eBuildbot

BuildBot Documentation
Release 0.8.12

Brian Warner

April 24, 2015

Contents

Buildbot Tutorial 3
1.1 FirstRun e e 3
1.2 First Buildbot run with Docker. e 6
1.3 AQuickTour e e e e e e 8
1.4 Further Reading e e 15
Buildbot Manual 21
2.1 Introduction e e e e e e e e 21
22 Installation L L e e e e e e e e 26
2.3 CONCEPLS .« + v v v e e e e e e e e e e e e 38
2.4 Configuration o i e e e e e e e e e e e e e e e e e 47
2.5 Customization e e e e e e e e e e e e e e 178
2.6 New-StyleBuild Steps e e 196
2.7 Command-line Tool e e e 198
2.8 Resources. e e e e e e e 208
2.9 Optimization o v vt e e e e e e e e e e e e e e e e 208
2.10 Plugin Infrastructure in Buildbot L e 209
Buildbot Development 211
3.1 Master Organizationottt e e e e e e e 211
3.2 Definitions e e e e e e e e e 212
3.3 Buildbot Coding Style e e e e e 212
3.4 Buildbot’s Test Suite e e e e e 215
3.5 Configuration e e e e e 220
3.6 UHtes e e e 225
3.7 Database e e e e e e e e e e e 234
3.8 BuildResultCodes e e 250
3.9 FileFormats e e e 251
310 Web Status e e e e e e e e e 251
3.11 Master-Slave APL. e 252
3.12 String Encodingso e e e e e e e e e e e e 259
313 MELTICS . . v e o e e e e e e e e e e e e e e e e e e e 259
3.14 How to package Buildbot plugins e 261
3015 ClaSsSes . . v v o v i e e e e e e e e e e e 263
Release Notes for Buildbot 0.8.12 281
41 MaSter . . . o e e e e e e e e e e e e e e e e e 281
42 Slave . .. e e e e e e 283
43 Details e e e 283
4.4 Older VEersions v i it e e e e e e e e e e e e 283
Indices and Tables 359

6 Copyright 361

Buildmaster Configuration Index 363
Scheduler Index 365
Change Source Index 367
Build Step Index 369
Status Target Index 371
Command Line Index 373

Python Module Index 375

BuildBot Documentation, Release 0.8.12

This is the Buildbot documentation for Buildbot version 0.8.12.

If you are evaluating Buildbot and would like to get started quickly, start with the Tutorial. Regular users of
Buildbot should consult the Manual, and those wishing to modify Buildbot directly will want to be familiar with
the Developer’s Documentation.

Contents 1

BuildBot Documentation, Release 0.8.12

2 Contents

CHAPTER 1

Buildbot Tutorial

Contents:

1.1 First Run

1.1.1 Goal

This tutorial will take you from zero to running your first buildbot master and slave as quickly as possible, without
changing the default configuration.

This tutorial is all about instant gratification and the five minute experience: in five minutes we want to convince
you that this project Works, and that you should seriously consider spending some more time learning the system.
In this tutorial no configuration or code changes are done.

This tutorial assumes that you are running on Unix, but might be adaptable easily to Windows.

For the fastest way through in Linux, you can use Docker, the linux container engine. Docker automates all the
deployment steps for you.

For a more manual approach, you should be able to cut and paste each shell block from this tutorial directly into
a terminal.

1.1.2 Getting the code

There are many ways to get the code on your machine. For this tutorial, we will use easy_install to install and run
buildbot. While this isn’t the preferred method to install buildbot, it is the simplest one to use for the purposes of
this tutorial because it should work on all systems. (The preferred method would be to install buildbot via pip.)

To make this work, you will need the following installed: * Python (http://www.python.org/) and the development
packages for it * virtualenv (http://pypi.python.org/pypi/virtualenv/) * Git (http://git-scm.com/)

Preferably, use your package installer to install these.

You will also need a working Internet connection, as virtualenv and easy_install will need to download other
projects from the Internet.

Note: Buildbot does not require root access. Run the commands in this tutorial as a normal, unprivileged user.

Let’s dive in by typing at the terminal:

cd

mkdir -p tmp/buildbot

cd tmp/buildbot

virtualenv --no-site-packages sandbox
source sandbox/bin/activate

http://www.python.org/
http://pypi.python.org/pypi/virtualenv/
http://git-scm.com/

BuildBot Documentation, Release 0.8.12

easy_install sglalchemy

easy_install buildbot

/==0.7.10

Note: The requirement to install SQLAlchemy-0.7.10 is due to a conflict between newer versions of
SQLAIchemy and SQLAlchemy-Migrate.

1.1.3 Creating a master

At the terminal, type:

buildbot create-master master

mv master/master.cfg.sample master/master.cfg

Now start it:

buildbot start master

tail -f master/twistd.log

You will now see all of the log information from the master in this terminal. You should see lines like this:

2011-12-04
2011-12-04
2011-12-04
2011-12-04
2011-12-04
2011-12-04
2011-12-04
2011-12-04
2011-12-04
2011-12-04

10:
10:
10:
10:
10:
10:
10:
10:
10:
10:

04:
04:
04:
04:
04:
04:
04:
04:
04:
04:

40-0600
40-0600
40-0600
40-0600
40-0600
40-0600
40-0600
40-0600
41-0600
41-0600

1.1.4 Creating a slave

Starting factory <buildbot.status.web.baseweb.RotatelLogSite instance
Setting up http.log rotating 10 files of 10000000 bytes each
WebStatus using (/home/dustin/tmp/buildbot/master/public_html)
removing 0 old schedulers, updating 0, and adding 1

adding 1 new changesources, removing 0

gitpoller: using workdir ’/home/dustin/tmp/buildbot/master/gitpoller
gitpoller: initializing working dir from git://github.com/buildbot/p
configuration update complete

gitpoller: checking out master

gitpoller: finished initializing working dir from git://github.com/b

Open a new terminal and enter the same sandbox you created before:

cd

cd tmp/buildbot

source sandbox/bin/activate

Install the buildslave command:

easy_install buildbot-slave

Now, create the slave:

buildslave create-slave slave localhost:9989 example-slave pass

The user:host pair, username, and password should be the same as the ones in master.cfg; verify this is the case by
looking at the section for c [’ slaves’] and c [’ slavePortnum’]:

cat master/master.cfg

Now, start the slave:

buildslave start slave

Check the slave’s log:

tail -f slave/twistd.log

You should see lines like the following at the end of the worker log:

Chapter 1. Buildbot Tutorial

BuildBot Documentation, Release 0.8.12

2009-07-29 20:59:18+0200 [Broker,client] message from master: attached
2009-07-29 20:59:18+0200 [Broker,client] SlaveBuilder.remote_print (buildbot-full): message from m;
2009-07-29 20:59:18+0200 [Broker,client] sending application-level keepalives every 600 seconds

Meanwhile, in the other terminal, in the master log, if you tail the log you should see lines like this:

2011-03-13 18:46:58-0700 [Broker,1,127.
2011-03-13 18:46:58-0700 [Broker,1,127.
2011-03-13 18:46:58-0700 [Broker,1,127.
2011-03-13 18:46:58-0700 [Broker,1,127.

.1] slave ’'example-slave’ attaching from IPv4Address (TC
.1] Got slaveinfo from ’example-slave’

.11 bot attached

.1] Buildslave example-slave attached to runtests

o O O o
o O O O

You should now be able to go to http://localhost:8010, where you will see a web page similar to:

Buildbet - Makilla Eirafex

Welcome to the Buildbot for the Pyvflakes project!

Thee YViad amial] s play =0 gins ves & [esrientrd v may ol eroerd Baildbs) simias

Ve (gl DM@l wiil ghoey ‘o Lrm el 5 ol 1w eml iR,
Thes Toamsp=cor- i pidl nipla B ik i e gridd, bwi lisis ik pevivieoms dasn ik side.
Tl L a il e

Thes [lia ey sred nheten myaan grd #01 Baalds e Bsrs
Fruenl Huildds sr sammabond heie o s e
(o bl s B s o i e

4 [
Al iis Bl

FEy ared ol ey poges con By ovrrrbiden ard oo o mired,

g 1A p b workineg for ik Fyiakss prejen.
Py Bl | Samm B0 Bl JOET 000 D P IFTR

Click on the Waterfall Display link (http://localhost:8010/waterfall) and you get this:

1.1. First Run 5

http://localhost:8010
http://localhost:8010/waterfall

BuildBot Documentation, Release 0.8.12

| '@ MuildBat: Pyflakas - Mazilla Firefax [2
Ebe Edn Werw Higtory Bookmasks Fels Help
< | @ BuildBat: Pyflakes =—“ P

S M | @ hitpoiocalmost B010PN ateria vl ks Q m
A i R ————— i -

Heme - Walentad] sl BGrid Comssde Duiidery Bournd iy Daidds Loors §Bamarssam ey - Al

Waterfall
Lot ek bl ey
—
s =y [F=™
FOT chasaes Lo Lol
iliaia
Eral mir malerlail Beelis
P || (08 Tl owarkleeg Sar e Py flakey preien § h
e Bl DD S 200D 1P0TD

That’s the end of the first tutorial. A bit underwhelming, you say? Well, that was the point! We just wanted to get
you to dip your toes in the water. It’s easy to take your first steps, but this is about as far as we can go without
touching the configuration.

You’ve got a taste now, but you’re probably curious for more. Let’s step it up a little in the second tutorial by
changing the configuration and doing an actual build. Continue on to A Quick Tour.

1.2 First Buildbot run with Docker

Note: Docker can be tricky to get working correctly if you haven’t used it before. If you’re having trouble, first
determine whether it is a Buildbot issue or a Docker issue by running docker run ubuntu:12.04 apt-get update. If

that fails, look for help with your Docker install. On the other hand, if that succeeds, then you may have better
luck getting help from members of the Buildbot community.

Warning: The instruction in this document are based on an old Dockerfile, not complying with the state-of-
the-art best practices (all components in one container, access via ssh, ...). While this approach provides an
easy way to get first-hand experience with Buildbot, this is not the recommended way to deploy Buildbot in
production.

Docker (https://www.docker.com) is a tool that makes building and deploying custom environments a breeze.
It uses lightweight linux containers (LXC) and performs quickly, making it a great instrument for the testing
community. The next section includes a Docker pre-flight check. If it takes more that 3 minutes to get the
‘Success’ message for you, try the Buildbot pip-based first run instead.

1.2.1 Current Docker dependencies

 Linux system, with at least kernel 3.8 and AUFS support. For example, Standard Ubuntu, Debian and Arch
systems.

6 Chapter 1. Buildbot Tutorial

https://www.docker.com

BuildBot Documentation, Release 0.8.12

» Packages: Ixc, iptables, ca-certificates, and bzip2 packages.

* Local clock on time or slightly in the future for proper SSL communication.

1.2.2 Installation

 Use the Docker installation instructions (https://docs.docker.com/installation/) for your operating system.
* Test docker is happy in your environment:

sudo docker run —-i busybox /bin/echo Success

1.2.3 Building and running Buildbot

Download Buildbot Dockerfile.
wget https://raw.github.com/buildbot/buildbot/master/master/contrib/Dockerfile

Build the Buildbot container (it will take a few minutes to download packages)
docker build -t buildbot - < Dockerfile

Run buildbot
CONTAINER_TID=$ (docker run -d -p 8010:8010 -p 22 buildbot)

You should now be able to go to http://localhost:8010 and see a web page similar to:

Buildbet - Makilla Firefox

Lismns - Mslewlal] Ord Eirid Cems el Builders Beoeod Baibds Dablcs leves Chaneressars s - Jsal
Welcome to the Buildbot for the Pyvflakes project!

Thes Voad aial] Djs piay =il g s vas & | eariena el v mary ol eroend Baldbsi simia

Elee 4 il Lo s w000 g b yona “un el 5wl 1wl i B
Thes T p=cbr Lrid gl B in ik L 1Be gricd, i lisis b pevivions dasmn b side.
Tl a alallun pumpr.

Thes flaa ey ared nheioa mia-in ovd oo baabds we Bars.
Frurml By e s s bred S, o s S
Bl s |ndsrma o

i I

[T -

s aved ol ber poges con By overrldden ard cos [omired .

il T8 b werking fer ik Pyfakss prepn.
oy Bl S 00 Bl JEET 100 I PIFE

Click on the Waterfall Display link (http://localhost:8010/waterfall) and you get this:

1.2. First Buildbot run with Docker 7

https://docs.docker.com/installation/
http://localhost:8010
http://localhost:8010/waterfall

BuildBot Documentation, Release 0.8.12

< | @ BuildBat: Pyflakes [— -i - + v
-T" "

4 = M |8 hitpuitocalhost-80 10Fy s beral w | e L] M
= s T il ————
Llsmy - Wislexlal] Ui Bool Comsele Dalldery Boveod Dulldy Dallds linesy Chabaessars e - el
Waterfall
Vanl il Ly

reeed by i

FOT gl iy
FTHT P

il il ol LA Ber il

[Ei e (08 Il workieg bor b Pyflakey prejeni h
Py Beabin s B8 Sl 2600 (FDT)

1.2.4 Playing with your Buildbot container
If you’ve come this far, you have a Buildbot environment that you can freely experiment with. You can access
your container using ssh, the password is admin:

ssh -p $(docker port SCONTAINER_ID 22 | cut -d: —-f 2) admin@localhost

You’ve got a taste now, but you’re probably curious for more. Let’s step it up a little in the second tutorial by
changing the configuration and doing an actual build. Continue on to A Quick Tour.

1.3 A Quick Tour

1.3.1 Goal

This tutorial will expand on the First Run tutorial by taking a quick tour around some of the features of buildbot that
are hinted at in the comments in the sample configuration. We will simply change parts of the default configuration
and explain the activated features.

As a part of this tutorial, we will make buildbot do a few actual builds.

This section will teach you how to: - make simple configuration changes and activate them - deal with configura-
tion errors - force builds - enable and control the IRC bot - enable ssh debugging - add a ‘try’ scheduler

1.3.2 Setting Project Name and URL

Let’s start simple by looking at where you would customize the buildbot’s project name and URL.

‘We continue where we left off in the First Run tutorial.

8 Chapter 1. Buildbot Tutorial

BuildBot Documentation, Release 0.8.12

Open a new terminal, and first enter the same sandbox you created before (where SEDITOR is your editor of
choice like vim, gedit, or emacs):

cd

cd tmp/buildbot

source sandbox/bin/activate
SEDITOR master/master.cfg

Now, look for the section marked PROJECT IDENTITY which reads:

####### PROJECT IDENTITY

the ’title’ string will appear at the top of this buildbot
installation’s html.WebStatus home page (linked to the
’titleURL’”) and is embedded in the title of the waterfall HTML page.

c[’title’] = "Pyflakes"
c[’titleURL’] = "http://divmod.org/trac/wiki/DivmodPyflakes"

If you want, you can change either of these links to anything you want to see what happens when you change
them.

After making a change go into the terminal and type:

buildbot reconfig master

You will see a handful of lines of output from the master log, much like this:

2011-12-04 10:11:09-0600
2011-12-04 10:11:09-0600
2011-12-04 10:11:09-0600
2011-12-04 10:11:09-0600
2011-12-04 10:11:09-0600
2011-12-04 10:11:09-0600 Stopping factory <buildbot.status.web.baseweb.RotateLogSite instance
2011-12-04 10:11:09-0600 adding IStatusReceiver <WebStatus on port tcp:8010 at 0x2c2d950>

[-] loading configuration from /home/dustin/tmp/buildbot/master/master.c
(-]
(-]
(-]
(-]
(-]
(-]
2011-12-04 10:11:09-0600 [-] RotatelLogSite starting on 8010
(-]
(-]
(-]
(-]
(-]
(-]
(-]
(-]

configuration update started

builder runtests is unchanged

removing IStatusReceiver <WebStatus on port tcp:8010 at 0x2aee368>
(TCP Port 8010 Closed)

2011-12-04 10:11:09-0600 Starting factory <buildbot.status.web.baseweb.RotateLogSite instance
2011-12-04 10:11:09-0600 Setting up http.log rotating 10 files of 10000000 bytes each
2011-12-04 10:11:09-0600 WebStatus using (/home/dustin/tmp/buildbot/master/public_html)
2011-12-04 10:11:09-0600 removing 0 old schedulers, updating 0, and adding 0

2011-12-04 10:11:09-0600 adding 1 new changesources, removing 1

2011-12-04 10:11:09-0600 gitpoller: using workdir ’/home/dustin/tmp/buildbot/master/gitpoller
2011-12-04 10:11:09-0600 GitPoller repository already exists

2011-12-04 10:11:09-0600 configuration update complete

Reconfiguration appears to have completed successfully.
The important lines are the ones telling you that it is loading the new configuration at the top, and the one at the
bottom saying that the update is complete.

Now, if you go back to the waterfall page (http://localhost:8010/waterfall), you will see that the project’s name is
whatever you may have changed it to and when you click on the URL of the project name at the bottom of the
page it should take you to the link you put in the configuration.

1.3.3 Configuration Errors
It is very common to make a mistake when configuring buildbot, so you might as well see now what happens in
that case and what you can do to fix the error.

Open up the config again and introduce a syntax error by removing the first single quote in the two lines you
changed, so they read:

c[’title’] = "pPyflakes"
c[’titleURL’] = "http://divmod.org/trac/wiki/DivmodPyflakes"

1.3. A Quick Tour 9

http://localhost:8010/waterfall

BuildBot Documentation, Release 0.8.12

This creates a Python SyntaxError. Now go ahead and reconfig the buildmaster:

buildbot reconfig master

This time, the output looks like:

2011-12-04 10:12:28-0600 [-] loading configuration from /home/dustin/tmp/buildbot/master/master.c
2011-12-04 10:12:28-0600 [-] configuration update started
2011-12-04 10:12:28-0600 [-] error while parsing config file
2011-12-04 10:12:28-0600 [-] Unhandled Error
Traceback (most recent call last):
File "/home/dustin/tmp/buildbot/sandbox/lib/python2.7/site-packages/buildbot-0.8.5-py2.7 .
d = self.loadConfig(f)
File "/home/dustin/tmp/buildbot/sandbox/lib/python2.7/site-packages/buildbot-0.8.5-py2.7.
d.addCallback (do_load)
File "/home/dustin/tmp/buildbot/sandbox/lib/python2.7/site-packages/Twisted-11.1.0-py2.7~
callbackKeywords=kw)
File "/home/dustin/tmp/buildbot/sandbox/lib/python2.7/site-packages/Twisted-11.1.0-py2.7-
self._runCallbacks ()
—-—— <exception caught here> ———
File "/home/dustin/tmp/buildbot/sandbox/lib/python2.7/site-packages/Twisted-11.1.0-py2.7-
current.result = callback (current.result, =xargs, *xkw)
File "/home/dustin/tmp/buildbot/sandbox/1lib/python2.7/site-packages/buildbot-0.8.5-py2.7.
exec f in localDict
exceptions.SyntaxError: EOL while scanning string literal (master.cfg, line 17)

Never saw reconfiguration finish.

