere.

It is possible to install the buildmaster and worker on the same system, although for anything but the smallest installa-
tion this arrangement will not be very efficient.

2.2. Installation 29

Buildbot Documentation, Release 2.3.0

Caution: Buildbot no longer supports Python 2.7 on the Buildbot master.

2.2.2 Requirements

Common Requirements

At a bare minimum, you’ll need the following for both the buildmaster and a worker:
Python: https://www.python.org
Buildbot master works with Python-3.5+. Buildbot worker works with Python 2.7, or Python 3.5+.

Note: This should be a “normal” build of Python. Builds of Python with debugging enabled or other
unusual build parameters are likely to cause incorrect behavior.

Twisted: http://twistedmatrix.com

Buildbot requires Twisted-17.9.0 or later on the master and the worker. In upcoming versions of Buildbot,
a newer Twisted will also be required on the worker. As always, the most recent version is recommended.

Of course, your project’s build process will impose additional requirements on the workers. These hosts must have all
the tools necessary to compile and test your project’s source code.

Windows Support

Buildbot - both master and worker - runs well natively on Windows. The worker runs well on Cygwin, but because of
problems with SQLite on Cygwin, the master does not.

Buildbot’s windows testing is limited to the most recent Twisted and Python versions. For best results, use the most
recent available versions of these libraries on Windows.

Pywin32: http://sourceforge.net/projects/pywin32/

Twisted requires PyWin32 in order to spawn processes on Windows.

Buildmaster Requirements

Note that all of these requirements aside from SQLite can easily be installed from the Python package repository,
PyPI.

sqlite3: http://www.sqlite.org

Buildbot requires a database to store its state, and by default uses SQLite. Version 3.7.0 or higher is
recommended, although Buildbot will run down to 3.6.16 — at the risk of “Database is locked” errors. The
minimum version is 3.4.0, below which parallel database queries and schema introspection fail.

Please note that Python ships with sqlite3 by default since Python 2.6.

If you configure a different database engine, then SQLite is not required. however note that Buildbot’s
own unit tests require SQLite.

Jinja2: http://jinja.pocoo.org/
Buildbot requires Jinja version 2.1 or higher.

Jinja2 is a general purpose templating language and is used by Buildbot to generate the HTML output.

30 Chapter 2. Buildbot Manual

https://www.python.org
http://twistedmatrix.com
http://sourceforge.net/projects/pywin32/
http://www.sqlite.org
http://jinja.pocoo.org/

Buildbot Documentation, Release 2.3.0

SQLAIchemy: http://www.sqlalchemy.org/

Buildbot requires SQLAIchemy version 1.1.0 or higher. SQLAIchemy allows Buildbot to build database
schemas and queries for a wide variety of database systems.

SQLAIchemy-Migrate: https://sqlalchemy-migrate.readthedocs.io/en/latest/

Buildbot requires SQLAlchemy-Migrate version 0.9.0 or higher. Buildbot uses SQLAlchemy-Migrate to
manage schema upgrades from version to version.

Python-Dateutil: http://labix.org/python-dateutil

Buildbot requires Python-Dateutil in version 1.5 or higher (the last version to support Python-2.x). This
is a small, pure-Python library.

Autobahn:

The master requires Autobahn version 0.16.0 or higher with Python 2.7.

Caution: Buildbot no longer supports Python 2.7 on the Buildbot master.

2.2.3 Installing the code

The Buildbot Packages

Buildbot comes in several parts: buildbot (the buildmaster), buildbot-worker (the worker),
buildbot-www, and several web plugins such as buildbot-waterfall-view.

The worker and buildmaster can be installed individually or together. The base web (buildbot .www) and web
plugins are required to run a master with a web interface (the common configuration).

Installation From PyPI

The preferred way to install Buildbot is using pip. For the master:

’pip install buildbot

and for the worker:

’pip install buildbot-worker

When using pip to install instead of distribution specific package managers, e.g. via apt-get or ports, it is simpler to
choose exactly which version one wants to use. It may however be easier to install via distribution specific package
mangers but note that they may provide an earlier version than what is available via pip.

If you plan to use TLS or SSL in master configuration (e.g. to fetch resources over HTTPS using twisted.web.
client), you need to install Buildbot with t 1s extras:

pip install buildbot[tls]

Installation From Tarballs

Buildbot master and buildbot-worker are installed using the standard Python distutils
(http://docs.python.org/library/distutils.html) process. For either component, after unpacking the tarball, the
process is:

2.2. Installation 31

http://www.sqlalchemy.org/
https://sqlalchemy-migrate.readthedocs.io/en/latest/
http://labix.org/python-dateutil
http://docs.python.org/library/distutils.html

Buildbot Documentation, Release 2.3.0

python setup.py build
python setup.py install

where the install step may need to be done as root. This will put the bulk of the code in somewhere like /usr/1ib/
pythonx.y/site-packages/buildbot. It will also install the buildbot command-line tool in /usr/
bin/buildbot.

If the environment variable SNO_INSTALL_REQS is set to 1, then setup.py will not try to install Buildbot’s
requirements. This is usually only useful when building a Buildbot package.