This time, it’s clear that there was a mistake in the configuration. Luckily, the buildbot master will ignore the
wrong configuration and keep running with the previous configuration.

The message is clear enough, so open the configuration again, fix the error, and reconfig the master.

1.3.4 Your First Build

By now you’re probably thinking: “All this time spent and still not done a single build? What was the name of
this project again?”’

On the waterfall (http://localhost:8010/waterfall) page, click on the runtests link. You’ll see a builder page, and
in the upper-right corner is a box where you can login. The default username and password are both “pyflakes”.
Once you’ve logged in, you will see some new options that allow you to force a build:

10 Chapter 1. Buildbot Tutorial

http://localhost:8010/waterfall

BuildBot Documentation, Release 0.8.12

HuildBbet: runtests - Mazilla Firelax

“L u‘-:.:u h-u—u-au::n-u—-_b

Force build

T v i Do,] i W i g M, i s Iy L Wit e o Ml il

! |

(Ra—p—r—rry | |

-_hl.l-ul[|

PRerpa——y | |

Repasitary 1o St | |

p—,| |

Prapesty 1 Same | | vabues |
Prospeety 2 oo | | vt

Propesty § Same | | vabues |

|F-H'nll|.ﬂ:||

[e A0) o iy et W b Mty i L
P bowi 10 S 17 Nhar P10 AROET OFOTY

Click Force Build - there’s no need to fill in any of the fields in this case. Next, click on view in waterfall
(http://localhost:8010/waterfall ’show=runtests).

You will now see:

Buildiot; Fyflakes - Mazilla Firalax

Waterfall

—_—
B I
ror chesm | oeml

23 akan

o am *
dramar Bl O
DAL it et bt

el P 40E B]| wowrbima Foor i ber Pyflahes praject
Fapr beadiis 170 Mar D31 | AFDTH

1.3. A Quick Tour 11

http://localhost:8010/waterfall?show=runtests

BuildBot Documentation, Release 0.8.12

1.3.5 Enabling the IRC Bot

Buildbot includes an IRC bot that you can tell to join a channel and control to report on the status of buildbot.

First, start an IRC client of your choice, connect to irc.freenode.org and join an empty channel. In this example
we will use #buildbot-test, so go join that channel. (Note: please do not join the main buildbot channel!)

Edit the config and look for the STATUS TARGETS section. Enter these lines below the WebStatus line in mas-
ter.cfg:

from buildbot.plugins import status

c[’status’].append(status.WebStatus (http_port=8010, authz=authz_cfqg))
c[’status’] .append(status.IRC (host="irc.freenode.org", nick="bbtest",
channels=["4#buildbot-test"]))

Reconfigure the build master then do:

grep -1 irc master/twistd.log

The log output should contain a line like this:

2009-08-01 15:35:20+0200 [-] adding IStatusReceiver <buildbot.status.words.IRC instance at 0x300d

You should see the bot now joining in your IRC client. In your IRC channel, type:

bbtest: commands

to get a list of the commands the bot supports.
Let’s tell the bot to notify certain events, to learn which EVENTS we can notify on:

bbtest: help notify

Now let’s set some event notifications:

bbtest: notify on started
bbtest: notify on finished
bbtest: notify on failure

The bot should have responded to each of the commands:

<@lsblakk> bbtest: notify on started

<bbtest> The following events are being notified: [’started’]

<@1lsblakk> bbtest: notify on finished

<bbtest> The following events are being notified: [’started’, ’finished’]

<@lsblakk> bbtest: notify on failure

<bbtest> The following events are being notified: [’started’, ’failure’, ’finished’]

Now, go back to the web interface and force another build.
Notice how the bot tells you about the start and finish of this build:

< bbtest> build #1 of runtests started, including []
< bbtest> build #1 of runtests is complete: Success [build successful] Build details are at http

You can also use the bot to force a build:

bbtest: force build runtests test build

But to allow this, you’ll need to have allowForce in the IRC configuration:

c[’status’].append(words.IRC (host="irc.freenode.org", nick="bbtest",
allowForce=True,
channels=["#buildbot—-test"]))

This time, the bot is giving you more output, as it’s specifically responding to your direct request to force a build,
and explicitly tells you when the build finishes:

12 Chapter 1. Buildbot Tutorial

BuildBot Documentation, Release 0.8.12

<@lsblakk> bbtest: force build runtests test build

A

<
<
<

bbtest> build #2 of runtests started, including []

bbtest> build forced [ETA 0 seconds]

bbtest> I’11 give a shout when the build finishes

bbtest> build #2 of runtests is complete: Success [build successful]

You can also see the new builds in the web interface.

Huildbat; runteits - Marilla Firglax

Build details are at http

e - Thsi priall] fraid Fdiiid Lo meale Buildoy Broosd Builkiy Balldslnes Chasgresarcey - Abasai

Builder runtests

T S

Mo current bollds
Mo Pending Bulld Reguests
Recenl Bullds:
Thuse: Bervirian Mo by
Mar DT ERET Daelaier bllh_

Mlar 10 30T oo Bilteds
Mar i93237 lsdaiber bbb

[e T
Ml v o p Pl
[e e |

ltl‘.%

Bl cdsloves:

Sl Tlallien Mokl i
rmm pie-lnr Four drrrailiag=

Foarce balld

Vo Forve a bei el 10 o oed b FoTho iy Prilds sndl pras b Db B o Hadld badian

o])

Faaom b |

(]

1

.3.6 Setting Authorized Web Users

Further down, look for the WebStatus configuration:

from buildbot.plugins import status, util

c[’status’] = []

authz_cfg=util.Authz (

)

change any of these to True to enable; see the manual for more
options

auth=util.BasicAuth ([("pyflakes", "pyflakes")]),
gracefulShutdown=False,

forceBuild='auth’, # use this to test your slave once it is set up

forceAllBuilds=False,
pingBuilder=False,
stopBuild=False,
stopAllBuilds=False,
cancelPendingBuild=False,

c[’status’].append(status.WebStatus (http_port=8010, authz=authz_cfqg))

The util.BasicAuth () define authorized users and their passwords. You can change these or add new ones.
See WebStatus for more about the WebStatus configuration.

1.3. A Quick Tour

13

BuildBot Documentation, Release 0.8.12

1.3.7 Debugging with Manhole

You can do some debugging by using manhole, an interactive Python shell. It exposes full access to the buildmas-
ter’s account (including the ability to modify and delete files), so it should not be enabled with a weak or easily
guessable password.

To use this you will need to install an additional package or two to your virtualenv:

cd

cd tmp/buildbot

source sandbox/bin/activate
easy_install pycrypto
easy_install pyasnl

In your master.cfg find:

c = BuildmasterConfig = {}

Insert the following to enable debugging mode with manhole:

####### DEBUGGING
from buildbot.plugins import util

c[’manhole’] = util.PasswordManhole ("tcp:1234:interface=127.0.0.1", "admin", "passwd")

After restarting the master, you can ssh into the master and get an interactive Python shell:

ssh -pl234 admin@127.0.0.1
enter passwd at prompt

Note: The pyasnl-0.1.1 release has a bug which results in an exception similar to this on startup:

exceptions.TypeError: argument 2 must be long, not int

If you see this, the temporary solution is to install the previous version of pyasnl:

pip install pyasnl-0.0.13b

If you wanted to check which slaves are connected and what builders those slaves are assigned to you could do:

>>> master.botmaster.slaves
{’example-slave’: <BuildSlave ’'example-slave’, current builders: runtests>}

Objects can be explored in more depth using dir(x) or the helper function show(x).

1.3.8 Adding a ‘try’ scheduler

Buildbot includes a way for developers to submit patches for testing without committing them to the source code
control system. (This is really handy for projects that support several operating systems or architectures.)

To set this up, add the following lines to master.cfg:

from buildbot.plugins import schedulers

c[’"schedulers’].append(schedulers.Try_Userpass (name="try’,
builderNames=[’runtests’],
port=5555,
userpass=|[(' sampleuser’,’ samplepass’)]))

Then you can submit changes using the t ry command.

Let’s try this out by making a one-line change to pyflakes, say, to make it trace the tree by default:

14 Chapter 1. Buildbot Tutorial

BuildBot Documentation, Release 0.8.12

git clone git://github.com/buildbot/pyflakes.git pyflakes—-git
cd pyflakes—-git/pyflakes

SEDITOR checker.py

change "traceTree = False" on line 185 to "traceTree = True"

Then run buildbot’s t ry command as follows:

source ~/tmp/buildbot/sandbox/bin/activate
buildbot try —--connect=pb --master=127.0.0.1:5555 —--username=sampleuser —--passwd=samplepass —--vc=

This will do git diff for you and send the resulting patch to the server for build and test against the latest
sources from Git.

Now go back to the waterfall (http://localhost:8010/waterfall) page, click on the runtests link, and scroll down.
You should see that another build has been started with your change (and stdout for the tests should be chock-full
of parse trees as a result). The “Reason” for the job will be listed as “‘try’ job”, and the blamelist will be empty.

To make yourself show up as the author of the change, use the ——who=emailaddr option on buildbot try
to pass your email address.

To make a description of the change show up, use the ——properties=comment="this is a comment"
option on buildbot try.

To use ssh instead of a private username/password database, see Try_Jobdir.

1.4 Further Reading

See the following user-contributed tutorials for other highlights and ideas:

1.4.1 Buildbot in 5 minutes - a user-contributed tutorial

(Ok, maybe 10.)

Buildbot is really an excellent piece of software, however it can be a bit confusing for a newcomer (like me when I
first started looking at it). Typically, at first sight it looks like a bunch of complicated concepts that make no sense
and whose relationships with each other are unclear. After some time and some reread, it all slowly starts to be
more and more meaningful, until you finally say “oh!” and things start to make sense. Once you get there, you
realize that the documentation is great, but only if you already know what it’s about.

This is what happened to me, at least. Here I’'m going to (try to) explain things in a way that would have helped
me more as a newcomer. The approach I’m taking is more or less the reverse of that used by the documentation,
that is, I'm going to start from the components that do the actual work (the builders) and go up the chain from
there up to change sources. I hope purists will forgive this unorthodoxy. Here I'm trying to clarify the concepts
only, and will not go into the details of each object or property; the documentation explains those quite well.

Installation

I won’t cover the installation; both buildbot master and slave are available as packages for the major distributions,
and in any case the instructions in the official documentation are fine. This document will refer to buildbot 0.8.5
which was current at the time of writing, but hopefully the concepts are not too different in other versions. All the
code shown is of course python code, and has to be included in the master.cfg master configuration file.

We won’t cover the basic things such as how to define the slaves, project names, or other administrative informa-
tion that is contained in that file; for that, again the official documentation is fine.

1.4. Further Reading 15

http://localhost:8010/waterfall

BuildBot Documentation, Release 0.8.12

Builders: the workhorses

Since buildbot is a tool whose goal is the automation of software builds, it makes sense to me to start from where
we tell buildbot how to build our software: the builder (or builders, since there can be more than one).

Simply put, a builder is an element that is in charge of performing some action or sequence of actions, normally
something related to building software (for example, checking out the source, or make all), but it can also run
arbitrary commands.

A builder is configured with a list of slaves that it can use to carry out its task. The other fundamental piece of
information that a builder needs is, of course, the list of things it has to do (which will normally run on the chosen
slave). In Buildbot, this list of things is represented as a Bui 1dFactory object, which is essentially a sequence
of steps, each one defining a certain operation or command.

Enough talk, let’s see an example. For this example, we are going to assume that our super software project
can be built using a simple make all, and there is another target make packages that creates rpm, deb and
tgz packages of the binaries. In the real world things are usually more complex (for example there may be a
configure step, or multiple targets), but the concepts are the same; it will just be a matter of adding more steps
to a builder, or creating multiple builders, although sometimes the resulting builders can be quite complex.

So to perform a manual build of our project we would type this from the command line (assuming we are at the
root of the local copy of the repository):

S make clean # clean remnants of previous builds
;vn update

$.$ake all

$-$ake packages

optional but included in the example: copy packages to some central machine
S scp packages/*.rpm packages/*.deb packages/x.tgz someuser@somehost:/repository

Here we’re assuming the repository is SVN, but again the concepts are the same with git, mercurial or any other
VCS.

Now, to automate this, we create a builder where each step is one of the commands we typed above. A step can be
a shell command object, or a dedicated object that checks out the source code (there are various types for different
repositories, see the docs for more info), or yet something else:

from buildbot.process.factory import BuildFactory
from buildbot.steps.source import SVN
from buildbot.steps.shell import ShellCommand

first, let’s create the individual step objects

step 1: make clean; this fails if the slave has no local copy, but
is harmless and will only happen the first time

makeclean = ShellCommand (name = "make clean",
command = ["make", "clean"],
description = "make clean")

step 2: svn update (here updates trunk, see the docs for more
on how to update a branch, or make it more generic).
checkout = SVN(baseURL = ’svn://myrepo/projects/coolproject/trunk’,

mode = "update",
username = "foo",
password = "bar",

haltOnFailure = True)

step 3: make all
makeall = ShellCommand(name = "make all",

16 Chapter 1. Buildbot Tutorial

BuildBot Documentation, Release 0.8.12

command = ["make", "all"],
haltOnFailure = True,
description = "make all")

step 4: make packages

makepackages = ShellCommand(name = "make packages",
command = ["make", "packages"],
haltOnFailure = True,
description = "make packages")

step 5: upload packages to central server. This needs passwordless ssh
from the slave to the server (set it up in advance as part of slave setup)

uploadpackages = ShellCommand (name = "upload packages",
description = "upload packages",
command = "scp packages/x.rpm packages/x.deb packages/x.tgz someuse
haltOnFailure = True)

create the build factory and add the steps to it
f_simplebuild = BuildFactory ()
f_simplebuild.addStep (makeclean)
f_simplebuild.addStep (checkout)
f_simplebuild.addStep (makeall)
f_simplebuild.addStep (makepackages)
f_simplebuild.addStep (uploadpackages)

finally, declare the list of builders. In this case, we only have one builder
c["builders’] = [
BuilderConfig(name = "simplebuild", slavenames = [’'slavel’, ’slave2’, ’'slave3’], factory = f

]

So our builder is called simplebuild and can run on either of slavel, slave2 and slave3. If our reposi-
tory has other branches besides trunk, we could create another one or more builders to build them; in the example,
only the checkout step would be different, in that it would need to check out the specific branch. Depending on
how exactly those branches have to be built, the shell commands may be recycled, or new ones would have to be
created if they are different in the branch. You get the idea. The important thing is that all the builders be named
differently and all be added to the c [builders’] value (as can be seen above, itis alistof BuilderConfig
objects).

Of course the type and number of steps will vary depending on the goal; for example, to just check that a commit
doesn’t break the build, we could include just up to the make all step. Or we could have a builder that performs
a more thorough test by also doing make test or other targets. You get the idea. Note that at each step except the
very first we use haltOnFailure = True because it would not make sense to execute a step if the previous
one failed (ok, it wouldn’t be needed for the last step, but it’s harmless and protects us if one day we add another
step after it).

Schedulers

Now this is all nice and dandy, but who tells the builder (or builders) to run, and when? This is the job of the
scheduler, which is a fancy name for an element that waits for some event to happen, and when it does, based on
that information decides whether and when to run a builder (and which one or ones). There can be more than one
scheduler. I’'m being purposely vague here because the possibilities are almost endless and highly dependent on
the actual setup, build purposes, source repository layout and other elements.

So a scheduler needs to be configured with two main pieces of information: on one hand, which events to react
to, and on the other hand, which builder or builders to trigger when those events are detected. (It’s more complex
than that, but if you understand this, you can get the rest of the details from the docs).

A simple type of scheduler may be a periodic scheduler: when a configurable amount of time has passed, run a
certain builder (or builders). In our example, that’s how we would trigger a build every hour:

1.4. Further Reading 17

BuildBot Documentation, Release 0.8.12

from buildbot.schedulers.timed import Periodic

define the periodic scheduler

hourlyscheduler = Periodic (name = "hourly",
builderNames = ["simplebuild"],
periodicBuildTimer = 3600)

define the available schedulers
c[’schedulers’] = [hourlyscheduler]

That’s it. Every hour this hourly scheduler will run the simplebuild builder. If we have more than one
builder that we want to run every hour, we can just add them to the builderNames list when defining the
scheduler and they will all be run. Or since multiple scheduler are allowed, other schedulers can be defined and
added to c [schedulers’] in the same way.

Other types of schedulers exist; in particular, there are schedulers that can be more dynamic than the periodic one.
The typical dynamic scheduler is one that learns about changes in a source repository (generally because some
developer checks in some change), and triggers one or more builders in response to those changes. Let’s assume
for now that the scheduler “magically” learns about changes in the repository (more about this later); here’s how
we would define it:

from buildbot.schedulers.basic import SingleBranchScheduler
from buildbot.changes import filter

define the dynamic scheduler

trunkchanged = SingleBranchScheduler (name = "trunkchanged",
change_filter = filter.ChangeFilter (branch = None),
treeStableTimer = 300,
builderNames = ["simplebuild"])

define the available schedulers
c[’schedulers’] = [trunkchanged]

This scheduler receives changes happening to the repository, and among all of them, pays attention to those
happening in “trunk” (that’s what branch = None means). In other words, it filters the changes to react only to
those it’s interested in. When such changes are detected, and the tree has been quiet for 5 minutes (300 seconds),
it runs the simplebuild builder. The treeStableTimer helps in those situations where commits tend to
happen in bursts, which would otherwise result in multiple build requests queuing up.