To test this, shift to a different directory (like /tmp), and run:

buildbot —--version

buildbot-worker —--version

If it shows you the versions of Buildbot and Twisted, the install went ok. If it says “no such command” or it gets an
ImportError when it tries to load the libraries, then something went wrong. pydoc buildbot is another useful
diagnostic tool.

Windows users will find these files in other places. You will need to make sure that Python can find the libraries, and
will probably find it convenient to have buildbot on your PATH.

Installation in a Virtualenv

If you cannot or do not wish to install the buildbot into a site-wide location like /usr or /usr/local,
you can also install it into the account’s home directory or any other location using a tool like virtualenv
(http://pypi.python.org/pypi/virtualenv).

Running Buildbot’s Tests (optional)

If you wish, you can run the buildbot unit test suite. First, ensure you have the mock (http://pypi.python.org/pypi/mock)
Python module installed from PyPI. You must not be using a Python wheels packaged version of Buildbot or have
specified the bdist_wheel command when building. The test suite is not included with the PyPi packaged version.
This module is not required for ordinary Buildbot operation - only to run the tests. Note that this is not the same as the
Fedora mock package!

You can check with

python —-mmock

Then, run the tests:

PYTHONPATH=. trial buildbot.test

PYTHONPATH=. trial buildbot_worker.test

Nothing should fail, although a few might be skipped.

If any of the tests fail for reasons other than a missing mock, you should stop and investigate the cause before
continuing the installation process, as it will probably be easier to track down the bug early. In most cases, the
problem is incorrectly installed Python modules or a badly configured PYTHONPATH. This may be a good time to
contact the Buildbot developers for help.

32 Chapter 2. Buildbot Manual

http://pypi.python.org/pypi/virtualenv
http://pypi.python.org/pypi/mock

Buildbot Documentation, Release 2.3.0

Caution: Buildbot no longer supports Python 2.7 on the Buildbot master.

2.2.4 Buildmaster Setup
Creating a buildmaster
As you learned earlier (System Architecture), the buildmaster runs on a central host (usually one that is publicly visible,

so everybody can check on the status of the project), and controls all aspects of the buildbot system

You will probably wish to create a separate user account for the buildmaster, perhaps named buildmaster. Do not
run the buildmaster as root!

You need to choose a directory for the buildmaster, called the basedir. This directory will be owned by the build-
master. It will contain configuration, the database, and status information - including logfiles. On a large buildmaster
this directory will see a lot of activity, so it should be on a disk with adequate space and speed.

Once you’ve picked a directory, use the buildbot create-master command to create the directory and populate
it with startup files:

buildbot create-master -r basedir

You will need to create a configuration file before starting the buildmaster. Most of the rest of this manual is dedicated
to explaining how to do this. A sample configuration file is placed in the working directory, named master.cfg.
sample, which can be copied to master. cfg and edited to suit your purposes.

(Internal details: This command creates a file named buildbot . t ac that contains all the state necessary to create the
buildmaster. Twisted has a tool called t wistd which can use this .tac file to create and launch a buildmaster instance.
Twistd takes care of logging and daemonization (running the program in the background). /usr/bin/buildbot
is a front end which runs twistd for you.)

Your master will need a database to store the various information about your builds, and its configuration. By default,
the sglite3 backend will be used. This needs no configuration, neither extra software. All information will be
stored in the file state.sglite. Buildbot however supports multiple backends. See Using A Database Server for
more options.

Buildmaster Options

This section lists options to the create-master command. You can also type buildbot create-master
——help for an up-to-the-moment summary.

——force
This option will allow to re-use an existing directory.

--no-logrotate
This disables internal worker log management mechanism. With this option worker does not override the default
logfile name and its behaviour giving a possibility to control those with command-line options of twistd daemon.

——-relocatable
This creates a “relocatable” buildbot .tac, which uses relative paths instead of absolute paths, so that the
buildmaster directory can be moved about.

——config

The name of the configuration file to use. This configuration file need not reside in the buildmaster directory.
—-log-size

This is the size in bytes when to rotate the Twisted log files. The default is 10MiB.

2.2. Installation 33

Buildbot Documentation, Release 2.3.0

——log—-count
This is the number of log rotations to keep around. You can either specify a number or None to keep all
twistd. log files around. The default is 10.

--db
The database that the Buildmaster should use. Note that the same value must be added to the configuration file.

Upgrading an Existing Buildmaster

If you have just installed a new version of the Buildbot code, and you have buildmasters that were created using an
older version, you’ll need to upgrade these buildmasters before you can use them. The upgrade process adds and
modifies files in the buildmaster’s base directory to make it compatible with the new code.

buildbot upgrade-master basedir

This command will also scan your master.cfg file for incompatibilities (by loading it and printing any errors or
deprecation warnings that occur). Each buildbot release tries to be compatible with configurations that worked cleanly
(i.e. without deprecation warnings) on the previous release: any functions or classes that are to be removed will first
be deprecated in a release, to give you a chance to start using the replacement.