What if we want to act on two branches (say, trunk and 7.2)? First we create two builders, one for each branch
(see the builders paragraph above), then we create two dynamic schedulers:

from buildbot.schedulers.basic import SingleBranchScheduler
from buildbot.changes import filter

define the dynamic scheduler for trunk

trunkchanged = SingleBranchScheduler (name = "trunkchanged",
change_filter = filter.ChangeFilter (branch = None),
treeStableTimer = 300,
builderNames = ["simplebuild-trunk"])

define the dynamic scheduler for the 7.2 branch

branch72changed = SingleBranchScheduler (name = "branch72changed",
change_filter = filter.ChangeFilter (branch = ’"branches/7.
treeStableTimer = 300,
builderNames = ["simplebuild-72"1)

define the available schedulers
c[’schedulers’] = [trunkchanged, branch72changed]

The syntax of the change filter is VCS-dependent (above is for SVN), but again once the idea is clear, the docu-
mentation has all the details. Another feature of the scheduler is that is can be told which changes, within those
it’s paying attention to, are important and which are not. For example, there may be a documentation directory

18 Chapter 1. Buildbot Tutorial

BuildBot Documentation, Release 0.8.12

in the branch the scheduler is watching, but changes under that directory should not trigger a build of the binary.
This finer filtering is implemented by means of the fileIsImportant argument to the scheduler (full details
in the docs and - alas - in the sources).

Change sources

Earlier we said that a dynamic scheduler “magically” learns about changes; the final piece of the puzzle are
change sources, which are precisely the elements in buildbot whose task is to detect changes in the repository and
communicate them to the schedulers. Note that periodic schedulers don’t need a change source, since they only
depend on elapsed time; dynamic schedulers, on the other hand, do need a change source.

A change source is generally configured with information about a source repository (which is where changes
happen); a change source can watch changes at different levels in the hierarchy of the repository, so for example
it is possible to watch the whole repository or a subset of it, or just a single branch. This determines the extent of
the information that is passed down to the schedulers.

There are many ways a change source can learn about changes; it can periodically poll the repository for changes,
or the VCS can be configured (for example through hook scripts triggered by commits) to push changes into the
change source. While these two methods are probably the most common, they are not the only possibilities; it is
possible for example to have a change source detect changes by parsing some email sent to a mailing list when a
commit happen, and yet other methods exist. The manual again has the details.

To complete our example, here’s a change source that polls a SVN repository every 2 minutes:

from buildbot.changes.svnpoller import SVNPoller, split_file_branches

svnpoller = SVNPoller (svnurl = "svn://myrepo/projects/coolproject",
svnuser = "foo",
svnpasswd = "bar",

pollinterval = 120,
split_file = split_file_branches)

c[’change_source’] = svnpoller

This poller watches the whole “coolproject” section of the repository, so it will detect changes in all the branches.
We could have said:

svnurl = "svn://myrepo/projects/coolproject/trunk"
or:
svnurl = "svn://myrepo/projects/coolproject/branches/7.2"

to watch only a specific branch.

To watch another project, you need to create another change source — and you need to filter changes by project.
For instance, when you add a change source watching project ‘superproject’ to the above example, you need to
change:

trunkchanged = SingleBranchScheduler (name = "trunkchanged",
change_filter = filter.ChangeFilter (branch = None),
#
)
toe.g.:
trunkchanged = SingleBranchScheduler (name = "trunkchanged",
change_filter = filter.ChangeFilter (project = "coolproject",
#

)

else coolproject will be built when there’s a change in superproject.

1.4. Further Reading 19

BuildBot Documentation, Release 0.8.12

Since we’re watching more than one branch, we need a method to tell in which branch the change occurred when
we detect one. This is what the split_file argument does, it takes a callable that buildbot will call to do the job.
The split_file_branches function, which comes with buildbot, is designed for exactly this purpose so that’s what
the example above uses.

And of course this is all SVN-specific, but there are pollers for all the popular VCSs.

But note: if you have many projects, branches, and builders it probably pays to not hardcode all the schedulers
and builders in the configuration, but generate them dynamically starting from list of all projects, branches, targets
etc. And using loops to generate all possible combinations (or only the needed ones, depending on the specific
setup), as explained in the documentation chapter about Customization.

Status targets

Now that the basics are in place, let’s go back to the builders, which is where the real work happens. Status targets
are simply the means buildbot uses to inform the world about what’s happening, that is, how builders are doing.
There are many status target: a web interface, a mail notifier, an IRC notifier, and others. They are described fairly
well in the manual.

One thing I’ve found useful is the ability to pass a domain name as the lookup argument to a mailNotifier,
which allows to take an unqualified username as it appears in the SVN change and create a valid email address by
appending the given domain name to it:

from buildbot.status import mail

1f jsmith commits a change, mail for the build is sent to jsmith@example.org

notifier = mail.MailNotifier (fromaddr = "buildbot@example.org",
sendToInterestedUsers = True,
lookup = "example.org")

c[’status’] .append(notifier)

The mail notifier can be customized at will by means of the messageFormatter argument, which is a function
that buildbot calls to format the body of the email, and to which it makes available lots of information about the
build. Here all the details.

Conclusion

Please note that this article has just scratched the surface; given the complexity of the task of build automation,
the possibilities are almost endless. So there’s much, much more to say about buildbot. However, hopefully this
is a preparation step before reading the official manual. Had I found an explanation as the one above when I was
approaching buildbot, I’d have had to read the manual just once, rather than multiple times. Hope this can help
someone else.

(Thanks to Davide Brini for permission to include this tutorial, derived from one he originally posted at
http://backreference.org.)

This is the BuildBot manual for Buildbot version 0.8.12.

20 Chapter 1. Buildbot Tutorial

http://backreference.org

CHAPTER 2

Buildbot Manual

2.1 Introduction

Buildbot is a system to automate the compile/test cycle required by most software projects to validate code
changes. By automatically rebuilding and testing the tree each time something has changed, build problems
are pinpointed quickly, before other developers are inconvenienced by the failure. The guilty developer can be
identified and harassed without human intervention. By running the builds on a variety of platforms, developers
who do not have the facilities to test their changes everywhere before checkin will at least know shortly afterwards
whether they have broken the build or not. Warning counts, lint checks, image size, compile time, and other build
parameters can be tracked over time, are more visible, and are therefore easier to improve.

The overall goal is to reduce tree breakage and provide a platform to run tests or code-quality checks that are too
annoying or pedantic for any human to waste their time with. Developers get immediate (and potentially public)
feedback about their changes, encouraging them to be more careful about testing before checkin.

Features:
* run builds on a variety of slave platforms
* arbitrary build process: handles projects using C, Python, whatever
* minimal host requirements: Python and Twisted
* slaves can be behind a firewall if they can still do checkout
* status delivery through web page, email, IRC, other protocols
* track builds in progress, provide estimated completion time
* flexible configuration by subclassing generic build process classes
* debug tools to force a new build, submit fake Changes, query slave status

¢ released under the GPL (http://opensource.org/licenses/gpl-2.0.php)

2.1.1 History and Philosophy

The Buildbot was inspired by a similar project built for a development team writing a cross-platform embedded
system. The various components of the project were supposed to compile and run on several flavors of unix
(linux, solaris, BSD), but individual developers had their own preferences and tended to stick to a single platform.
From time to time, incompatibilities would sneak in (some unix platforms want to use string.h, some prefer
strings.h), and then the tree would compile for some developers but not others. The buildbot was written to
automate the human process of walking into the office, updating a tree, compiling (and discovering the breakage),
finding the developer at fault, and complaining to them about the problem they had introduced. With multiple
platforms it was difficult for developers to do the right thing (compile their potential change on all platforms); the
buildbot offered a way to help.

Another problem was when programmers would change the behavior of a library without warning its users, or
change internal aspects that other code was (unfortunately) depending upon. Adding unit tests to the codebase

21

http://opensource.org/licenses/gpl-2.0.php

BuildBot Documentation, Release 0.8.12

helps here: if an application’s unit tests pass despite changes in the libraries it uses, you can have more confidence
that the library changes haven’t broken anything. Many developers complained that the unit tests were inconve-
nient or took too long to run: having the buildbot run them reduces the developer’s workload to a minimum.

In general, having more visibility into the project is always good, and automation makes it easier for developers
to do the right thing. When everyone can see the status of the project, developers are encouraged to keep the tree
in good working order. Unit tests that aren’t run on a regular basis tend to suffer from bitrot just like code does:
exercising them on a regular basis helps to keep them functioning and useful.

The current version of the Buildbot is additionally targeted at distributed free-software projects, where resources
and platforms are only available when provided by interested volunteers. The buildslaves are designed to require
an absolute minimum of configuration, reducing the effort a potential volunteer needs to expend to be able to
contribute a new test environment to the project. The goal is for anyone who wishes that a given project would run
on their favorite platform should be able to offer that project a buildslave, running on that platform, where they
can verify that their portability code works, and keeps working.

2.1.2 System Architecture

The Buildbot consists of a single buildmaster and one or more buildslaves, connected in a star topology. The
buildmaster makes all decisions about what, when, and how to build. It sends commands to be run on the build
slaves, which simply execute the commands and return the results. (certain steps involve more local decision
making, where the overhead of sending a lot of commands back and forth would be inappropriate, but in general
the buildmaster is responsible for everything).

The buildmaster is usually fed Changes by some sort of version control system (Change Sources), which may
cause builds to be run. As the builds are performed, various status messages are produced, which are then sent to
any registered Status Targets.

REPOSITORY NOTIFIERS
« Subversion .

M ial « Email
* B ercuria : Poll BUILD +Web Status
: D:T:s.ar Pp—— CHANGES =——3 MASTER STATUS =3 | IRC
“GIT « Status Client
« CVS

COMMANDS COMMANDS

- 4 N -
BUILD BUILD
SLAVE SLAVE

The buildmaster is configured and maintained by the buildmaster admin, who is generally the project team member
responsible for build process issues. Each buildslave is maintained by a buildslave admin, who do not need to be

22 Chapter 2. Buildbot Manual

BuildBot Documentation, Release 0.8.12

quite as involved. Generally slaves are run by anyone who has an interest in seeing the project work well on their
favorite platform.

BuildSlave Connections

The buildslaves are typically run on a variety of separate machines, at least one per platform of interest. These
machines connect to the buildmaster over a TCP connection to a publically-visible port. As a result, the buildslaves
can live behind a NAT box or similar firewalls, as long as they can get to buildmaster. The TCP connections are
initiated by the buildslave and accepted by the buildmaster, but commands and results travel both ways within this
connection. The buildmaster is always in charge, so all commands travel exclusively from the buildmaster to the
buildslave.

To perform builds, the buildslaves must typically obtain source code from a CVS/SVN/etc repository. Therefore
they must also be able to reach the repository. The buildmaster provides instructions for performing builds, but
does not provide the source code itself.

e - s - REPOSITORY

7 ' « Subversion
BUILD C BUILD » Mercurial
MASTER :m::s SLAVE CHECKOUT s UPDATE « Bazaar

[i = Darcs
-~ . «GIT

- «CVS

L

Buildmaster Architecture

The buildmaster consists of several pieces:

2.1. Introduction 23

BuildBot Documentation, Release 0.8.12

@:Td-g:r#rfffj%]
S
| SCHEDULER | | SCHEDUL?Iﬂ
e
(o) (o) o
l-'_::'”_‘ﬁl'l T T 1‘,.;?||'|';_|_:|
1 Queue 1 I Quie l I Queue
| BuDer || BuILDER || BUILDER |
r 11
|

())))

________ | 0Tl YT

SLAVE SLAVE SLAVE SLAVE
BUILDER | BUILDER BUILDER || BUILDER

BuiLD SLAVE BuiLD SLAVE

Change Sources Which create a Change object each time something is modified in the VC repository. Most
ChangeSources listen for messages from a hook script of some sort. Some sources actively poll the
repository on a regular basis. All Changes are fed to the Schedulers.

Schedulers Which decide when builds should be performed. They collect Changes into BuildRequests,
which are then queued for delivery to Builders until a buildslave is available.

Builders Which control exactly how each build is performed (with a series of BuildSteps, configured in a
BuildFactory). Each Build is run on a single buildslave.

Status plugins Which deliver information about the build results through protocols like HTTP, mail, and IRC.

Each Builder is configured with a list of BuildSlaves that it will use for its builds. These buildslaves are
expected to behave identically: the only reason to use multiple BuildSlaves forasingle Builder is to provide
a measure of load-balancing.

Within a single BuildSlave, each Builder creates its own SlaveBuilder instance. These
SlaveBuilders operate independently from each other. Each gets its own base directory to work in. It is
quite common to have many Builders sharing the same buildslave. For example, there might be two build-
slaves: one for 1386, and a second for PowerPC. There may then be a pair of Builders that do a full compile/test
run, one for each architecture, and a lone Builder that creates snapshot source tarballs if the full builders com-
plete successfully. The full builders would each run on a single buildslave, whereas the tarball creation step might
run on either buildslave (since the platform doesn’t matter when creating source tarballs). In this case, the mapping
would look like:

Builder (full-1386) —> BuildSlaves (slave—-1386)
Builder (full-ppc) —-> BuildSlaves (slave-ppc)
Builder (source-tarball) -> BuildSlaves(slave-i386, slave-ppc)

and each BuildSlave would have two SlaveBuilders inside it, one for a full builder, and a second for the
source-tarball builder.

24 Chapter 2. Buildbot Manual

BuildBot Documentation, Release 0.8.12

Once a SlaveBuilder is available, the Builder pulls one or more BuildRequests off its incoming queue.
(It may pull more than one if it determines that it can merge the requests together; for example, there may be
multiple requests to build the current HEAD revision). These requests are merged into a single Build instance,
which includes the SourceStamp that describes what exact version of the source code should be used for the
build. The Build is then randomly assigned to a free SlaveBuilder and the build begins.

The behaviour when BuildRequests are merged can be customized, Merging Build Requests.

Status Delivery Architecture

The buildmaster maintains a central Status object, to which various status plugins are connected. Through this
Status object, a full hierarchy of build status objects can be obtained.

L STATUS
RequesT) PLUGINS
—-==-—» Waterfall

-+ - Mail Notifier

1-+IRC

STATUS

>| IRC SERVER
BuiLp
BUlL_D >4 status STATUS ? MTA
--3| BROWSER
BuiLD
SLAVE

The configuration file controls which status plugins are active. Each status plugin gets a reference to the top-level
Status object. From there they can request information on each Builder, Build, Step, and LogFile.
This query-on-demand interface is used by the html.Waterfall plugin to create the main status page each
time a web browser hits the main URL.

The status plugins can also subscribe to hear about new Builds as they occur: this is used by the
MailNotifier to create new email messages for each recently-completed Build.

The Status object records the status of old builds on disk in the buildmaster’s base directory. This allows it to
return information about historical builds.

There are also status objects that correspond to Schedulers and BuildSlaves. These allow status plugins to
report information about upcoming builds, and the online/offline status of each buildslave.

2.1.3 Control Flow

A day in the life of the buildbot:

2.1. Introduction 25

BuildBot Documentation, Release 0.8.12

A developer commits some source code changes to the repository. A hook script or commit trigger of some
sort sends information about this change to the buildmaster through one of its configured Change Sources.
This notification might arrive via email, or over a network connection (either initiated by the buildmaster
as it subscribes to changes, or by the commit trigger as it pushes Changes towards the buildmaster).
The Change contains information about who made the change, what files were modified, which revision
contains the change, and any checkin comments.

The buildmaster distributes this change to all of its configured Schedulers. Any important changes
cause the tree-stable-timer to be started, and the Change is added to a list of those that will go
into a new Build. When the timer expires, a Build is started on each of a set of configured Builders,
all compiling/testing the same source code. Unless configured otherwise, all Builds run in parallel on the
various buildslaves.

The Build consists of a series of Steps. Each Step causes some number of commands to be invoked on
the remote buildslave associated with that Builder. The first step is almost always to perform a checkout
of the appropriate revision from the same VC system that produced the Change. The rest generally perform
a compile and run unit tests. As each Step runs, the buildslave reports back command output and return
status to the buildmaster.

As the Build runs, status messages like “Build Started”, “Step Started”, “Build Finished”, etc, are pub-
lished to a collection of Status Targets. One of these targets is usually the HTML Waterfall display,
which shows a chronological list of events, and summarizes the results of the most recent build at the top
of each column. Developers can periodically check this page to see how their changes have fared. If they
see red, they know that they’ve made a mistake and need to fix it. If they see green, they know that they’ve
done their duty and don’t need to worry about their change breaking anything.

If aMailNotifier status target is active, the completion of a build will cause email to be sent to any
developers whose Changes were incorporated into this Build. The MailNotifier can be configured
to only send mail upon failing builds, or for builds which have just transitioned from passing to failing.
Other status targets can provide similar real-time notification via different communication channels, like
IRC.

2.2 Installation

2.2.1 Buildbot Components

Buildbot is shipped in two components: the buildmaster (called buildbot for legacy reasons) and the buildslave.
The buildslave component has far fewer requirements, and is more broadly compatible than the buildmaster. You
will need to carefully pick the environment in which to run your buildmaster, but the buildslave should be able to
run just about anywhere.

It is possible to install the buildmaster and buildslave on the same system, although for anything but the smallest
installation this arrangement will not be very efficient.

2.2.2 Requirements

Common Requirements

At a bare minimum, you’ll need the following for both the buildmaster and a buildslave:

Python: http://www.python.org

Buildbot requires Python-2.5 or later on the master, although Python-2.7 is recommended. The slave
run on Python-2.4.

Twisted: http://twistedmatrix.com

Buildbot requires Twisted-11.0.0 or later on the master, and Twisted-8.1.0 on the slave. In upcoming
versions of Buildbot, a newer Twisted will also be required on the slave. As always, the most recent
version is recommended.

26

Chapter 2. Buildbot Manual

http://www.python.org
http://twistedmatrix.com

BuildBot Documentation, Release 0.8.12

In some cases, Twisted is delivered as a collection of subpackages. You’ll need at least “Twisted” (the
core package), and you’ll also want TwistedMail (http://twistedmatrix.com/trac/wiki/TwistedMail),
TwistedWeb (http://twistedmatrix.com/trac/wiki/TwistedWeb), and TwistedWords
(http://twistedmatrix.com/trac/wiki/TwistedWords) (for sending email, serving a web status
page, and delivering build status via IRC, respectively). You might also want TwistedConch
(http://twistedmatrix.com/trac/wiki/TwistedConch) (for the encrypted Manhole debug port). Note
that Twisted requires Zopelnterface to be installed as well.

Of course, your project’s build process will impose additional requirements on the buildslaves. These hosts must
have all the tools necessary to compile and test your project’s source code.