The upgrade-master command is idempotent. It is safe to run it multiple times. After each upgrade of the
Buildbot code, you should use upgrade-master on all your buildmasters.

Warning: The upgrade-master command may perform database schema modifications. To avoid any data
loss or corruption, it should not be interrupted. As a safeguard, it ignores all signals except STGKILL.

In general, Buildbot workers and masters can be upgraded independently, although some new features will not be
available, depending on the master and worker versions.

Beyond this general information, read all of the sections below that apply to versions through which you are upgrading.

Version-specific Notes
Upgrading from Buildbot-0.8.x to Buildbot-0.9.x

See Upgrading from Buildbot 0.8.x for a guide to upgrading from 0.8.x to 0.9.x

Upgrading a Buildmaster to Buildbot-0.7.6

The 0.7.6 release introduced the public_html/ directory, which contains index.html and other files served by
the WebStatus and Waterfall status displays. The upgrade—-master command will create these files if they
do not already exist. It will not modify existing copies, but it will write a new copy in e.g. index.html .new if the
new version differs from the version that already exists.

Upgrading a Buildmaster to Buildbot-0.8.0

Buildbot-0.8.0 introduces a database backend, which is SQLite by default. The upgrade—-master command will
automatically create and populate this database with the changes the buildmaster has seen. Note that, as of this release,
build history is not contained in the database, and is thus not migrated.

34 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 2.3.0

Upgrading into a non-SQLite database

If you are not using sqlite, you will need to add an entry into your master.cfg to reflect the database version you
are using. The upgrade process does not edit your master . cfg for you. So something like:

cl] =

Once the parameter has been added, invoke upgrade-master. This will extract the DB url from your configuration
file.

buildbot upgrade-master

See Database Specification for more options to specify a database.

Caution: Buildbot no longer supports Python 2.7 on the Buildbot master.

2.2.5 Worker Setup

Creating a worker

Typically, you will be adding a worker to an existing buildmaster, to provide additional architecture coverage. The
Buildbot administrator will give you several pieces of information necessary to connect to the buildmaster. You should
also be somewhat familiar with the project being tested, so you can troubleshoot build problems locally.

The Buildbot exists to make sure that the project’s stated how to build it process actually works. To this end,
the worker should run in an environment just like that of your regular developers. Typically the project build process
is documented somewhere (README, INSTALL, etc), in a document that should mention all library dependencies and
contain a basic set of build instructions. This document will be useful as you configure the host and account in which
the worker runs.

Here’s a good checklist for setting up a worker:
1. Set up the account

It is recommended (although not mandatory) to set up a separate user account for the worker. This account
is frequently named buildbot or worker. This serves to isolate your personal working environment
from that of the worker’s, and helps to minimize the security threat posed by letting possibly-unknown
contributors run arbitrary code on your system. The account should have a minimum of fancy init scripts.

2. Install the Buildbot code

Follow the instructions given earlier (/nstalling the code). If you use a separate worker account, and you
didn’t install the Buildbot code to a shared location, then you will need to install it with ——home=~ for
each account that needs it.

3. Set up the host

Make sure the host can actually reach the buildmaster. Usually the buildmaster is running a status web-
server on the same machine, so simply point your web browser at it and see if you can get there. Install
whatever additional packages or libraries the project’s INSTALL document advises. (or not: if your
worker is supposed to make sure that building without optional libraries still works, then don’t install
those libraries.)

2.2. Installation 35

Buildbot Documentation, Release 2.3.0

Again, these libraries don’t necessarily have to be installed to a site-wide shared location, but they must
be available to your build process. Accomplishing this is usually very specific to the build process, so
installing them to /usr or /usr/local is usually the best approach.

. Test the build process

Follow the instructions in the INSTALL document, in the worker’s account. Perform a full CVS (or
whatever) checkout, configure, make, run tests, etc. Confirm that the build works without manual fussing.
If it doesn’t work when you do it by hand, it will be unlikely to work when the Buildbot attempts to do it
in an automated fashion.

. Choose a base directory

This should be somewhere in the worker’s account, typically named after the project which is being
tested. The worker will not touch any file outside of this directory. Something like ~/Buildbot or
~/Workers/fooproject is appropriate.

. Get the buildmaster host/port, botname, and password

When the Buildbot admin configures the buildmaster to accept and use your worker, they will provide you
with the following pieces of information:

 your worker’s name
¢ the password assigned to your worker

* the hostname and port number of the buildmaster, i.e. http://buildbot.example.org:8007

. Create the worker

Now run the ‘worker’ command as follows:

buildbot-worker create-worker BASEDIR MASTERHOST:PORT
WORKERNAME PASSWORD

This will create the base directory and a collection of files inside, including the buildbot . tac file that
contains all the information you passed to the buildbot command.

. Fill in the hostinfo files

When it first connects, the worker will send a few files up to the buildmaster which describe the host
that it is running on. These files are presented on the web status display so that developers have more
information to reproduce any test failures that are witnessed by the Buildbot. There are sample files in the
info subdirectory of the Buildbot’s base directory. You should edit these to correctly describe you and
your host.

BASEDIR/info/admin should contain your name and email address. This is the worker admin
address, and will be visible from the build status page (so you may wish to munge it a bit if address-
harvesting spambots are a concern).

BASEDIR/info/host should be filled with a brief description of the host: OS, version, memory size,
CPU speed, versions of relevant libraries installed, and finally the version of the Buildbot code which is
running the worker.

The optional BASEDIR/info/access_uri can specify a URI which will connect a user to the ma-
chine. Many systems accept ssh://hostname URIs for this purpose.

If you run many workers, you may want to create a single ~worker/info file and share it among all
the workers with symlinks.

36

Chapter 2. Buildbot Manual

http://buildbot.example.org:8007

Buildbot Documentation, Release 2.3.0

Worker Options

There are a handful of options you might want to use when creating the worker with the buildbot-worker
create-worker <options> DIR <params> command. You can type buildbot-worker
create-worker —-—help for a summary. To use these, just include them on the buildbot-worker
create-worker command line, like this

buildbot-worker create-worker —--umask=0022 ~/worker buildmaster.example.org:42012
—{myworkername} {mypasswd}

—--no-logrotate
This disables internal worker log management mechanism. With this option worker does not override the default
logfile name and its behaviour giving a possibility to control those with command-line options of twistd daemon.

——umask
This is a string (generally an octal representation of an integer) which will cause the worker process’ umask
value to be set shortly after initialization. The twistd daemonization utility forces the umask to 077 at startup
(which means that all files created by the worker or its child processes will be unreadable by any user other than
the worker account). If you want build products to be readable by other accounts, you can add ——umask=022
to tell the worker to fix the umask after twistd clobbers it. If you want build products to be writable by other
accounts too, use ——umask=000, but this is likely to be a security problem.

——keepalive
This is a number that indicates how frequently keepalive messages should be sent from the worker to the
buildmaster, expressed in seconds. The default (600) causes a message to be sent to the buildmaster at least once
every 10 minutes. To set this to a lower value, use e.g. ——keepalive=120.

If the worker is behind a NAT box or stateful firewall, these messages may help to keep the connection alive:
some NAT boxes tend to forget about a connection if it has not been used in a while. When this happens, the
buildmaster will think that the worker has disappeared, and builds will time out. Meanwhile the worker will not
realize than anything is wrong.

—--maxdelay
This is a number that indicates the maximum amount of time the worker will wait between connection attempts,
expressed in seconds. The default (300) causes the worker to wait at most 5 minutes before trying to connect to
the buildmaster again.

—-maxretries
This is a number that indicates the maximum number of time the worker will make connection attempts. After
that amount, the worker process will stop. This option is useful for Latent Workers to avoid consuming resources
in case of misconfiguration or master failure.

For VM based latent workers, the user is responsible for halting the system when Buildbot worker has
exited. This feature is heavily OS dependent, and cannot be managed by Buildbot worker. For ex-
ample with systemd (https://www.freedesktop.org/software/systemd/man/systemd.service.html), one can add
ExecStopPost=shutdown now to the Buildbot worker service unit configuration.

——log-size
This is the size in bytes when to rotate the Twisted log files.

—--log-count
This is the number of log rotations to keep around. You can either specify a number or None to keep all
twistd. log files around. The default is 10.

—-allow-shutdown
Can also be passed directly to the Worker constructor in buildbot . tac. If set, it allows the worker to initiate
a graceful shutdown, meaning that it will ask the master to shut down the worker when the current build, if any,
is complete.

2.2. Installation 37

https://www.freedesktop.org/software/systemd/man/systemd.service.html

Buildbot Documentation, Release 2.3.0

Setting allow_shutdown to £1i1e will cause the worker to watch shutdown . stamp in basedir for updates to
its mtime. When the mtime changes, the worker will request a graceful shutdown from the master. The file does
not need to exist prior to starting the worker.

Setting allow_shutdown to signal will set up a SIGHUP handler to start a graceful shutdown. When the signal
is received, the worker will request a graceful shutdown from the master.

The default value is None, in which case this feature will be disabled.

Both master and worker must be at least version 0.8.3 for this feature to work.

Other Worker Configuration

unicode_encoding This represents the encoding that Buildbot should use when converting unicode commandline
arguments into byte strings in order to pass to the operating system when spawning new processes.

The default value is what Python’s sys.getfilesystemencoding returns, which on Windows is ‘mbcs’,
on Mac OSX is ‘utf-8’, and on Unix depends on your locale settings.

If you need a different encoding, this can be changed in your worker’s buildbot .tac file by adding a
unicode_encoding argument to the Worker constructor.

s = Worker (buildmaster_host, port, workername, passwd, basedir,
keepalive, usepty, umask=umask, maxdelay=maxdelay,

unicode_encoding="'utf-8', allow_shutdown='signal')

Worker TLS Configuration

connection_string For TLS connections to the master the connect ion_string-argument must be used to
Worker._ init__ function. buildmaster_host and port must then be None.

connection_string will be wused to «create a client endpoint with clientFromString
(https://twistedmatrix.com/documents/current/api/twisted.internet.endpoints.clientFromString.html). An
example of connection_stringis "TLS:buildbot-master.com:9989".