Windows Support

Buildbot - both master and slave - runs well natively on Windows. The slave runs well on Cygwin, but because of
problems with SQLite on Cygwin, the master does not.

Buildbot’s windows testing is limited to the most recent Twisted and Python versions. For best results, use the
most recent available versions of these libraries on Windows.

Pywin32: http://sourceforge.net/projects/pywin32/

Twisted requires PyWin32 in order to spawn processes on Windows.

Buildmaster Requirements

sqlite3: http://www.sqlite.org

Buildbot requires SQLite to store its state. Version 3.7.0 or higher is recommended, although Buildbot
will run against earlier versions — at the risk of “Database is locked” errors. The minimum version is
3.4.0, below which parallel database queries and schema introspection fail.

pysqlite: http://pypi.python.org/pypi/pysqlite

The SQLite Python package is required for Python-2.5 and earlier (it is already included in Python-2.5
and later, but the version in Python-2.5 has nasty bugs)

simplejson: http://pypi.python.org/pypi/simplejson

The simplejson package is required for Python-2.5 and earlier (it is already included as json in Python-
2.6 and later)

Jinja2: http://jinja.pocoo.org/

Buildbot requires Jinja version 2.1 or higher.

Jinja2 is a general purpose templating language and is used by Buildbot to generate the HTML output.
SQLAIchemy: http://www.sqlalchemy.org/

Buildbot requires SQLAlchemy 0.6.0 or higher. SQLAlchemy allows Buildbot to build database
schemas and queries for a wide variety of database systems.

SQLAIchemy-Migrate: http://code.google.com/p/sqlalchemy-migrate/

Buildbot requires one of the following SQLAlchemy-Migrate versions: 0.7.1, 0.7.2 and 0.9.
SQLAIchemy-Migrate-0.9 is required for compatibility with SQLAlchemy versions 0.8 and above.
Buildbot uses SQLAIchemy-Migrate to manage schema upgrades from version to version.

Python-Dateutil: http://labix.org/python-dateutil

The Nightly scheduler requires Python-Dateutil version 1.5 (the last version to support Python-2.x).
This is a small, pure-python library. Buildbot will function properly without it if the Nightlys sched-
uler is not used.

2.2. Installation 27

http://twistedmatrix.com/trac/wiki/TwistedMail
http://twistedmatrix.com/trac/wiki/TwistedWeb
http://twistedmatrix.com/trac/wiki/TwistedWords
http://twistedmatrix.com/trac/wiki/TwistedConch
http://sourceforge.net/projects/pywin32/
http://www.sqlite.org
http://pypi.python.org/pypi/pysqlite
http://pypi.python.org/pypi/simplejson
http://jinja.pocoo.org/
http://www.sqlalchemy.org/
http://code.google.com/p/sqlalchemy-migrate/
http://labix.org/python-dateutil

BuildBot Documentation, Release 0.8.12

2.2.3 Installing the code

The Distribution Package

Buildbot comes in two parts: buildbot (the master) and buildbot-slave (the slave). The two can be
installed individually or together.

Installation From PyPI

The preferred way to install Buildbot is using pip. For the master:

pip install buildbot

and for the slave:

pip install buildbot-slave

When using pip to install instead of distribution specific package manangers, e.g. via apt-get or ports, it is
simpler to choose exactly which version one wants to use. It may however be easier to install via distribution
specific package mangers but note that they may provide an earlier version than what is available via pip.

Installation From Tarballs

Buildbot and Buildslave are installed using the standard Python distutils
(http://docs.python.org/library/distutils.html) process. For either component, after unpacking the tarball,
the process is:

python setup.py build
python setup.py install

where the install step may need to be done as root. This will put the bulk of the code in somewhere like
/usr/lib/pythonx.y/site-packages/buildbot. It will also install the buildbot command-line tool
in /usr/bin/buildbot.

If the environment variable $NO_INSTALL_REQS is set to 1, then setup.py will not try to install Buildbot’s
requirements. This is usually only useful when building a Buildbot package.

To test this, shift to a different directory (like /tmp), and run:

buildbot —--version
or
buildslave —--version

If it shows you the versions of Buildbot and Twisted, the install went ok. If it says “no such command” or it gets
an ImportError when it tries to load the libraries, then something went wrong. pydoc buildbot is another
useful diagnostic tool.

Windows users will find these files in other places. You will need to make sure that Python can find the libraries,
and will probably find it convenient to have buildbot on your PATH.

Installation in a Virtualenv

If you cannot or do not wish to install the buildbot into a site-wide location like /usr or /usr/local,
you can also install it into the account’s home directory or any other location using a tool like virtualenv
(http://pypi.python.org/pypi/virtualenv).

28 Chapter 2. Buildbot Manual

http://docs.python.org/library/distutils.html
http://pypi.python.org/pypi/virtualenv

BuildBot Documentation, Release 0.8.12

2.2.4 Running Buildbot’s Tests (optional)

If you wish, you can run the buildbot unit test suite. First, ensure you have the mock
(http://pypi.python.org/pypi/mock) Python module installed from PyPi. This module is not required for ordi-
nary Buildbot operation - only to run the tests. Note that this is not the same as the Fedora mock package! You
can check with

python —-mmock

Then, run the tests:

PYTHONPATH=. trial buildbot.test
or
PYTHONPATH=. trial buildslave.test

Nothing should fail, although a few might be skipped.

If any of the tests fail for reasons other than a missing mock, you should stop and investigate the cause before
continuing the installation process, as it will probably be easier to track down the bug early. In most cases, the
problem is incorrectly installed Python modules or a badly configured PYTHONPATH. This may be a good time
to contact the Buildbot developers for help.

2.2.5 Creating a buildmaster
As you learned earlier (System Architecture), the buildmaster runs on a central host (usually one that is publicly
visible, so everybody can check on the status of the project), and controls all aspects of the buildbot system

You will probably wish to create a separate user account for the buildmaster, perhaps named buildmaster. Do
not run the buildmaster as root!

You need to choose a directory for the buildmaster, called the basedir. This directory will be owned by the
buildmaster. It will contain configuration, the database, and status information - including logfiles. On a large
buildmaster this directory will see a lot of activity, so it should be on a disk with adequate space and speed.

Once you’ve picked a directory, use the buildbot create-master command to create the directory and
populate it with startup files:

buildbot create-master —-r basedir

You will need to create a configuration file before starting the buildmaster. Most of the rest of this manual is
dedicated to explaining how to do this. A sample configuration file is placed in the working directory, named
master.cfg.sample, which can be copied to master.cfg and edited to suit your purposes.

(Internal details: This command creates a file named buildbot . tac that contains all the state necessary to
create the buildmaster. Twisted has a tool called twistd which can use this .tac file to create and launch a
buildmaster instance. twistd takes care of logging and daemonization (running the program in the background).
/usr/bin/buildbot is a front end which runs twistd for you.)

Using A Database Server

If you want to use a database server (e.g., MySQL or Postgres) as the database backend for your Buildbot, add
the ——db option to the create-master invocation to specify the connection string for the database, and make
sure that the same URL appears in the dlo_ur1 of the db parameter in your configuration file.

Additional Requirements

Depending on the selected database, further Python packages will be required. Consult the SQLAlchemy dialect
list for a full description.

The most common choice for MySQL is

MySQL-python: http://mysql-python.sourceforge.net/

2.2. Installation 29

http://pypi.python.org/pypi/mock
http://mysql-python.sourceforge.net/

BuildBot Documentation, Release 0.8.12

To communicate with MySQL, SQLAlchemy requires MySQL-python. Any reasonably recent ver-
sion of MySQL-python should suffice.

The most common choice for Postgres is
Psycopg: http://initd.org/psycopg/

SQLAIchemy uses Psycopg to communicate with Postgres. Any reasonably recent version should
suffice.

Buildmaster Options
This section lists options to the create-master command. You can also type buildbot create-master
——help for an up-to-the-moment summary.
—-—force

With this option, @command{create-master} will re-use an existing master directory.
--no-logrotate

This disables internal buildslave log management mechanism. With this option buildslave does not
override the default logfile name and its behaviour giving a possibility to control those with command-
line options of twistd daemon.

—-—-relocatable

This creates a “relocatable” buildbot.tac, which uses relative paths instead of absolute paths, so that
the buildmaster directory can be moved about.

——config

The name of the configuration file to use. This configuration file need not reside in the buildmaster
directory.

--log-size
This is the size in bytes when to rotate the Twisted log files. The default is 10MiB.
--log-count

This is the number of log rotations to keep around. You can either specify a number or None to keep
all @file{twistd.log} files around. The default is 10.

—-—db

The database that the Buildmaster should use. Note that the same value must be added to the config-
uration file.

2.2.6 Upgrading an Existing Buildmaster

If you have just installed a new version of the Buildbot code, and you have buildmasters that were created using
an older version, you’ll need to upgrade these buildmasters before you can use them. The upgrade process adds
and modifies files in the buildmaster’s base directory to make it compatible with the new code.

buildbot upgrade-master basedir

This command will also scan your master . cfqg file for incompatibilities (by loading it and printing any errors
or deprecation warnings that occur). Each buildbot release tries to be compatible with configurations that worked
cleanly (i.e. without deprecation warnings) on the previous release: any functions or classes that are to be removed
will first be deprecated in a release, to give you a chance to start using the replacement.

The upgrade-master command is idempotent. It is safe to run it multiple times. After each upgrade of the
buildbot code, you should use upgrade-master on all your buildmasters.

In general, Buildbot slaves and masters can be upgraded independently, although some new features will not be
available, depending on the master and slave versions.

30 Chapter 2. Buildbot Manual

http://initd.org/psycopg/

BuildBot Documentation, Release 0.8.12

Beyond this general information, read all of the sections below that apply to versions through which you are
upgrading.

Version-specific Notes

Upgrading a Buildmaster to Buildbot-0.7.6

The 0.7.6 release introduced the public_html/ directory, which contains index.html and other files served
by the WebStatus and Waterfall status displays. The upgrade-master command will create these
files if they do not already exist. It will not modify existing copies, but it will write a new copy in e.g.
index.html.new if the new version differs from the version that already exists.

Upgrading a Buildmaster to Buildbot-0.8.0

Buildbot-0.8.0 introduces a database backend, which is SQLite by default. The upgrade-master command
will automatically create and populate this database with the changes the buildmaster has seen. Note that, as of
this release, build history is not contained in the database, and is thus not migrated.

The upgrade process renames the Changes pickle (Sbasedir/changes.pck) to changes.pck.old once
the upgrade is complete. To reverse the upgrade, simply downgrade Buildbot and move this file back to its original
name. You may also wish to delete the state database (state.sglite).

Upgrading into a non-SQLite database

If you are not using sqlite, you will need to add an entry into your master.cfg to reflect the database version
you are using. The upgrade process does not edit your master .cfg for you. So something like:

for using mysql:
c[’db_url’] = 'mysqgl://bbuser:<password>Q@localhost/buildbot’

Once the parameter has been added, invoke upgrade-master. This will extract the DB url from your configu-
ration file.

buildbot upgrade-master

See Database Specification for more options to specify a database.

Change Encoding Issues The upgrade process assumes that strings in your Changes pickle are encoded in UTF-
8 (or plain ASCII). If this is not the case, and if there are non-UTF-8 characters in the pickle, the upgrade will fail
with a suitable error message. If this occurs, you have two options. If the change history is not important to your
purpose, you can simply delete changes . pck.

If you would like to keep the change history, then you will need to figure out which encoding is in use, and
use contrib/fix_changes_pickle_encoding.py (Contrib Scripts) to rewrite the changes pickle into
Unicode before upgrading the master. A typical invocation (with Mac-Roman encoding) might look like:

S python Sbuildbot/contrib/fix_changes_pickle_encoding.py changes.pck macroman
decoding bytestrings in changes.pck using macroman

converted 11392 strings

backing up changes.pck to changes.pck.old

If your Changes pickle uses multiple encodings, you’re on your own, but the script in contrib may provide a good
starting point for the fix.

Upgrading a Buildmaster to Later Versions

Up to Buildbot version 0.8.12, no further steps beyond those described above are required.

2.2. Installation 31

BuildBot Documentation, Release 0.8.12

2.2.7 Creating a buildslave

Typically, you will be adding a buildslave to an existing buildmaster, to provide additional architecture coverage.
The buildbot administrator will give you several pieces of information necessary to connect to the buildmaster.
You should also be somewhat familiar with the project being tested, so you can troubleshoot build problems

locally.

The buildbot exists to make sure that the project’s stated how to build it process actually works. To this
end, the buildslave should run in an environment just like that of your regular developers. Typically the project
build process is documented somewhere (README, INSTALL, etc), in a document that should mention all library
dependencies and contain a basic set of build instructions. This document will be useful as you configure the host

and account in which the buildslave runs.

Here’s a good checklist for setting up a buildslave:

1. Set up the account

It is recommended (although not mandatory) to set up a separate user account for the buildslave.
This account is frequently named buildbot or buildslave. This serves to isolate your
personal working environment from that of the slave’s, and helps to minimize the security threat
posed by letting possibly-unknown contributors run arbitrary code on your system. The account
should have a minimum of fancy init scripts.

2. Install the buildbot code

Follow the instructions given earlier (/nstalling the code). If you use a separate buildslave ac-
count, and you didn’t install the buildbot code to a shared location, then you will need to install
it with ——home=~ for each account that needs it.

3. Set up the host

Make sure the host can actually reach the buildmaster. Usually the buildmaster is running a status
webserver on the same machine, so simply point your web browser at it and see if you can get
there. Install whatever additional packages or libraries the project’s INSTALL document advises.
(or not: if your buildslave is supposed to make sure that building without optional libraries still
works, then don’t install those libraries).

Again, these libraries don’t necessarily have to be installed to a site-wide shared location, but
they must be available to your build process. Accomplishing this is usually very specific to the
build process, so installing them to /uszr or /usr/local is usually the best approach.

4. Test the build process

Follow the instructions in the INSTALL document, in the buildslave’s account. Perform a full
CVS (or whatever) checkout, configure, make, run tests, etc. Confirm that the build works with-
out manual fussing. If it doesn’t work when you do it by hand, it will be unlikely to work when
the buildbot attempts to do it in an automated fashion.

5. Choose a base directory

This should be somewhere in the buildslave’s account, typically named after the project which
is being tested. The buildslave will not touch any file outside of this directory. Something like
~/Buildbot or ~/Buildslaves/fooproject is appropriate.

6. Get the buildmaster host/port, botname, and password

When the buildbot admin configures the buildmaster to accept and use your buildslave, they will
provide you with the following pieces of information:

* your buildslave’s name

* the password assigned to your buildslave

¢ the hostname and port number of the buildmaster, i.e. buildbot.example.org:8007
7. Create the buildslave

Now run the ‘buildslave’ command as follows:

32

Chapter 2. Buildbot Manual

BuildBot Documentation, Release 0.8.12

buildslave create-slave BASEDIR MASTERHOST:PORT SLAVENAME
PASSWORD

This will create the base directory and a collection of files inside, including the buildbot .tac
file that contains all the information you passed to the buildbot command.

8. Fill in the hostinfo files

When it first connects, the buildslave will send a few files up to the buildmaster which describe
the host that it is running on. These files are presented on the web status display so that developers
have more information to reproduce any test failures that are witnessed by the buildbot. There
are sample files in the info subdirectory of the buildbot’s base directory. You should edit these
to correctly describe you and your host.

BASEDIR/info/admin should contain your name and email address. This is the
buildslave admin address, and will be visible from the build status page (so you may
wish to munge it a bit if address-harvesting spambots are a concern).

BASEDIR/info/host should be filled with a brief description of the host: OS, version, mem-
ory size, CPU speed, versions of relevant libraries installed, and finally the version of the buildbot
code which is running the buildslave.

The optional BASEDIR/info/access_uri can specify a URI which will connect a user to
the machine. Many systems accept ssh://hostname URIs for this purpose.

If you run many buildslaves, you may want to create a single ~buildslave/info file and
share it among all the buildslaves with symlinks.

Buildslave Options

There are a handful of options you might want to use when creating the buildslave with the buildslave
create-slave <options> DIR <params> command. You can type buildslave create-slave
——help for a summary. To use these, just include them on the buildslave create-slave command line,
like this

buildslave create-slave —--umask=022 ~/buildslave buildmaster.example.org:42012 {myslavename} {myp.

--no-logrotate
This disables internal buildslave log management mechanism. With this option buildslave does not override
the default logfile name and its behaviour giving a possibility to control those with command-line options
of twistd daemon.

——usepty
This is a boolean flag that tells the buildslave whether to launch child processes in a PTY or with regular
pipes (the default) when the master does not specify. This option is deprecated, as this particular parameter
is better specified on the master.

——umask

This is a string (generally an octal representation of an integer) which will cause the buildslave process’
umask value to be set shortly after initialization. The twistd daemonization utility forces the umask to
077 at startup (which means that all files created by the buildslave or its child processes will be unreadable
by any user other than the buildslave account). If you want build products to be readable by other accounts,
you can add ——umask=022 to tell the buildslave to fix the umask after twistd clobbers it. If you want
build products to be writable by other accounts too, use ——umask=000, but this is likely to be a security
problem.

——keepalive
This is a number that indicates how frequently keepal ive messages should be sent from the buildslave
to the buildmaster, expressed in seconds. The default (600) causes a message to be sent to the buildmaster
at least once every 10 minutes. To set this to a lower value, use e.g. ——keepalive=120.

If the buildslave is behind a NAT box or stateful firewall, these messages may help to keep the connection
alive: some NAT boxes tend to forget about a connection if it has not been used in a while. When this

2.2. Installation 33

BuildBot Documentation, Release 0.8.12

happens, the buildmaster will think that the buildslave has disappeared, and builds will time out. Meanwhile
the buildslave will not realize than anything is wrong.

—--maxdelay
This is a number that indicates the maximum amount of time the buildslave will wait between connection
attempts, expressed in seconds. The default (300) causes the buildslave to wait at most 5 minutes before
trying to connect to the buildmaster again.

—-log-size
This is the size in bytes when to rotate the Twisted log files.

—-log—-count
This is the number of log rotations to keep around. You can either specify a number or None to keep all
twistd. log files around. The default is 10.

——allow-shutdown
Can also be passed directly to the BuildSlave constructor in buildbot.tac. If set, it allows the buildslave to
initiate a graceful shutdown, meaning that it will ask the master to shut down the slave when the current
build, if any, is complete.