See more about how to formulate the connection string in ConnectionStrings
(https://twistedmatrix.com/documents/current/core/howto/endpoints.html).

Example TLS connection string:

s = Worker (, , workername, passwd, basedir, keepalive,
connection_string='TLS:buildbot-master.com:9989")

Make sure the worker trusts the masters certificate. If you have an non-authoritative certificate (CA is self-
signed) the trustRoot parameter can be used.

s = Worker (, , workername, passwd, basedir, keepalive,
connection_string=
'TLS:buildbot-master.com:9989:trustRoots=/dir-with-ca-certs')

It must point to a directory with PEM-encoded certificates in files with file ending .pem. For example:

$ cat /dir-with-ca-certs/ca.pem

MIIE9DCCA9ygAWIBAgIJALEQLrC/mlw3MAOGCSGSIb3DQEBCWUAMIGSMQOswCQYD
VOQGEwJaWjELMAKGA1UECBMCUUEXEDAOBgNVBACTB05vd2hlcmUXETAPBgNVBAOT

(continues on next page)

38 Chapter 2. Buildbot Manual

https://twistedmatrix.com/documents/current/api/twisted.internet.endpoints.clientFromString.html
https://twistedmatrix.com/documents/current/core/howto/endpoints.html

Buildbot Documentation, Release 2.3.0

(continued from previous page)

CEJ1aWxkYm90MRkwEFwYDVQQLEXBEZXZ1bGOwbWVudCBUZWEtMROQWEgYDVQQDEwWtC
dW1lsZGJIvdCBDQTEQMA4GA1UEKRMHRWE zeVITQTEOMCYGCSGSIb3DQEJARYZYNVp
PGRib3RAaW50ZWdyYXRpb24udGVzdDAeFwOxNJASMDIxXMJASNTIJaFwOyNjA4MzEx
MJASNTJaMIGsMQswCQYDVQQGEwJaWjELMAKkGALIUECBMCUUEXEDAOBgNVBACTBOSV
d2hlcmUxETAPBgNVBAOTCEJ1aWxkYm90OMRkwFwYDVQQLEXBEZXZ1bG9wbWVudCBU
ZWEtMROWEgYDVQQODEwWt CdW1lsZGJIJvdCBDQTEQMA4GA1UEKRMHRWE zeVITQTEOMCYG
CSgGSIb3DQEJARYZYnVpbGRib3RAaW50ZWdy YXRpb24udGVzdDCCASIWDQYJKoZI
hvcNAQEBBQADggEPADCCAQOCGgEBALJZcC9j4XYBilfYT/fibY2FRWN6Qh74b1Pg
I171Ide6Sf3DPdh/0ogYvZAT+cI1lkZdodv326d0EkuYKcywDvho8UeET6sIYhuHPDW
1R11Ret 6ylxpbEfxFNVMOEGNhYAPOC6QS2eWEP9LkV21CuMQtWiWzdedjk+efgBjR
Gozaim0lr/51x7bnVx0oRLAgbI5/ 9Ukbopansfr+CpICpFpbNPGZSmELzC3FPKXK
5tycj8WEglywlha2/VRnCZfYefB3aAuQqQilLh+QHyhn6hzc26+n5B018QvrMkOX
atKdznMLzJWGxS7UwmDKcsolcMAW+82BZ8nUCBPF3USPkTLO540CAWEAAaOCARUW
ggERMBOGA1UdDGQWBBT 7A/I+MZ1sFFJ99ikYkn51Q3wJ+TCB4QYDVROJBIHZMIHW
gBT7A/I+MZ1sFFJ9jikYkn51Q3wJI+aGBsqSBrzCBrDELMAKGALIUEBhMCW1loxCzAJ
BgNVBAgTAL1FBMRAwWDgYDVQQHEWdOb3doZXJ1MREWDWYDVQQKEWhCAW1lsZGJvdDEZ
MBCGA1UECxXMQORGV2ZWxvcGl1lbnQgVGVhbTEUMBIGA1UEAXMLONVPbGRib3QgQ0Ex
EDAOBgNVBCkTBOVhc31SUOExXKDAMBgkghkiGOwOBCQEWGWI1laWxkYm90QGludGVn
cmF0aW9uLnR1c3SCCQCxK1bwv5tcNzZAMBgNVHRMEBTADAQH/MAOGCSGSIb3DQEB
CwUAA4IBAQCJIGIVMAMWZRK/MRAMIEOe3s4YGMYT2 jwX5IX17X1JEy+1cS4huuzn2
33CFpslkT1MN/r8IIZWilxT/1TujHyt4eERGJELIoRVKU8r1TH8WUjFzPIVuinkte
09abgynAoec8aQukg7INRCY11/E2/WzfnUt3yTgKPfZmzoiNOK+hH4gV1WtrizPA
LaGwoslYYTA6JHNEeMm8OQLNf170TmAa7EpeIgVpLRCieI9S3JIG4WYU8EfVkeuiU
cB439SdixU4cecViNfFDpg6JIJM8N6+DQOYOSNRL 9Dy01i0Gyx5D41WoIQ+BmXQENal
gw+XLye jeNTNgLOx f 9pbNYMJIgxhkTkoE