Setting allow_shutdown to £ile will cause the buildslave to watch shutdown.stamp in basedir for
updates to its mtime. When the mtime changes, the slave will request a graceful shutdown from the master.
The file does not need to exist prior to starting the slave.

Setting allow_shutdown to signal will set up a SIGHUP handler to start a graceful shutdown. When the
signal is received, the slave will request a graceful shutdown from the master.

The default value is None, in which case this feature will be disabled.

Both master and slave must be at least version 0.8.3 for this feature to work.

Other Buildslave Configuration
unicode_encoding This represents the encoding that buildbot should use when converting unicode comman-
dline arguments into byte strings in order to pass to the operating system when spawning new processes.

The default value is what Python’s sys.getfilesystemencoding returns, which on Windows is
‘mbces’, on Mac OSX is ‘utf-8’, and on Unix depends on your locale settings.

If you need a different encoding, this can be changed in your build slave’s buildbot . tac file by adding
aunicode_encoding argument to the BuildSlave constructor.

s = BuildSlave (buildmaster_host, port, slavename, passwd, basedir,
keepalive, usepty, umask=umask, maxdelay=maxdelay,
unicode_encoding=’"utf-8’, allow_shutdown=’'signal’)

2.2.8 Upgrading an Existing Buildslave

If you have just installed a new version of Buildbot-slave, you may need to take some steps to upgrade it. If you
are upgrading to version 0.8.2 or later, you can run

buildslave upgrade-slave /path/to/buildslave/dir

Version-specific Notes

Upgrading a Buildslave to Buildbot-slave-0.8.1

Before Buildbot version 0.8.1, the Buildbot master and slave were part of the same distribution. As of version
0.8.1, the buildslave is a separate distribution.

As of this release, you will need to install buildbot—-slave to run a slave.

34 Chapter 2. Buildbot Manual

BuildBot Documentation, Release 0.8.12

Any automatic startup scripts that had run buildbot start for previous versions should be changed to run
buildslave start instead.

If you are running a version later than 0.8.1, then you can skip the remainder of this section: the
‘upgrade-slave command will take care of this. If you are upgrading directly to 0.8.1, read on.

The existing buildbot .tac for any buildslaves running older versions will need to be edited or replaced. If
the loss of cached buildslave state (e.g., for Source steps in copy mode) is not problematic, the easiest solution is
to simply delete the slave directory and re-run buildslave create-slave.

If deleting the slave directory is problematic, the change to buildbot . tac is simple. On line 3, replace

from buildbot.slave.bot import BuildSlave

with

from buildslave.bot import BuildSlave

After this change, the buildslave should start as usual.

2.2.9 Launching the daemons

Both the buildmaster and the buildslave run as daemon programs. To launch them, pass the working directory to
the buildbot and buildslave commands, as appropriate:

start a master

buildbot start [BASEDIR |

start a slave

buildslave start [SLAVE_BASEDIR |

The BASEDIR is option and can be omitted if the current directory contains the buildbot configuration (the
buildbot.tac file).

buildbot start

This command will start the daemon and then return, so normally it will not produce any output. To verify that
the programs are indeed running, look for a pair of files named twistd.log and twistd.pid that should be
created in the working directory. twistd.pid contains the process ID of the newly-spawned daemon.

When the buildslave connects to the buildmaster, new directories will start appearing in its base directory. The
buildmaster tells the slave to create a directory for each Builder which will be using that slave. All build operations
are performed within these directories: CVS checkouts, compiles, and tests.

Once you get everything running, you will want to arrange for the buildbot daemons to be started at boot time.
One way is to use cron, by putting them in a @ reboot crontab entry !

@reboot buildbot start [BASEDIR]

When you run crontab to set this up, remember to do it as the buildmaster or buildslave account! If you add this
to your crontab when running as your regular account (or worse yet, root), then the daemon will run as the wrong
user, quite possibly as one with more authority than you intended to provide.

It is important to remember that the environment provided to cron jobs and init scripts can be quite different that
your normal runtime. There may be fewer environment variables specified, and the PATH may be shorter than
usual. It is a good idea to test out this method of launching the buildslave by using a cron job with a time in
the near future, with the same command, and then check twistd. log to make sure the slave actually started
correctly. Common problems here are for /usr/local or ~/bin to not be on your PATH, or for PYTHONPATH
to not be set correctly. Sometimes HOME is messed up too.

Some distributions may include conveniences to make starting buildbot at boot time easy. For in-
stance, with the default buildbot package in Debian-based distributions, you may only need to mod-

! This @reboot syntax is understood by Vixie cron, which is the flavor usually provided with Linux systems. Other unices may have a
cron that doesn’t understand @reboot:

2.2. Installation 35

BuildBot Documentation, Release 0.8.12

ify /etc/default/buildbot (see also /etc/init.d/buildbot, which reads the configuration in
/etc/default/buildbot).

Buildbot also comes with its own init scripts that provide support for controlling multi-slave and multi-master
setups (mostly because they are based on the init script from the Debian package). With a little modification
these scripts can be used both on Debian and RHEL-based distributions and may thus prove helpful to package
maintainers who are working on buildbot (or those that haven’t yet split buildbot into master and slave packages).

install as /etc/default/buildslave
or /etc/sysconfig/buildslave
master/contrib/init-scripts/buildslave.default

install as /etc/default/buildmaster
or /etc/sysconfig/buildmaster
master/contrib/init-scripts/buildmaster.default

install as /etc/init.d/buildslave
slave/contrib/init-scripts/buildslave.init.sh

install as /etc/init.d/buildmaster
slave/contrib/init-scripts/buildmaster.init.sh

... and tell sysvinit about them
chkconfig buildmaster reset
... or

update-rc.d buildmaster defaults

2.2.10 Logfiles

While a buildbot daemon runs, it emits text to a logfile, named twistd.log. A command like tail -£
twistd. log is useful to watch the command output as it runs.

The buildmaster will announce any errors with its configuration file in the logfile, so it is a good idea to look at the
log at startup time to check for any problems. Most buildmaster activities will cause lines to be added to the log.

2.2.11 Shutdown

To stop a buildmaster or buildslave manually, use:

buildbot stop [BASEDIR |
or
buildslave stop [SLAVE_BASEDIR]

This simply looks for the twistd.pid file and kills whatever process is identified within.

At system shutdown, all processes are sent a STGKILL. The buildmaster and buildslave will respond to this by
shutting down normally.

The buildmaster will respond to a STGHUP by re-reading its config file. Of course, this only works on Unix-like
systems with signal support, and won’t work on Windows. The following shortcut is available:

buildbot reconfig [BASEDIR |

When you update the Buildbot code to a new release, you will need to restart the buildmaster and/or buildslave
before it can take advantage of the new code. You can do a buildbot stop BASEDIR and buildbot
start BASEDIR in quick succession, or you can use the restart shortcut, which does both steps for you:

buildbot restart [BASEDIR |

Buildslaves can similarly be restarted with:

36 Chapter 2. Buildbot Manual

BuildBot Documentation, Release 0.8.12

buildslave restart [BASEDIR |

There are certain configuration changes that are not handled cleanly by buildbot reconfig. If this occurs,
buildbot restart isa more robust tool to fully switch over to the new configuration.

buildbot restart may also be used to start a stopped Buildbot instance. This behaviour is useful when
writing scripts that stop, start and restart Buildbot.

A buildslave may also be gracefully shutdown from the WebStatus status plugin. This is useful to shutdown a
buildslave without interrupting any current builds. The buildmaster will wait until the buildslave is finished all its
current builds, and will then tell the buildslave to shutdown.

2.2.12 Maintenance

The buildmaster can be configured to send out email notifications when a slave has been offline for a while. Be
sure to configure the buildmaster with a contact email address for each slave so these notifications are sent to
someone who can bring it back online.

If you find you can no longer provide a buildslave to the project, please let the project admins know, so they can
put out a call for a replacement.

The Buildbot records status and logs output continually, each time a build is performed. The status tends to be
small, but the build logs can become quite large. Each build and log are recorded in a separate file, arranged hier-
archically under the buildmaster’s base directory. To prevent these files from growing without bound, you should
periodically delete old build logs. A simple cron job to delete anything older than, say, two weeks should do the
job. The only trick is to leave the buildbot . tac and other support files alone, for which find‘s -mindepth
argument helps skip everything in the top directory. You can use something like the following:

@weekly cd BASEDIR && find . -mindepth 2 i-path ’./public_html/*" \
-prune -o —-type f -mtime +14 -exec rm {} \;
@weekly cd BASEDIR && find twistd.logx —-mtime +14 -exec rm {} \;

Alternatively, you can configure a maximum number of old logs to be kept using the ——1log—count command
line option when running buildslave create-slave orbuildbot create-master.

2.2.13 Troubleshooting

Here are a few hints on diagnosing common problems.

Starting the buildslave

Cron jobs are typically run with a minimal shell (/bin/sh, not /bin/bash), and tilde expansion is not always
performed in such commands. You may want to use explicit paths, because the PATH is usually quite short
and doesn’t include anything set by your shell’s startup scripts (.profile, .bashrc, etc). If you’ve installed
buildbot (or other Python libraries) to an unusual location, you may need to add a PYTHONPATH specification
(note that Python will do tilde-expansion on PYTHONPATH elements by itself). Sometimes it is safer to fully-
specify everything:

@reboot PYTHONPATH=~/lib/python /usr/local/bin/buildbot \
start /usr/home/buildbot/basedir

Take the time to get the @reboot job set up. Otherwise, things will work fine for a while, but the first power
outage or system reboot you have will stop the buildslave with nothing but the cries of sorrowful developers to
remind you that it has gone away.

Connecting to the buildmaster

If the buildslave cannot connect to the buildmaster, the reason should be described in the twistd. log logfile.
Some common problems are an incorrect master hostname or port number, or a mistyped bot name or password.

2.2. Installation 37

BuildBot Documentation, Release 0.8.12

If the buildslave loses the connection to the master, it is supposed to attempt to reconnect with an exponentially-
increasing backoff. Each attempt (and the time of the next attempt) will be logged. If you get impatient, just
manually stop and re-start the buildslave.

When the buildmaster is restarted, all slaves will be disconnected, and will attempt to reconnect as usual. The
reconnect time will depend upon how long the buildmaster is offline (i.e. how far up the exponential backoff curve
the slaves have travelled). Again, buildslave restart BASEDIR will speed up the process.

Contrib Scripts

While some features of Buildbot are included in the distribution, others are only available
in contrib/ in the source directory. The latest versions of such scripts are available at
http://github.com/buildbot/buildbot/tree/master/master/contrib.

2.3 Concepts

This chapter defines some of the basic concepts that the Buildbot uses. You’ll need to understand how the Buildbot
sees the world to configure it properly.

2.3.1 Source Stamps

Source code comes from repositories, provided by version control systems. Repositories are generally identified
by URLs, e.g., git://github.com/buildbot/buildbot.git.

In these days of distributed version control systems, the same codebase may appear in multi-
ple repositories. For example, https://github.com/mozilla/mozilla-central and
http://hg.mozilla.org/mozilla-release both contain the Firefox codebase, although not
exactly the same code.

Many projects are built from multiple codebases. For example, a company may build several applications based on
the same core library. The “app” codebase and the “core” codebase are in separate repositories, but are compiled
together and constitute a single project. Changes to either codebase should cause a rebuild of the application.

Most version control systems define some sort of revision that can be used (sometimes in combination with a
branch) to uniquely specify a particular version of the source code.

To build a project, Buildbot needs to know exactly which version of each codebase it should build. It uses a source
stamp to do so for each codebase; the collection of sourcestamps required for a project is called a source stamp
set.

2.3.2 Version Control Systems

Buildbot supports a significant number of version control systems, so it treats them abstractly.

For purposes of deciding when to perform builds, Buildbot’s change sources monitor repositories, and represent
any updates to those repositories as changes. These change sources fall broadly into two categories: pollers which
periodically check the repository for updates; and hooks, where the repository is configured to notify Buildbot
whenever an update occurs.

This concept does not map perfectly to every version control system. For example, for CVS Buildbot must guess
that version updates made to multiple files within a short time represent a single change; for DVCS’s like Git,
Buildbot records a change when a commit is pushed to the monitored repository, not when it is initially committed.
We assume that the Changes arrive at the master in the same order in which they are committed to the repository.

When it comes time to actually perform a build, a scheduler prepares a source stamp set, as described above, based
on its configuration. When the build begins, one or more source steps use the information in the source stamp set
to actually check out the source code, using the normal VCS commands.

38 Chapter 2. Buildbot Manual

http://github.com/buildbot/buildbot/tree/master/master/contrib

BuildBot Documentation, Release 0.8.12

Tree Stability

Changes tend to arrive at a buildmaster in bursts. In many cases, these bursts of changes are meant to be taken
together. For example, a developer may have pushed multiple commits to a DVCS that comprise the same new
feature or bugfix. To avoid trying to build every change, Buildbot supports the notion of tree stability, by waiting
for a burst of changes to finish before starting to schedule builds. This is implemented as a timer, with builds not
scheduled until no changes have occurred for the duration of the timer.

How Different VC Systems Specify Sources

For CVS, the static specifications are repository and module. In addition to those, each build uses a timestamp (or
omits the timestamp to mean the latest) and branch tag (which defaults to HEAD). These parameters collectively
specify a set of sources from which a build may be performed.

Subversion (http://subversion.tigris.org), combines the repository, module, and branch into a single Subversion
URL parameter. Within that scope, source checkouts can be specified by a numeric revision number (a repository-
wide monotonically-increasing marker, such that each transaction that changes the repository is indexed by a
different revision number), or a revision timestamp. When branches are used, the repository and module form a
static baseURL, while each build has a revision number and a branch (which defaults to a statically-specified
defaultBranch). The baseURL and branch are simply concatenated together to derive the svnurl to use
for the checkout.

Perforce (http://www.perforce.com/) is similar. The server is specified through a P4APORT parameter. Module and
branch are specified in a single depot path, and revisions are depot-wide. When branches are used, the p4base
and defaultBranch are concatenated together to produce the depot path.

Bzr (http://bazaar-vcs.org) (which is a descendant of Arch/Bazaar, and is frequently referred to as “Bazaar”)
has the same sort of repository-vs-workspace model as Arch, but the repository data can either be stored inside
the working directory or kept elsewhere (either on the same machine or on an entirely different machine). For
the purposes of Buildbot (which never commits changes), the repository is specified with a URL and a revision
number.

The most common way to obtain read-only access to a bzr tree is via HTTP, simply by making the repository
visible through a web server like Apache. Bzr can also use FTP and SFTP servers, if the buildslave process has
sufficient privileges to access them. Higher performance can be obtained by running a special Bazaar-specific
server. None of these matter to the buildbot: the repository URL just has to match the kind of server being used.
The repoURL argument provides the location of the repository.

Branches are expressed as subdirectories of the main central repository, which means that if branches are being
used, the BZR step is given a baseURL and defaultBranch instead of getting the repoURL argument.

Darcs (http://darcs.net/) doesn’t really have the notion of a single master repository. Nor does it really have
branches. In Darcs, each working directory is also a repository, and there are operations to push and pull patches
from one of these repositories to another. For the Buildbot’s purposes, all you need to do is specify the URL
of a repository that you want to build from. The build slave will then pull the latest patches from that repository
and build them. Multiple branches are implemented by using multiple repositories (possibly living on the same
server).

Builders which use Darcs therefore have a static repourl which specifies the location of the repository. If
branches are being used, the source Step is instead configured with abaseURL and a defaultBranch, and the
two strings are simply concatenated together to obtain the repository’s URL. Each build then has a specific branch
which replaces defaultBranch, or just uses the default one. Instead of a revision number, each build can have
a context, which is a string that records all the patches that are present in a given tree (this is the output of
darcs changes -—-context, and is considerably less concise than, e.g. Subversion’s revision number, but
the patch-reordering flexibility of Darcs makes it impossible to provide a shorter useful specification).

Mercurial (http://selenic.com/mercurial) is like Darcs, in that each branch is stored in a separate repository. The
repourl, baseURL, and defaultBranch arguments are all handled the same way as with Darcs. The
revision, however, is the hash identifier returned by hg identify.

Git (http://git.or.cz/) also follows a decentralized model, and each repository can have several branches and tags.
The source Step is configured with a static repourl which specifies the location of the repository. In addition,

2.3. Concepts 39

http://subversion.tigris.org
http://www.perforce.com/
http://bazaar-vcs.org
http://darcs.net/
http://selenic.com/mercurial
http://git.or.cz/

BuildBot Documentation, Release 0.8.12

an optional branch parameter can be specified to check out code from a specific branch instead of the default
master branch. The revision is specified as a SHA1 hash as returned by e.g. git rev-parse. No attempt is
made to ensure that the specified revision is actually a subset of the specified branch.

Monotone (http://www.monotone.ca/) is another that follows a decentralized model where each repository can
have several branches and tags. The source Step is configured with static repourl and branch parameters,
which specifies the location of the repository and the branch to use. The revision is specified as a SHA1 hash
as returned by e.g. mtn automate select w:. No attempt is made to ensure that the specified revision is
actually a subset of the specified branch.

2.3.3 Changes

Who

Each Change has a who attribute, which specifies which developer is responsible for the change. This is a
string which comes from a namespace controlled by the VC repository. Frequently this means it is a username on
the host which runs the repository, but not all VC systems require this. Each StatusNotifier will map the
who attribute into something appropriate for their particular means of communication: an email address, an IRC
handle, etc.

This who attribute is also parsed and stored into Buildbot’s database (see User Objects). Currently, only who
attributes in Changes from git repositories are translated into user objects, but in the future all incoming Changes
will have their who parsed and stored.

Files

It also has a list of £iles, which are just the tree-relative filenames of any files that were added, deleted, or
modified for this Change. These filenames are used by the fileIsImportant function (in the Scheduler)
to decide whether it is worth triggering a new build or not, e.g. the function could use the following function to
only run a build if a C file were checked in:

def has_C_files (change):
for name in change.files:
if name.endswith(".c"):
return True
return False

Certain BuildSteps can also use the list of changed files to run a more targeted series of tests, e.g. the
python_twisted.Trial step can run just the unit tests that provide coverage for the modified .py files
instead of running the full test suite.

Comments

The Change also has a comment s attribute, which is a string containing any checkin comments.

Project

The project attribute of a change or source stamp describes the project to which it corresponds, as a short
human-readable string. This is useful in cases where multiple independent projects are built on the same build-
master. In such cases, it can be used to control which builds are scheduled for a given commit, and to limit status
displays to only one project.