Using TCP in connection_string is the equivalent as using the buildmaster_host and port argu-

ments.

s = Worker (, , workername, passwd, basedir, keepalive
connection_string="'TCP:buildbot-master.com:¢ 9")

is equivalent to

s = Worker ('buildbot-master.com', 9989, workername, passwd, basedir,
keepalive)

Upgrading an Existing Worker

Version-specific Notes

During project lifetime worker has transitioned over few states:

1. Before Buildbot version 0.8.1 worker were integral part of buildbot package distribution.

2. Starting from Buildbot version 0.8.1 worker were extracted from buildbot package to buildbot-slave

package.

3. Starting from Buildbot version 0.9.0 the buildbot—-slave package was renamed to buildbot-worker.

Upgrading a Worker to buildbot-slave 0.8.1

Before Buildbot version 0.8.1, the Buildbot master and worker were part of the same distribution. As of version 0.8.1,

the worker is a separate distribution.

2.2. Installation

39

Buildbot Documentation, Release 2.3.0

As of this release, you will need to install buildbot-slave to run a worker.

Any automatic startup scripts that had run buildbot start for previous versions should be changed to run
buildslave start instead.

If you are running a version later than 0.8.1, then you can skip the remainder of this section: the upgrade-slave
command will take care of this. If you are upgrading directly to 0.8.1, read on.

The existing buildbot . tac for any workers running older versions will need to be edited or replaced. If the loss
of cached worker state (e.g., for Source steps in copy mode) is not problematic, the easiest solution is to simply delete
the worker directory and re-run buildslave create-slave.

If deleting the worker directory is problematic, the change to buildbot . tac is simple. On line 3, replace:

’from buildbot.slave.bot import BuildSlave

with:

’from buildslave.bot import BuildSlave

After this change, the worker should start as usual.

Upgrading from 0.8.17 to the latest 0. 8. » version of buildbot-slave

If you have just installed a new version of Buildbot-slave, you may need to take some steps to upgrade it. If you are
upgrading to version 0.8.2 or later, you can run

buildslave upgrade-slave /path/to/worker/dir

Upgrading from the latest version of buildbot-slave to buildbot-worker

If the loss of cached worker state (e.g., for Source steps in copy mode) is not problematic, the easiest solution is to
simply delete the worker directory and re-run buildbot-worker create-worker.

If deleting the worker directory is problematic, you can change buildbot . tac in the following way:

1. Replace:

’from buildslave.bot import BuildSlave

with:

’from buildbot_worker.bot import Worker

2. Replace:
’application = service.Application()
with:
’application = service.Application()
3. Replace:
s = BuildSlave (buildmaster_host, port, slavename, passwd, basedir,

keepalive, usepty, umask=umask, maxdelay=maxdelay,
numcpus=numcpus, allow_shutdown=allow_shutdown)

40 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 2.3.0

with:

s = Worker (buildmaster_host, port, slavename, passwd, basedir,
keepalive, umask=umask, maxdelay=maxdelay,
numcpus=numcpus, allow_shutdown=allow_shutdown)

See Transition to “Worker” Terminology for details of changes in version Buildbot 0. 9. 0.

Caution: Buildbot no longer supports Python 2.7 on the Buildbot master.

2.2.6 Next Steps
Launching the daemons

Both the buildmaster and the worker run as daemon programs. To launch them, pass the working directory to the
buildbot and buildbot-worker commands, as appropriate:

buildbot start [BASEDIR]

buildbot-worker start [WORKER_BASEDIR]

The BASEDIR is option and can be omitted if the current directory contains the buildbot configuration (the
buildbot.tac file).

buildbot start

This command will start the daemon and then return, so normally it will not produce any output. To verify that the
programs are indeed running, look for a pair of files named twistd.log and twistd.pid that should be created
in the working directory. twistd.pid contains the process ID of the newly-spawned daemon.

When the worker connects to the buildmaster, new directories will start appearing in its base directory. The buildmaster
tells the worker to create a directory for each Builder which will be using that worker. All build operations are
performed within these directories: CVS checkouts, compiles, and tests.

Once you get everything running, you will want to arrange for the buildbot daemons to be started at boot time. One
way is to use cron, by putting them in a @reboot crontab entry'

@reboot buildbot start [BASEDIR]

When you run erontab to set this up, remember to do it as the buildmaster or worker account! If you add this to
your crontab when running as your regular account (or worse yet, root), then the daemon will run as the wrong user,
quite possibly as one with more authority than you intended to provide.