Repository

This attribute specifies the repository in which this change occurred. In the case of DVCS’s, this information may
be required to check out the committed source code. However, using the repository from a change has security

40 Chapter 2. Buildbot Manual

http://www.monotone.ca/

BuildBot Documentation, Release 0.8.12

risks: if Buildbot is configured to blindly trust this information, then it may easily be tricked into building arbitrary
source code, potentially compromising the buildslaves and the integrity of subsequent builds.

Codebase

This attribute specifies the codebase to which this change was made. As described above, multiple repositories
may contain the same codebase. A change’s codebase is usually determined by the codebaseGenerator
configuration. By default the codebase is “’; this value is used automatically for single-codebase configurations.

Revision

Each Change can have a revision attribute, which describes how to get a tree with a specific state: a tree which
includes this Change (and all that came before it) but none that come after it. If this information is unavailable,
the revision attribute will be None. These revisions are provided by the ChangeSource.

Revisions are always strings.

CVS revision is the seconds since the epoch as an integer.

SVN revision is the revision number

Darcs revision is alarge string, the output of darcs changes —context
Mercurial revision is a short string (a hash ID), the output of hg identify
P4 revision is the transaction number

Git revisionis ashort string (a SHAI hash), the output of e.g. git rev-parse

Branches
The Change might also have a branch attribute. This indicates that all of the Change’s files are in the same
named branch. The Schedulers get to decide whether the branch should be built or not.

For VC systems like CVS, Git and Monotone the branch name is unrelated to the filename. (That is, the branch
name and the filename inhabit unrelated namespaces.) For SVN, branches are expressed as subdirectories of the
repository, so the file’s svnurl is a combination of some base URL, the branch name, and the filename within
the branch. (In a sense, the branch name and the filename inhabit the same namespace.) Darcs branches are
subdirectories of a base URL just like SVN. Mercurial branches are the same as Darcs.

CVS branch="warner-newfeature’, files=[’src/foo.c’]

SVN branch="branches/warner-newfeature’, files=[’src/foo.c’]
Darcs branch="warner-newfeature’, files=[’src/foo.c’]
Mercurial branch="warner-newfeature’, files=[’src/foo.c’]

Git branch="warner-newfeature’, files=[’src/foo.c’]

Monotone branch="warner-newfeature’, files=[’src/foo.c’]

Change Properties

A Change may have one or more properties attached to it, usually specified through the Force Build form or
sendchange.d Properties are discussed in detail in the Build Properties section.

2.3. Concepts a“

BuildBot Documentation, Release 0.8.12

2.3.4 Scheduling Builds

Each Buildmaster has a set of Scheduler objects, each of which gets a copy of every incoming Change. The
Schedulers are responsible for deciding when Builds should be run. Some Buildbot installations might have a
single Scheduler, while others may have several, each for a different purpose.

For example, a quick scheduler might exist to give immediate feedback to developers, hoping to catch obvious
problems in the code that can be detected quickly. These typically do not run the full test suite, nor do they run on
a wide variety of platforms. They also usually do a VC update rather than performing a brand-new checkout each
time.

A separate full scheduler might run more comprehensive tests, to catch more subtle problems. Configured to run
after the quick scheduler, to give developers time to commit fixes to bugs caught by the quick scheduler before
running the comprehensive tests. This scheduler would also feed multiple Builders.

Many schedulers can be configured to wait a while after seeing a source-code change - this is the tree stable timer.
The timer allows multiple commits to be “batched” together. This is particularly useful in distributed version
control systems, where a developer may push a long sequence of changes all at once. To save resources, it’s often
desirable only to test the most recent change.

Schedulers can also filter out the changes they are interested in, based on a number of criteria. For example, a
scheduler that only builds documentation might skip any changes that do not affect the documentation. Schedulers
can also filter on the branch to which a commit was made.

There is some support for configuring dependencies between builds - for example, you may want to build packages
only for revisions which pass all of the unit tests. This support is under active development in Buildbot, and is
referred to as “build coordination”.

Periodic builds (those which are run every N seconds rather than after new Changes arrive) are triggered by a
special Periodic Scheduler subclass.

Each Scheduler creates and submits BuildSet objects to the BuildMaster, which is then responsible for
making sure the individual BuildRequests are delivered to the target Builders.

Scheduler instances are activated by placing them in the ¢ [’ schedulers’] list in the buildmaster config
file. Each Scheduler has a unique name.

2.3.5 BuildSets

A BuildSet is the name given to a set of Bui1ds that all compile/test the same version of the tree on multiple
Builders. In general, all these component Builds will perform the same sequence of Steps, using the same
source code, but on different platforms or against a different set of libraries.

The BuildsSet is tracked as a single unit, which fails if any of the component Bui 1ds have failed, and therefore
can succeed only if all of the component Builds have succeeded. There are two kinds of status notification
messages that can be emitted for a BuildSet: the firstFailure type (which fires as soon as we know
the BuildSet will fail), and the Finished type (which fires once the BuildSet has completely finished,
regardless of whether the overall set passed or failed).

A BuildSet is created with set of one or more source stamp tuples of (branch, revision, changes,
patch), some of which may be None, and a list of Builders on which it is to be run. They are then given to
the BuildMaster, which is responsible for creating a separate Bui 1dRequest for each Builder.

There are a couple of different likely values for the SourceStamp:

(revision=None, changes=CHANGES, patch=None) This is a SourceStamp used when a series
of Changes have triggered a build. The VC step will attempt to check out a tree that contains CHANGES
(and any changes that occurred before CHANGES, but not any that occurred after them.)

(revision=None, changes=None, patch=None) This builds the most recent code on the default
branch. This is the sort of SourceStamp that would be used on a Build that was triggered by a user
request, or a Periodic scheduler. It is also possible to configure the VC Source Step to always check out
the latest sources rather than paying attention to the Changes in the SourceStamp, which will result in
same behavior as this.

42 Chapter 2. Buildbot Manual

BuildBot Documentation, Release 0.8.12

(branch=BRANCH, revision=None, changes=None, patch=None) This builds the most recent
code on the given BRANCH. Again, this is generally triggered by a user request or Periodic build.

(revision=REV, changes=None, patch=(LEVEL, DIFF, SUBDIR ROOT)) This checks out
the tree at the given revision REV, then applies a patch (using patch —-pLEVEL <DIFF) from inside
the relative directory SUBDIR_ROOT. Item SUBDIR_ROOT is optional and defaults to the builder working
directory. The t ry command creates this kind of SourceStamp. If patch is None, the patching step is
bypassed.

The buildmaster is responsible for turning the BuildSet into a set of BuildRequest objects and queueing
them on the appropriate Builders.

2.3.6 BuildRequests

A BuildRequest is a request to build a specific set of source code (specified by one ore more source stamps)
on a single Builder. Each Builder runs the BuildRequest as soon as it can (i.e. when an associated
buildslave becomes free). Bui 1dRequests are prioritized from oldest to newest, so when a buildslave becomes
free, the Builder with the oldest Bui1dRequest is run.

The BuildRequest contains one SourceStamp specification per codebase. The actual process of running
the build (the series of Steps that will be executed) is implemented by the Bui 1d object. In the future this might
be changed, to have the Build define what gets built, and a separate BuildProcess (provided by the Builder)
to define how it gets built.

The BuildRequest may be mergeable with other compatible Bui 1dRequests. Builds that are triggered by
incoming Changes will generally be mergeable. Builds that are triggered by user requests are generally not,
unless they are multiple requests to build the latest sources of the same branch. A merge of buildrequests is
performed per codebase, thus on changes having the same codebase.

2.3.7 Builders

The Buildmaster runs a collection of Builders, each of which handles a single type of build (e.g. full versus
quick), on one or more build slaves. Builders serve as a kind of queue for a particular type of build. Each
Builder gets a separate column in the waterfall display. In general, each Builder runs independently (al-
though various kinds of interlocks can cause one Builder to have an effect on another).

Each builder is a long-lived object which controls a sequence of Builds. Each Builder is created when the
config file is first parsed, and lives forever (or rather until it is removed from the config file). It mediates the
connections to the buildslaves that do all the work, and is responsible for creating the Build objects - Builds.

Each builder gets a unique name, and the path name of a directory where it gets to do all its work (there is a
buildmaster-side directory for keeping status information, as well as a buildslave-side directory where the actual
checkout/compile/test commands are executed).

2.3.8 Build Factories

A builder also has a BuildFactory, which is responsible for creating new Build instances: because the
Build instance is what actually performs each build, choosing the BuildFactory is the way to specify what
happens each time a build is done (Builds).

2.3.9 Build Slaves

Each builder is associated with one of more BuildSlaves. A builder which is used to perform Mac OS X builds
(as opposed to Linux or Solaris builds) should naturally be associated with a Mac buildslave.

If multiple buildslaves are available for any given builder, you will have some measure of redundancy: in case one
slave goes offline, the others can still keep the Builder working. In addition, multiple buildslaves will allow

2.3. Concepts 43

BuildBot Documentation, Release 0.8.12

multiple simultaneous builds for the same Builder, which might be useful if you have a lot of forced or try
builds taking place.

If you use this feature, it is important to make sure that the buildslaves are all, in fact, capable of running the given
build. The slave hosts should be configured similarly, otherwise you will spend a lot of time trying (unsuccessfully)
to reproduce a failure that only occurs on some of the buildslaves and not the others. Different platforms, operating
systems, versions of major programs or libraries, all these things mean you should use separate Builders.

2.3.10 Builds

A build is a single compile or test run of a particular version of the source code, and is comprised of a series of
steps. It is ultimately up to you what constitutes a build, but for compiled software it is generally the checkout,
configure, make, and make check sequence. For interpreted projects like Python modules, a build is generally a
checkout followed by an invocation of the bundled test suite.

A BuildFactory describes the steps a build will perform. The builder which starts a build uses its configured
build factory to determine the build’s steps.

2.3.11 Users

Buildbot has a somewhat limited awareness of users. It assumes the world consists of a set of developers, each
of whom can be described by a couple of simple attributes. These developers make changes to the source code,
causing builds which may succeed or fail.

Users also may have different levels of authorization when issuing Buildbot commands, such as forcing a build
from the web interface or from an IRC channel (see WebStatus and IRC).

Each developer is primarily known through the source control system. Each Change object that arrives is tagged
with a who field that typically gives the account name (on the repository machine) of the user responsible for that
change. This string is displayed on the HTML status pages and in each Build‘s blamelist.

To do more with the User than just refer to them, this username needs to be mapped into an address of some sort.
The responsibility for this mapping is left up to the status module which needs the address. In the future, the
responsibility for managing users will be transferred to User Objects.

The who fields in git Changes are used to create User Objects, which allows for more control and flexibility in
how Buildbot manages users.

User Objects

User Objects allow Buildbot to better manage users throughout its various interactions with users (see Change
Sources and Status Targets). The User Objects are stored in the Buildbot database and correlate the various
attributes that a user might have: irc, Git, etc.

Changes

Incoming Changes all have a who attribute attached to them that specifies which developer is responsible for that
Change. When a Change is first rendered, the who attribute is parsed and added to the database if it doesn’t exist
or checked against an existing user. The who attribute is formatted in different ways depending on the version
control system that the Change came from.

git who attributes take the form Full Name <Email>.
svn who attributes are of the form Username.

hg who attributes are free-form strings, but usually adhere to similar conventions as git attributes (Full Name
<Email>).

cvs who attributes are of the form Username.

44 Chapter 2. Buildbot Manual

BuildBot Documentation, Release 0.8.12

darcs who attributes contain an Email and may also include a Full Name like git attributes.

bzr who attributes are free-form strings like hg, and can include a Username, Email, and/or Full Name.

Tools

For managing users manually, use the buildbot user command, which allows you to add, remove, update,
and show various attributes of users in the Buildbot database (see Command-line Tool).

To show all of the users in the database in a more pretty manner, use the users page in the WebStatus.

Uses

Correlating the various bits and pieces that Buildbot views as users also means that one attribute of a user can be
translated into another. This provides a more complete view of users throughout Buildbot.

One such use is being able to find email addresses based on a set of Builds to notify users through the
MailNotifier. This process is explained more clearly in Email Addresses.

Another way to utilize User Objects is through UsersAuth for web authentication (see WebStatus). To use
UsersAuth, you need to set a bb_username and bb_password via the buildbot user command line tool to
check against. The password will be encrypted before storing in the database along with other user attributes.

Doing Things With Users

Each change has a single user who is responsible for it. Most builds have a set of changes: the build generally
represents the first time these changes have been built and tested by the Buildbot. The build has a blamelist that is
the union of the users responsible for all the build’s changes. If the build was created by a Try Schedulers this list
will include the submitter of the try job, if known.

The build provides a list of users who are interested in the build — the interested users. Usually this is equal to the
blamelist, but may also be expanded, e.g., to include the current build sherrif or a module’s maintainer.

If desired, the buildbot can notify the interested users until the problem is resolved.

Email Addresses

The MailNotifier is a status target which can send email about the results of each build. It accepts a static list
of email addresses to which each message should be delivered, but it can also be configured to send mail to the
Build‘s Interested Users. To do this, it needs a way to convert User names into email addresses.

For many VC systems, the User Name is actually an account name on the system which hosts the repository. As
such, turning the name into an email address is a simple matter of appending @repositoryhost.com. Some
projects use other kinds of mappings (for example the preferred email address may be at project . org despite
the repository host being named cvs.project.org), and some VC systems have full separation between the
concept of a user and that of an account on the repository host (like Perforce). Some systems (like Git) put a full
contact email address in every change.

To convert these names to addresses, the MailNotifier uses an EmailLookup object. This provides a
getAddress method which accepts a name and (eventually) returns an address. The default MailNotifier
module provides an EmailLookup which simply appends a static string, configurable when the notifier is cre-
ated. To create more complex behaviors (perhaps using an LDAP lookup, or using finger on a central host to
determine a preferred address for the developer), provide a different object as the 1ookup argument.

If an EmailLookup object isn’t given to the MailNotifier, the MailNotifier will try to find emails through User
Objects. This will work the same as if an EmailLookup object was used if every user in the Build’s Interested
Users list has an email in the database for them. If a user whose change led to a Build doesn’t have an email
attribute, that user will not receive an email. If ext raRecipients is given, those users are still sent mail when
the EmailL.ookup object is not specified.

2.3. Concepts 45

BuildBot Documentation, Release 0.8.12

In the future, when the Problem mechanism has been set up, the Buildbot will need to send mail to arbitrary Users.
It will do this by locating a Mai1Notifier-like object among all the buildmaster’s status targets, and asking it
to send messages to various Users. This means the User-to-address mapping only has to be set up once, in your
MailNotifier, and every email message the buildbot emits will take advantage of it.

IRC Nicknames

Like MailNotifier, the buildbot.status.words.IRC class provides a status target which can an-
nounce the results of each build. It also provides an interactive interface by responding to online queries posted in
the channel or sent as private messages.

In the future, the buildbot can be configured map User names to IRC nicknames, to watch for the recent presence
of these nicknames, and to deliver build status messages to the interested parties. Like MailNotifier does for
email addresses, the IRC object will have an IRCLookup which is responsible for nicknames. The mapping can
be set up statically, or it can be updated by online users themselves (by claiming a username with some kind of
buildbot: 1 am user warner commands).

Once the mapping is established, the rest of the buildbot can ask the IRC object to send messages to various users.
It can report on the likelihood that the user saw the given message (based upon how long the user has been inactive
on the channel), which might prompt the Problem Hassler logic to send them an email message instead.

These operations and authentication of commands issued by particular nicknames will be implemented in User
Objects.

Live Status Clients

The Buildbot also offers a desktop status client interface which can display real-time build status in a GUI panel
on the developer’s desktop.

2.3.12 Build Properties

Each build has a set of Build Properties, which can be used by its build steps to modify their actions. These
properties, in the form of key-value pairs, provide a general framework for dynamically altering the behavior of a
build based on its circumstances.

Properties form a simple kind of variable in a build. Some properties are set when the build starts, and properties
can be changed as a build progresses — properties set or changed in one step may be accessed in subsequent steps.
Property values can be numbers, strings, lists, or dictionaries - basically, anything that can be represented in JSON.

Properties are very flexible, and can be used to implement all manner of functionality. Here are some examples:

Most Source steps record the revision that they checked out in the got_revision property. A later step could
use this property to specify the name of a fully-built tarball, dropped in an easily-accessible directory for later
testing.

Note: In builds with more than one codebase, the got_revision property is a dictionary, keyed by codebase.

Some projects want to perform nightly builds as well as building in response to committed changes. Such a project
would run two schedulers, both pointing to the same set of builders, but could provide an is_nightly property
so that steps can distinguish the nightly builds, perhaps to run more resource-intensive tests.

Some projects have different build processes on different systems. Rather than create a build factory for each
slave, the steps can use buildslave properties to identify the unique aspects of each slave and adapt the build
process dynamically.

46 Chapter 2. Buildbot Manual

BuildBot Documentation, Release 0.8.12

2.3.13 Multiple-Codebase Builds

What if an end-product is composed of code from several codebases? Changes may arrive from different reposi-
tories within the tree-stable-timer period. Buildbot will not only use the source-trees that contain changes but also
needs the remaining source-trees to build the complete product.

For this reason a Scheduler can be configured to base a build on a set of several source-trees that can (partly) be
overridden by the information from incoming Changes.

As described above, the source for each codebase is identified by a source stamp, containing its repository, branch
and revision. A full build set will specify a source stamp set describing the source to use for each codebase.

Configuring all of this takes a coordinated approach. A complete multiple repository configuration consists of:
a codebase generator

Every relevant change arriving from a VC must contain a codebase. This is done by a
codebaseGenerator that is defined in the configuration. Most generators examine the reposi-
tory of a change to determine its codebase, using project-specific rules.

some schedulers

Each scheduler has to be configured with a set of all required codebases to build a product.
These codebases indicate the set of required source-trees. In order for the scheduler to be able to
produce a complete set for each build, the configuration can give a default repository, branch, and
revision for each codebase. When a scheduler must generate a source stamp for a codebase that has
received no changes, it applies these default values.

multiple source steps - one for each codebase

A Builders*s build factory must include a source step for each codebase. Each of the source steps
has a codebase attribute which is used to select an appropriate source stamp from the source stamp
set for a build. This information comes from the arrived changes or from the scheduler’s configured
default values.

Note: Each source step has to have its own workdir set in order for the checkout to be done for
each codebase in its own directory.

Note: Ensure you specify the codebase within your source step’s Interpolate() calls (ex.
http://.../svn/% (src:codebase:branch) s). See Interpolate for details.

Warning: Defining a codebaseGenerator that returns non-empty (not ’ /) codebases will change the
behavior of all the schedulers.

2.4 Configuration

The following sections describe the configuration of the various Buildbot components. The information available
here is sufficient to create basic build and test configurations, and does not assume great familiarity with Python.

In more advanced Buildbot configurations, Buildbot acts as a framework for a continuous-integration applica-
tion. The next section, Customization, describes this approach, with frequent references into the development
documentation.

2.4.1 Configuring Buildbot

The buildbot’s behavior is defined by the config file, which normally lives in the master.cfg file in the build-
master’s base directory (but this can be changed with an option to the buildbot create-master command). This
file completely specifies which Builders are to be run, which slaves they should use, how Changes should be

2.4. Configuration 47

BuildBot Documentation, Release 0.8.12

tracked, and where the status information is to be sent. The buildmaster’s buildbot .tac file names the base
directory; everything else comes from the config file.

A sample config file was installed for you when you created the buildmaster, but you will need to edit it before
your buildbot will do anything useful.

This chapter gives an overview of the format of this file and the various sections in it. You will need to read the
later chapters to understand how to fill in each section properly.

Config File Format

The config file is, fundamentally, just a piece of Python code which defines a dictionary named
BuildmasterConfig, with a number of keys that are treated specially. You don’t need to know Python to
do basic configuration, though, you can just copy the syntax of the sample file. If you are comfortable writing
Python code, however, you can use all the power of a full programming language to achieve more complicated
configurations.

The BuildmasterConfig name is the only one which matters: all other names defined during the execution
of the file are discarded. When parsing the config file, the Buildmaster generally compares the old configuration
with the new one and performs the minimum set of actions necessary to bring the buildbot up to date: Builders
which are not changed are left untouched, and Builders which are modified get to keep their old event history.

The beginning of the master. cfq file typically starts with something like:

BuildmasterConfig = ¢ = {}

Therefore a config key like change_source will wusually appear in master.cfg as
c[’change_source’].

See cfg for a full list of BuildMasterConfig keys.

Basic Python Syntax

The master configuration file is interpreted as Python, allowing the full flexibility of the language. For the con-
figurations described in this section, a detailed knowledge of Python is not required, but the basic syntax is easily
described.

Python comments start with a hash character #, tuples are defined with (parenthesis, pairs), and
lists (arrays) are defined with [square, brackets]. Tuples and lists are mostly interchangeable. Dic-
tionaries (data structures which map keys to values) are defined with curly braces: {’keyl’: wvaluel,
"key2’: wvalue2}. Function calls (and object instantiation) can use named parameters, like w =
html.Waterfall (http_port=8010).

The config file starts with a series of import statements, which make various kinds of Steps and Status
targets available for later use. The main BuildmasterConfig dictionary is created, then it is populated with
a variety of keys, described section-by-section in subsequent chapters.

Predefined Config File Symbols

The following symbols are automatically available for use in the configuration file.

basedir the base directory for the buildmaster. This string has not been expanded, so it may start with a tilde.
It needs to be expanded before use. The config file is located in:

os.path.expanduser (os.path. join (basedir, 'master.cfg’))

_ file the absolute path of the config file. The config file’s directory is located in
os.path.dirname(__file_).

48 Chapter 2. Buildbot Manual

BuildBot Documentation, Release 0.8.12

Testing the Config File

To verify that the config file is well-formed and contains no deprecated or invalid elements, use the
checkconfig command, passing it either a master directory or a config file.

)

% buildbot checkconfig master.cfg
Config file is good!
or

% buildbot checkconfig /tmp/masterdir
Config file is good!

If the config file has deprecated features (perhaps because you’ve upgraded the buildmaster and need to update
the config file to match), they will be announced by checkconfig. In this case, the config file will work, but you
should really remove the deprecated items and use the recommended replacements instead:

)

% buildbot checkconfig master.cfg

/usr/lib/python2.4/site-packages/buildbot/master.py:559: DeprecationWarning: c[’sources’] is
deprecated as of 0.7.6 and will be removed by 0.8.0 . Please use c[’change_source’] instead.
Config file is good!

If you have errors in your configuration file, checkconfig will let you know:

)

% buildbot checkconfig master.cfg

Configuration Errors:

c[’slaves’] must be a list of BuildSlave instances
no slaves are configured

builder ’smoketest’ uses unknown slaves ’1linux-002’

If the config file is simply broken, that will be caught too:

o

% buildbot checkconfig master.cfg

error while parsing config file:

Traceback (most recent call last):

File "/home/buildbot/master/bin/buildbot", line 4, in <module>
runner.run ()

File "/home/buildbot/master/buildbot/scripts/runner.py", line 1358, in run
if not doCheckConfig(so):

File "/home/buildbot/master/buildbot/scripts/runner.py", line 1079, in doCheckConfig
return cl.load(quiet=quiet)

File "/home/buildbot/master/buildbot/scripts/checkconfig.py", line 29, in load
self.basedir, self.configFileName)

—-—— <exception caught here> --—-

File "/home/buildbot/master/buildbot/config.py", line 147, in loadConfig
exec f in localDict

exceptions.SyntaxError: invalid syntax (master.cfg, line 52)

Configuration Errors:

error while parsing config file: invalid syntax (master.cfg, line 52) (traceback in logfile)

Loading the Config File

The config file is only read at specific points in time. It is first read when the buildmaster is launched.

Note: If the configuration is invalid, the master will display the errors in the console output, but will not exit.

Reloading the Config File (reconfig)

If you are on the system hosting the buildmaster, you can send a STGHUP signal to it: the buildbot tool has a
shortcut for this:

2.4. Configuration 49

BuildBot Documentation, Release 0.8.12

buildbot reconfig BASEDIR

This command will show you all of the lines from twistd. log that relate to the reconfiguration. If there are
any problems during the config-file reload, they will be displayed in these lines.

When reloading the config file, the buildmaster will endeavor to change as little as possible about the running
system. For example, although old status targets may be shut down and new ones started up, any status targets
that were not changed since the last time the config file was read will be left running and untouched. Likewise
any Builders which have not been changed will be left running. If a Builder is modified (say, the build
process is changed) while a Build is currently running, that Build will keep running with the old process until
it completes. Any previously queued Builds (or Builds which get queued after the reconfig) will use the new
process.

Warning: Buildbot’s reconfiguration system is fragile for a few difficult-to-fix reasons:

* Any modules imported by the configuration file are not automatically reloaded. Python modules such as
http://pypi.python.org/pypi/lazy-reload may help here, but reloading modules is fraught with subtleties
and difficult-to-decipher failure cases.

* During the reconfiguration, active internal objects are divorced from the service hierarchy, leading to
tracebacks in the web interface and other components. These are ordinarily transient, but with HTTP
connection caching (either by the browser or an intervening proxy) they can last for a long time.

* If the new configuration file is invalid, it is possible for Buildbot’s internal state to be corrupted, leading
to undefined results. When this occurs, it is best to restart the master.

» For more advanced configurations, it is impossible for Buildbot to tell if the configuration for a
Builder or Scheduler has changed, and thus the Builder or Scheduler will always be
reloaded. This occurs most commonly when a callable is passed as a configuration parameter.

The bbproto project (at https://github.com/dabrahams/bbproto) may help to construct large (multi-file) config-
urations which can be effectively reloaded and reconfigured.

Reconfig by Debug Client

The debug tool (buildbot debugclient —--master HOST:PORT) has a Reload .cfg button which
will also trigger a reload.

2.4.2 Global Configuration

The keys in this section affect the operations of the buildmaster globally.

» Database Specification

* Multi-master mode

* Site Definitions

* Log Handling

* Data Lifetime

* Merging Build Requests

* Prioritizing Builders

* Setting the PB Port for Slaves
* Defining Global Properties
* Debug Options

* Manhole

* Metrics Options

* Users Options

¢ Input Validation

* Revision Links

* Codebase Generator

50 Chapter 2. Buildbot Manual

http://pypi.python.org/pypi/lazy-reload
https://github.com/dabrahams/bbproto

BuildBot Documentation, Release 0.8.12

Database Specification

Buildbot requires a connection to a database to maintain certain state information, such as tracking pending build
requests. In the default configuration Buildbot uses a file-based SQLite database, stored in the state.sglite
file of the master’s base directory. Override this configuration with the dbo_ur1 parameter.

Buildbot accepts a database configuration in a dictionary named db. All keys are optional:
cl"dp’1 = {
"db_url’: ’"sqglite:///state.sqglite’,

"db_poll_interval’: 30
}

The db_url key indicates the database engine to use. The format of this parameter is completely documented at
http://www.sqlalchemy.org/docs/dialects/, but is generally of the form:

"driver://[username:password@]host:port/database[?args]"
The optional db_poll_interval specifies the interval, in seconds, between checks for pending tasks in the
database. This parameter is generally only useful in multi-master mode. See Multi-master mode.

These parameters can be specified directly in the configuration dictionary, as c[’db_url’] and
c[’db_poll_interval’], although this method is deprecated.

The following sections give additional information for particular database backends:

SQLite

For sqlite databases, since there is no host and port, relative paths are specified with sglite:/// and absolute
paths with sgqlite:////. Examples:

c[’db_url’] = "sglite:///state.sglite"

SQLite requires no special configuration.

If Buildbot produces “database is locked” exceptions, try adding serialize_access=1 tothe DB URL as a
workaround:

c[’db_url’] = "sqglite:///state.sqlite?serialize_access=1"

and please file a bug at http://trac.buildbot.net.

MySQL

c[’db_url’] = "mysqgl://user:pass@somehost.com/database_name?max_idle=300"

The max_id1le argument for MySQL connections is unique to Buildbot, and should be set to something less than
the wait_timeout configured for your server. This controls the SQLAlchemy pool_recycle parameter,
which defaults to no timeout. Setting this parameter ensures that connections are closed and re-opened after the
configured amount of idle time. If you see errors such as _mysgl_exceptions.OperationalError:
(2006, ’'MySQL server has gone away’), this means your max_idle setting is probably too
high. show global variables like ’wait_timeout’; will show what the currently configured
wait_timeout is on your MySQL server.

Buildbot requires use_unique=True and charset=ut £8, and will add them automatically, so they do not
need to be specified in db_url.

MySQL defaults to the MyISAM storage engine, but this can be overridden with the storage_engine URL
argument.

Note that, because of InnoDB’s extremely short key length limitations, it cannot be used to run Buildbot. See
http://bugs.mysql.com/bug.php?id=4541 for more information.

2.4. Configuration 51

http://www.sqlalchemy.org/docs/dialects/
http://trac.buildbot.net
http://bugs.mysql.com/bug.php?id=4541

BuildBot Documentation, Release 0.8.12

Postgres

c[’db_url’] = "postgresgl://username@hostname/dbname"

PosgreSQL requires no special configuration.

Multi-master mode

Normally buildbot operates using a single master process that uses the configured database to save state.

It is possible to configure buildbot to have multiple master processes that share state in the same database. This
has been well tested using a MySQL database. There are several benefits of Multi-master mode:

* You can have large numbers of build slaves handling the same queue of build requests. A single master can
only handle so many slaves (the number is based on a number of factors including type of builds, number
of builds, and master and slave IO and CPU capacity—there is no fixed formula). By adding another master
which shares the queue of build requests, you can attach more slaves to this additional master, and increase
your build throughput.

¢ You can shut one master down to do maintenance, and other masters will continue to do builds.
State that is shared in the database includes:

* List of changes

¢ Scheduler names and internal state

* Build requests, including the builder name
Because of this shared state, you are strongly encouraged to:

* Ensure that each named scheduler runs on only one master. If the same scheduler runs on multiple masters,
it will trigger duplicate builds and may produce other undesirable behaviors.

* Ensure builder names are unique for a given build factory implementation. You can have the same builder
name configured on many masters, but if the build factories differ, you will get different results depending
on which master claims the build.

One suggested configuration is to have one buildbot master configured with just the scheduler and change sources;
and then other masters configured with just the builders.

To enable multi-master mode in this configuration, you will need to set the mult iMaster option so that buildbot
doesn’t warn about missing schedulers or builders. You will also need to set do_poll interval to specify
the interval (in seconds) at which masters should poll the database for tasks.

Enable multiMaster mode; disables warnings about unknown builders and
schedulers

c[’'multiMaster’] = True
Check for new build requests every 60 seconds
c["db’] {

"db_url’ : 'mysqgl://...’,

"db_poll_interval’ : 30,

Site Definitions

Three basic settings describe the buildmaster in status reports:

c[’"title’] = "Buildbot"
c[’titleURL’] = "http://buildbot.sourceforge.net/"
c[’buildbotURL’] = "http://localhost:8010/"

52 Chapter 2. Buildbot Manual

BuildBot Documentation, Release 0.8.12

title is a short string that will appear at the top of this buildbot installation’s html . WebStatus home page
(linked to the t it 1eURL), and is embedded in the title of the waterfall HTML page.

titleURL is a URL string that must end with a slash (/). HTML status displays will show tit1le as alink to
tit1leURL. This URL is often used to provide a link from buildbot HTML pages to your project’s home page.

The buildbotURL string should point to the location where the buildbot’s internal web server is visible. This
URL must end with a slash (/). This typically uses the port number set for the web status (WebStatus): the
buildbot needs your help to figure out a suitable externally-visible host URL.

When status notices are sent to users (either by email or over IRC), bui1dbotURL will be used to create a URL
to the specific build or problem that they are being notified about. It will also be made available to queriers (over
IRC) who want to find out where to get more information about this buildbot.

Log Handling

c[’logCompressionLimit’] = 16384

c[’logCompressionMethod’] = "gz’

c[’logMaxSize’] = 1024%1024 # 1M

c[’"logMaxTailSize’] = 32768

The logCompressionLimit enables compression of build logs on disk for logs that are bigger than the given
size, or disables that completely if set to False. The default value is 4096, which should be a reasonable default
on most file systems. This setting has no impact on status plugins, and merely affects the required disk space on
the master for build logs.

The logCompressionMethod controls what type of compression is used for build logs. The default is ‘bz2’,
and the other valid option is ‘gz’. ‘bz2’ offers better compression at the expense of more CPU time.

The logMaxSize parameter sets an upper limit (in bytes) to how large logs from an individual build step can
be. The default value is None, meaning no upper limit to the log size. Any output exceeding 1ogMaxSize will
be truncated, and a message to this effect will be added to the log’s HEADER channel.

If logMaxSize is set, and the output from a step exceeds the maximum, the 1ogMaxTailSize parameter
controls how much of the end of the build log will be kept. The effect of setting this parameter is that the log will
contain the first logMaxSize bytes and the last 1ogMaxTailSize bytes of output. Don’t set this value too
high, as the the tail of the log is kept in memory.

Data Lifetime

Horizons
c[’changeHorizon’] = 200
c[’buildHorizon’] = 100
c[’eventHorizon’] = 50
c[’logHorizon’] = 40
c[’buildCacheSize’] = 15

Buildbot stores historical information on disk in the form of “Pickle” files and compressed logfiles. In a large
installation, these can quickly consume disk space, yet in many cases developers never consult this historical
information.

The changeHorizon key determines how many changes the master will keep a record of. One place these
changes are displayed is on the waterfall page. This parameter defaults to 0, which means keep all changes
indefinitely.

The buildHorizon specifies the minimum number of builds for each builder which should be kept on disk.
The eventHorizon specifies the minimum number of events to keep—events mostly describe connections and
disconnections of slaves, and are seldom helpful to developers. The 1ogHorizon gives the minimum number of
builds for which logs should be maintained; this parameter must be less than or equal to buildHorizon. Builds

2.4. Configuration 53

BuildBot Documentation, Release 0.8.12

older than 1ogHorizon but not older than buildHorizon will maintain their overall status and the status of
each step, but the logfiles will be deleted.

Caches

c[’caches’] = {
"Changes’ : 100, # formerly c|[’changeCacheSize’]
"Builds’” : 500, # formerly c[’buildCacheSize’]

"chdicts’” : 100,
"BuildRequests’ : 10,
"SourceStamps’ : 20,
"ssdicts’ : 20,
"objectids’ : 10,
"usdicts’ : 100,

}

The caches configuration key contains the configuration for Buildbot’s in-memory caches. These caches keep
frequently-used objects in memory to avoid unnecessary trips to the database or to pickle files. Caches are divided
by object type, and each has a configurable maximum size.

The default size for each cache is 1, except where noted below. A value of 1 allows Buildbot to make a number
of optimizations without consuming much memory. Larger, busier installations will likely want to increase these
values.

The available caches are:

Changes the number of change objects to cache in memory. This should be larger than the number of changes
that typically arrive in the span of a few minutes, otherwise your schedulers will be reloading changes from
the database every time they run. For distributed version control systems, like Git or Hg, several thousand
changes may arrive at once, so setting this parameter to something like 10000 isn’t unreasonable.

This parameter is the same as the deprecated global parameter changeCacheSize. Its default value is
10.

Builds The buildCacheSize parameter gives the number of builds for each builder which are cached in
memory. This number should be larger than the number of builds required for commonly-used status dis-
plays (the waterfall or grid views), so that those displays do not miss the cache on a refresh.

This parameter is the same as the deprecated global parameter bui 1dCacheSi ze. Its default value is 15.

chdicts The number of rows from the changes table to cache in memory. This value should be similar to the
value for Changes.

BuildRequests The number of BuildRequest objects kept in memory. This number should be higher than
the typical number of outstanding build requests. If the master ordinarily finds jobs for BuildRequests
immediately, you may set a lower value.

SourceStamps the number of SourceStamp objects kept in memory. This number should generally be similar
to the number BuildRequesets.

ssdicts The number of rows from the sourcestamps table to cache in memory. This value should be similar
to the value for SourceStamps.

objectids The number of object IDs - a means to correlate an object in the Buildbot configuration with an
identity in the database—to cache. In this version, object IDs are not looked up often during runtime, so a
relatively low value such as 10 is fine.

usdicts The number of rows from the users table to cache in memory. Note that for a given user there will
be a row for each attribute that user has.

c[’buildCacheSize’] = 15

54 Chapter 2. Buildbot Manual

BuildBot Documentation, Release 0.8.12

Merging Build Requests
c[’mergeRequests’] = True
This is a global default value for builders’ mergeRequests parameter, and controls the merging of build re-

quests.