It is important to remember that the environment provided to cron jobs and init scripts can be quite different than
your normal runtime. There may be fewer environment variables specified, and the PATH may be shorter than usual.
It is a good idea to test out this method of launching the worker by using a cron job with a time in the near future,
with the same command, and then check twistd. log to make sure the worker actually started correctly. Common
problems here are for /usr/local or ~/bin to not be on your PATH, or for PYTHONPATH to not be set correctly.
Sometimes HOME is messed up too. If using systemd to launch buildbot-worker it may be a good idea to specify
a fixed PATH using the Environment directive, see systemd unit file example (https://github.com/buildbot/buildbot-
contrib/blob/master/master/contrib/systemd/worker.service)

! This @reboot syntax is understood by Vixie cron, which is the flavor usually provided with Linux systems. Other unices may have a cron
that doesn’t understand @reboot

2.2. Installation 41

https://github.com/buildbot/buildbot-contrib/blob/master/master/contrib/systemd/worker.service

Buildbot Documentation, Release 2.3.0

Some distributions may include conveniences to make starting buildbot at boot time easy. For instance, with the
default buildbot package in Debian-based distributions, you may only need to modify /etc/default/buildbot
(see also /etc/init.d/buildbot, which reads the configuration in /etc/default/buildbot).

Buildbot also comes with its own init scripts that provide support for controlling multi-worker and multi-master setups
(mostly because they are based on the init script from the Debian package). With a little modification these scripts can
be used both on Debian and RHEL-based distributions and may thus prove helpful to package maintainers who are
working on buildbot (or those that haven’t yet split buildbot into master and worker packages).

worker/contrib/init-scripts/buildbot-worker.default

master/contrib/init-scripts/buildmaster.default

worker/contrib/init-scripts/buildbot-worker.init.sh

master/contrib/init-scripts/buildmaster.init.sh

chkconfig buildmaster reset

update-rc.d buildmaster defaults

Launching worker as Windows service

You can find information about installation of Buildbot as Windows service here RunningBuildbotOnWindows
(http://trac.buildbot.net/wiki/RunningBuildbotOnWindows). Recent version of Buildbot worker has simplified con-
figuration for Windows service.

buildbot_worker_windows_service.exe —-—user YOURDOMAIN\theusername —--password,,
—~thepassword —--startup auto install

automatically adds user rights to run Buildbot as service.

Logfiles

While a buildbot daemon runs, it emits text to a logfile, named twistd.log. Acommandliketail —-f twistd.
log is useful to watch the command output as it runs.

The buildmaster will announce any errors with its configuration file in the logfile, so it is a good idea to look at the log
at startup time to check for any problems. Most buildmaster activities will cause lines to be added to the log.

Shutdown

To stop a buildmaster or worker manually, use:

buildbot stop [BASEDIR]

buildbot-worker stop [WORKER_BASEDIR]

42 Chapter 2. Buildbot Manual

http://trac.buildbot.net/wiki/RunningBuildbotOnWindows

Buildbot Documentation, Release 2.3.0

This simply looks for the twistd.pid file and kills whatever process is identified within.

At system shutdown, all processes are sent a STGKILL. The buildmaster and worker will respond to this by shutting
down normally.

The buildmaster will respond to a SIGHUP by re-reading its config file. Of course, this only works on Unix-like
systems with signal support, and won’t work on Windows. The following shortcut is available:

buildbot reconfig [BASEDIR]

When you update the Buildbot code to a new release, you will need to restart the buildmaster and/or worker be-
fore it can take advantage of the new code. You can do a buildbot stop BASEDIR and buildbot start
BASEDIR in quick succession, or you can use the restart shortcut, which does both steps for you:

’buildbot restart [BASEDIR]

Workers can similarly be restarted with:

’buildbot—worker restart [BASEDIR]

There are certain configuration changes that are not handled cleanly by buildbot reconfig. If this occurs,
buildbot restart isa more robust tool to fully switch over to the new configuration.

buildbot restart may also be used to start a stopped Buildbot instance. This behaviour is useful when writing
scripts that stop, start and restart Buildbot.

A worker may also be gracefully shutdown from the web UL This is useful to shutdown a worker without interrupting
any current builds. The buildmaster will wait until the worker has finished all its current builds, and will then tell the
worker to shutdown.

Caution: Buildbot no longer supports Python 2.7 on the Buildbot master.

2.3 Concepts

This chapter defines some of the basic concepts that the Buildbot uses. You’ll need to understand how the Buildbot
sees the world to configure it properly.

2.3.1 Source Stamps

Buildbot uses the concept of source stamp set to identify exact source code that needs to be built for a certain project.
A source stamp set is a collection of one or more source stamps.

A source stamp is a collection of information needed to identify a particular version of code on a certain codebase.
This information most often is a revision and possibly a branch.

A codebase is a collection of related files and their history tracked as a unit by version control systems. A single
codebase may appear in multiple repositories which themselves are identified by URLs. For example, https://
github.com/mozilla/mozilla-central and http://hg.mozilla.org/mozilla-release both
contain the Firefox codebase, although not exactly the same code.

A project corresponds to a set of one or more codebases that together may be built and produce some end artifact.
For example, a company may build several applications based on the same core library. The “app” codebase and the
“core” codebase are in separate repositories, but are compiled together and constitute a single project. Changes to
either codebase should cause a rebuild of the application.

2.3. Concepts 43

Buildbot Documentation, Release 2.3.0

A revision is an identifier used by most version control systems to uniquely specify a particular version of the source
code. Sometimes in order to do that a revision may make sense only if used in combination with a branch.

To sum up the above, to build a project, Buildbot needs to know exactly which version of each codebase it should
build. It uses a source stamp to do so for each codebase, each of which informs Buildbot that it should use a specific
revision from that codebase. Collectively these source stamps are called source stamp set for each project.

REPOSITORY ReposITORY | | REPOSITORY

aaa.com/bb.git aaa.com/bb-ui.git aaa.com/ui-lib.git
REPOSITORY L L

bbb.com/bb-mirror.git Il — =
com/bb-mirror.gi , ”';T, le; | @” F1LI,# [\/@ h1h1L|f
u.l—. memanan
Project A CODEEASE :| CopeBASE |:| CODEBASE | ProjectB
: : : ui-lib |

bb-ui

T el N
I'f Sounce \'I Souvece StampSer |-' Soukce \'I Sovece StmpSer I'f Sounce \'I
| STAM P fior project A | STam P/ for project B \ STAMF/.-
e e S
== —— 1

T, P T,
l-‘ Sounce ‘-l Source StampSET |-' Sounce ‘-l Source Stame ST l-‘ Sounce ‘-l
\ STAMP / for projectA [\, STamp / forprojectB 4, STame
P T P

2.3.2 Version Control Systems

Buildbot supports a significant number of version control systems, so it treats them abstractly.

For purposes of deciding when to perform builds, Buildbot’s change sources monitor repositories, and represent any
updates to those repositories as changes. These change sources fall broadly into two categories: pollers which peri-
odically check the repository for updates; and hooks, where the repository is configured to notify Buildbot whenever
an update occurs. For more information see Change Sources and Changes and How Different VC Systems Specify
Sources.

When it comes time to actually perform a build, a scheduler prepares a source stamp set, as described above, based
on its configuration. When the build begins, one or more source steps use the information in the source stamp set to
actually check out the source code, using the normal VCS commands.

2.3.3 Changes
A Change is an abstract way Buildbot uses to represent a single change to the source files performed by a developer.
In version control systems that support the notion of atomic check-ins a change represents a changeset or commit.
A Change comprises the following information:
* the developer that is responsible for the change
* the list of files that the change added, removed or modified

¢ the message of the commit

44 Chapter 2. Buildbot Manual

Buildbot Documentation, Release 2.3.0

* the repository, the codebase and the project that the change corresponds to

e the revision and the branch of the commit

2.3.4 Scheduling Builds

Each Buildmaster has a set of scheduler objects, each of which gets a copy of every incoming Change. The Schedulers
are responsible for deciding when Bui 1ds should be run. Some Buildbot installations might have a single scheduler,
while others may have several, each for a different purpose.

For example, a quick scheduler might exist to give immediate feedback to developers, hoping to catch obvious prob-
lems in the code that can be detected quickly. These typically do not run the full test suite, nor do they run on a wide
variety of platforms. They also usually do a VC update rather than performing a brand-new checkout each time.

A separate full scheduler might run more comprehensive tests, to catch more subtle problems. It might be configured
to run after the quick scheduler, to give developers time to commit fixes to bugs caught by the quick scheduler before
running the comprehensive tests. This scheduler would also feed multiple Builders.

Many schedulers can be configured to wait a while after seeing a source-code change - this is the tree stable timer.
The timer allows multiple commits to be “batched” together. This is particularly useful in distributed version control
systems, where a developer may push a long sequence of changes all at once. To save resources, it’s often desirable
only to test the most recent change.

Schedulers can also filter out the changes they are interested in, based on a number of criteria. For example, a scheduler
that only builds documentation might skip any changes that do not affect the documentation. Schedulers can also filter
on the branch to which a commit was made.

There is some support for configuring dependencies between builds - for example, you may want to build packages
only for revisions which pass all of the unit tests. This support is under active development in Buildbot, and is referred
to as “build coordination”.

Periodic builds (those which are run every N seconds rather than after new Changes arrive) are triggered by a special
Periodic scheduler.

Each scheduler creates and submits BuildSet objects to the BuildMaster, which is then responsible for making
sure the individual Buil1dRequests are delivered to the target Builders.

Scheduler instances are activated by placing them in the schedulers list in the buildmaster config file. Each
scheduler must have a unique name.

2.3.5 BuildSets

A BuildSet is the name given to a set of Builds that all compile/test the same version of the tree on multiple
Builders. In general, all these component Builds will perform the same sequence of Steps, using the same
source code, but on different platforms or against a different set of libraries.

The BuildSet is tracked as a single unit, which fails if any of the component Bui 1ds have failed, and therefore can
succeed only if all of the component Bui 1ds have succeeded. There are two kinds of status notification messages that
can be emitted for a BuildSet: the firstFailure type (which fires as soon as we know the BuildSet will
fail), and the Finished type (which fires once the BuildSet has completely finished, regardless of whether the
overall set pas