This parameter can be overridden on a per-builder basis. See Merging Build Requests for the allowed values for
this parameter.

Prioritizing Builders
def prioritizeBuilders (buildmaster, builders):
c[’prioritizeBuilders’] = prioritizeBuilders

By default, buildbot will attempt to start builds on builders in order, beginning with the builder with the oldest
pending request. Customize this behavior with the prioritizeBuilders configuration key, which takes a
callable. See Builder Priority Functions for details on this callable.

This parameter controls the order that the build master can start builds, and is useful in situations where there
is resource contention between builders, e.g., for a test database. It does not affect the order in which a builder
processes the build requests in its queue. For that purpose, see Prioritizing Builds.

Setting the PB Port for Slaves
c[’protocols’] = {"pb": {"port": 10000}}

The buildmaster will listen on a TCP port of your choosing for connections from buildslaves. It can also use this
port for connections from remote Change Sources, status clients, and debug tools. This port should be visible to
the outside world, and you’ll need to tell your buildslave admins about your choice.

It does not matter which port you pick, as long it is externally visible; however, you should probably use something
larger than 1024, since most operating systems don’t allow non-root processes to bind to low-numbered ports. If
your buildmaster is behind a firewall or a NAT box of some sort, you may have to configure your firewall to permit
inbound connections to this port.

c[’'protocols’] ["pb’][’'port’] is a strports specification string, defined in the
twisted.application.strports module (try pydoc twisted.application.strports to
get documentation on the format).

This means that you can have the buildmaster listen on a localhost-only port by doing:
c[’protocols’] = {"pb": {"port": "tcp:10000:interface=127.0.0.1"}}

This might be useful if you only run buildslaves on the same machine, and they are all configured to contact the
buildmaster at localhost:10000.

Note: In Buildbot versions <=0.8.8 you might see slavePortnum option. This option contains same value as
c[’protocols’] ['pb’]["port’] but not recomended to use.

Defining Global Properties

The properties configuration key defines a dictionary of properties that will be available to all builds started
by the buildmaster:

c[’'properties’] = {
'Widget-version’ : ’1.27,
"release—-stage’ : ’"alpha’

2.4. Configuration 55

BuildBot Documentation, Release 0.8.12

Debug Options

If you set debugPassword, then you can connect to the buildmaster with the diagnostic tool launched by
buildbot debugclient MASTER:PORT. From this tool, you can reload the config file, manually force
builds, and inject changes, which may be useful for testing your buildmaster without actually committing changes
to your repository (or before you have the Change Sources configured.)

The debug tool uses the same port number as the slaves, protocols, and you may configure its authentication
credentials as follows:

c[’debugPassword’] = "debugpassword"

Manhole

If you set manhole to an instance of one of the classes in buildbot .manhole, you can telnet or ssh into
the buildmaster and get an interactive Python shell, which may be useful for debugging buildbot internals. It is
probably only useful for buildbot developers. It exposes full access to the buildmaster’s account (including the
ability to modify and delete files), so it should not be enabled with a weak or easily guessable password.

There are three separate Manhole classes. Two of them use SSH, one uses unencrypted telnet. Two of them
use a username+password combination to grant access, one of them uses an SSH-style authorized_keys file
which contains a list of ssh public keys.

Note: Using any Manhole requires that pycrypto and pyasnl be installed. These are not part of the normal
Buildbot dependencies.

manhole.AuthorizedKeysManhole You construct this with the name of a file that contains one SSH public key per
line, justlike ~/ . ssh/authorized_keys. If you provide a non-absolute filename, it will be interpreted
relative to the buildmaster’s base directory.

manhole.PasswordManhole This one accepts SSH connections but asks for a username and password when
authenticating. It accepts only one such pair.

manhole.TelnetManhole This accepts regular unencrypted telnet connections, and asks for a username/password
pair before providing access. Because this username/password is transmitted in the clear, and because
Manhole access to the buildmaster is equivalent to granting full shell privileges to both the buildmaster
and all the buildslaves (and to all accounts which then run code produced by the buildslaves), it is highly
recommended that you use one of the SSH manholes instead.

some examples:
from buildbot.plugins import util

c[’manhole’]
c[’manhole’]
c[’manhole’]

util.AuthorizedKeysManhole (1234,
util.PasswordManhole (1234,

util.TelnetManhole (1234,

"bOb",

"authorized_keys")

"alice", "mysecretpassword")

"snoop_my_password_please")

The Manhole instance can be configured to listen on a specific port. You may wish to have this listening port
bind to the loopback interface (sometimes known as l00, localhost, or 127.0.0.1) to restrict access to clients which
are running on the same host.

from buildbot.plugins import util

c[’manhole’]

= util.PasswordManhole ("tcp:9999:interface=127.0.0.1", "admin", "passwd")

To have the Manhole listen on all interfaces, use "tcp: 9999" or simply 9999. This port specification uses
twisted.application.strports, so you can make it listen on SSL or even UNIX-domain sockets if you

want.

Note that using any Manhole requires that the TwistedConch (http://twistedmatrix.com/trac/wiki/TwistedConch)
package be installed.

56

Chapter 2. Buildbot Manual

http://twistedmatrix.com/trac/wiki/TwistedConch

BuildBot Documentation, Release 0.8.12

The buildmaster’s SSH server will use a different host key than the normal sshd running on a typical unix host.
This will cause the ssh client to complain about a host key mismatch, because it does not realize there are two
separate servers running on the same host. To avoid this, use a clause like the following in your . ssh/config
file:

Host remotehost-buildbot

HostName remotehost

HostKeyAlias remotehost-buildbot

Port 9999

use ’'user’ if you use PasswordManhole and your name is not ’admin’.
if you use AuthorizedKeysManhole, this probably doesn’t matter.
User admin

Using Manhole

After you have connected to a manhole instance, you will find yourself at a Python prompt. You have access to
two objects: master (the BuildMaster) and status (the master’s Status object). Most interesting objects on
the master can be reached from these two objects.

To aid in navigation, the show method is defined. It displays the non-method attributes of an object.
A manhole session might look like:

>>> show (master)
data attributes of <buildbot.master.BuildMaster instance at 0x7f7ad4ab7df38>
basedir : ’/home/dustin/code/buildbot/t/buildbot/’ ...

botmaster : <type ’instance’>
buildCacheSize : None
buildHorizon : None
buildbotURL : http://localhost:8010/
changeCacheSize : None
change_svc : <type ’instance’>
configFileName : master.cfg
db : <class ’buildbot.db.connector.DBConnector’>

db_poll_interval : None
db_url : sglite:///state.sglite

>>> show (master.botmaster.builders[’win32’1])
data attributes of <Builder ’'’'builder’’ at 48963528>

>>> win32 = _
>>> win32.category = 'w32’

Metrics Options
c['metrics’] = dict (log_interval=10, periodic_interval=10)
metrics can be a dictionary that configures various aspects of the metrics subsystem. If metrics is None,

then metrics collection, logging and reporting will be disabled.

log_interval determines how often metrics should be logged to twistd.log. It defaults to 60s. If set to O or
None, then logging of metrics will be disabled. This value can be changed via a reconfig.

periodic_interval determines how often various non-event based metrics are collected, such as memory
usage, uncollectable garbage, reactor delay. This defaults to 10s. If set to O or None, then periodic collection of
this data is disabled. This value can also be changed via a reconfig.

Read more about metrics in the Metrics section in the developer documentation.

2.4. Configuration 57

BuildBot Documentation, Release 0.8.12

Users Options

from buildbot.plugins import util

c[’user_managers’] = []

c[’user_managers’].append(util.CommandlineUserManager (username="user",
passwd="userpw",
port=9990))

user_managers contains a list of ways to manually manage User Objects within Buildbot (see User Objects).
Currently implemented is a commandline tool buildbot user, described at length in user. In the future, a web
client will also be able to manage User Objects and their attributes.

As shown above, to enable the buildbot user tool, you must initialize a CommandlineUserManager instance in
your master.cfg. CommandlineUserManager instances require the following arguments:

username This is the username that will be registered on the PB connection and need to be used when calling
buildbot user.

passwd This is the passwd that will be registered on the PB connection and need to be used when calling buildbot
user.

port The PB connection port must be different than ¢/ ’protocols’][’pb’]['port’] and be specified when calling
buildbot user

Input Validation

import re

c[’validation’] = {
"branch’: re.compile(r’ " [\w.+/~=]1%$"),
"revision’: re.compile (r’~[\w\.\=-\/1%$"),
"property_name’: re.compile (r’ ~[\w\.\-\/\~:]1%$"),
"property_value’: re.compile(r’ ~[\w\.\=-\/\~:]1xS$"),

}

This option configures the validation applied to user inputs of various types. This validation is important since
these values are often included in command-line arguments executed on slaves. Allowing arbitrary input from
untrusted users may raise security concerns.

The keys describe the type of input validated; the values are compiled regular expressions against which the input
will be matched. The defaults for each type of input are those given in the example, above.

Revision Links

The rev1ink parameter is used to create links from revision IDs in the web status to a web-view of your source
control system. The parameter’s value must be a callable.

By default, Buildbot is configured to generate revlinks for a number of open source hosting platforms.

The callable takes the revision id and repository argument, and should return an URL to the revision. Note that
the revision id may not always be in the form you expect, so code defensively. In particular, a revision of ”??”
may be supplied when no other information is available.

Note that SourceStamps that are not created from version-control changes (e.g., those created by a Nightly or
Periodic scheduler) may have an empty repository string, if the repository is not known to the scheduler.

Revision Link Helpers

Buildbot provides two helpers for generating revision links. buildbot .revlinks.RevlinkMatcher takes
a list of regular expressions, and replacement text. The regular expressions should all have the same number of
capture groups. The replacement text should have sed-style references to that capture groups (i.e. ‘1’ for the first

58 Chapter 2. Buildbot Manual

BuildBot Documentation, Release 0.8.12

capture group), and a single ‘%s’ reference, for the revision ID. The repository given is tried against each regular
expression in turn. The results are the substituted into the replacement text, along with the revision ID to obtain
the revision link.

from buildbot.plugins import util

c[’revlink’] = util.RevlinkMatch([r’git://notmuchmail.org/git/ (.x)"1],
r’http://git.notmuchmail.org/git/\1/commit/%s’)

buildbot.revlinks.RevlinkMultiplexer takes a list of revision link callables, and tries each in turn,
returning the first successful match.

Codebase Generator

all_repositories = {
r’https://hg/hg/mailsuite/mailclient’: 'mailexe’,
r’https://hg/hg/mailsuite/mapilib’: 'mapilib’,
r’https://hg/hg/mailsuite/imaplib’: ’imaplib’,
r’https://github.com/mailinc/mailsuite/mailclient’: 'mailexe’,
r’https://github.com/mailinc/mailsuite/mapilib’: ‘mapilib’,
r’https://github.com/mailinc/mailsuite/imaplib’: /imaplib’,

def codebaseGenerator (chdict) :
return all_repositories[chdict [’ repository’]]

c[’codebaseGenerator’] = codebaseGenerator

For any incoming change, the codebase is set to . This codebase value is sufficient if all changes come from
the same repository (or clones). If changes come from different repositories, extra processing will be needed to
determine the codebase for the incoming change. This codebase will then be a logical name for the combination
of repository and or branch etc.

The codebaseGenerator accepts a change dictionary as produced by the
buildbot.db.changes.ChangesConnectorComponent, with a changeid equal to None.

2.4.3 Change Sources

2.4. Configuration 59

BuildBot Documentation, Release 0.8.12

* Choosing a Change Source
* Configuring Change Sources
— Repository and Project
* Mail-parsing ChangeSources
— Subscribing the Buildmaster
Using Maildirs
Parsing Email Change Messages
CVSMaildirSource
— SVNCommitEmailMaildirSource
— BzrLaunchpadEmailMaildirSource
* PBChangeSource
— Bzr Hook
* P4Source
— Example
* BonsaiPoller
* SVNPoller
* Bzr Poller
* GitPoller
* HgPoller
* BitbucketPullrequestPoller
* GerritChangeSource
* GerritChangeFilter
* Change Hooks (HTTP Notifications)
* GoogleCodeAtomPoller

A Version Control System maintains a source tree, and tells the buildmaster when it changes. The first step of
each Build is typically to acquire a copy of some version of this tree.

This chapter describes how the Buildbot learns about what Changes have occurred. For more information on VC
systems and Changes, see Version Control Systems.

Changes can be provided by a variety of ChangeSource types, although any given project will typically have
only a single ChangeSource active. This section provides a description of all available ChangeSource types
and explains how to set up each of them.

Choosing a Change Source

There are a variety of ChangeSource classes available, some of which are meant to be used in conjunction with
other tools to deliver Change events from the VC repository to the buildmaster.

As a quick guide, here is a list of VC systems and the ChangeSources that might be useful with them. Note
that some of these modules are in Buildbot’s “contrib” directory, meaning that they have been offered by other
users in hopes they may be useful, and might require some additional work to make them functional.

CVS * CvSMaildirSource (watching mail sent by contrib/buildbot_cvs_mail.py script) *
PBChangeSource (listening for connections from buildbot sendchange run in a loginfo script) *
PBChangeSource (listening for connections from a long-running contrib/viewcvspoll. py polling pro-
cess which examines the ViewCVS database directly) * Change Hooks in WebStatus

SVN * PBChangeSource (listening for connections from contrib/svn_buildbot .py run in a postcom-
mit script) * PBChangeSource (listening for connections from a long-running contrib/svn_watcher.py
or contrib/svnpoller.py polling process * SVNCommitEmailMaildirSource (watching for email
sent by commit-email.pl) * SVNPoller (polling the SVN repository) * Change Hooks in WebStatus *
GoogleCodeAtomPoller (polling the commit feed for a GoogleCode Git repository)

Darcs * PRChangeSource (listening for connections from contrib/darcs_buildbot.py in a commit
script) * Change Hooks in WebStatus

Mercurial * PBChangeSource (listening for connections from contrib/hg_buildbot.py run in an
‘changegroup’ hook) * Change Hooks in WebStatus * PBChangeSource (listening for connections from

60 Chapter 2. Buildbot Manual

BuildBot Documentation, Release 0.8.12

* BitBucket change hook (specifically designed for BitBucket notifications, but requiring a publicly-accessible
WebStatus) * HgPoller (polling a remote Mercurial repository) * GoogleCodeAtomPoller (polling the
commit feed for a GoogleCode Git repository) * BitbucketPullrequestPoller (polling Bitbucket for
pull requests)

Bzr (the newer Bazaar) * PBChangeSource (listening for connections from contrib/bzr_buildbot.py
run in a post-change-branch-tip or commit hook) * BzrPoller (polling the Bzr repository) * Change Hooks
in WebStatus

Git * PBChangeSource (listening for connections from contrib/git_buildbot.py run in the post-
receive hook) * PBChangeSource (listening for connections from contrib/github_buildbot.py,
which listens for notifications from GitHub) * Change Hooks in WebStatus * GitHub change hook (specifi-
cally designed for GitHub notifications, but requiring a publicly-accessible WebStatus) * BitBucket change hook
(specifically designed for BitBucket notifications, but requiring a publicly-accessible WebStatus) * GitPoller
(polling a remote Git repository) * GoogleCodeAtomPoller (polling the commit feed for a GoogleCode Git
repository) * BitbucketPullrequestPoller (polling Bitbucket for pull requests)

Repo/Git * GerritChangeSource connects to Gerrit via SSH to get a live stream of changes

Monotone * PBChangeSource (listening for connections from monotone—buildbot . lua, which is avail-
able with Monotone)

All VC systems can be driven by a PRBChangeSource and the buildbot sendchange tool run from some
form of commit script. If you write an email parsing function, they can also all be driven by a suitable mail-
parsing source. Additionally, handlers for web-based notification (i.e. from GitHub) can be used with WebStatus’
change_hook module. The interface is simple, so adding your own handlers (and sharing!) should be a breeze.

See chsrc for a full list of change sources.

Configuring Change Sources

The change_source configuration key holds all active change sources for the configuration.
Most configurations have a single ChangeSource, watching only a single tree, e.g.:

from buildbot.plugins import changes
c[’change_source’] = changes.PBChangeSource ()

For more advanced configurations, the parameter can be a list of change sources:

sourcel =
source?2 ..
c[’change_source’] = [sourcel, sourcel]

Repository and Project

ChangeSources will, in general, automatically provide the proper repository attribute for any changes they
produce. For systems which operate on URL-like specifiers, this is a repository URL. Other ChangeSources
adapt the concept as necessary.

Many ChangeSources allow you to specify a project, as well. This attribute is useful when building from sev-
eral distinct codebases in the same buildmaster: the project string can serve to differentiate the different codebases.
Schedulers can filter on project, so you can configure different builders to run for each project.

Mail-parsing ChangeSources

Many projects publish information about changes to their source tree by sending an email message out to a mailing
list, frequently named PROJECT-commits or PROJECT-changes. Each message usually contains a descrip-
tion of the change (who made the change, which files were affected) and sometimes a copy of the diff. Humans
can subscribe to this list to stay informed about what’s happening to the source tree.

2.4. Configuration 61

BuildBot Documentation, Release 0.8.12

The Buildbot can also be subscribed to a -commits mailing list, and can trigger builds in response to Changes that
it hears about. The buildmaster admin needs to arrange for these email messages to arrive in a place where the
buildmaster can find them, and configure the buildmaster to parse the messages correctly. Once that is in place,
the email parser will create Change objects and deliver them to the Schedulers (see Schedulers) just like any other
ChangeSource.

There are two components to setting up an email-based ChangeSource. The first is to route the email messages
to the buildmaster, which is done by dropping them into a maildir. The second is to actually parse the messages,
which is highly dependent upon the tool that was used to create them. Each VC system has a collection of favorite
change-emailing tools, and each has a slightly different format, so each has a different parsing function. There is
a separate ChangeSource variant for each parsing function.

Once you’ve chosen a maildir location and a parsing function, create the change source and put it in
change_source:

from buildbot.plugins import changes

c[’change_source’] = changes.CVSMaildirSource ("~/maildir-buildbot",
prefix="/trunk/")

Subscribing the Buildmaster

The recommended way to install the buildbot is to create a dedicated account for the buildmaster. If you do this,
the account will probably have a distinct email address (perhaps buildmaster @ example.org). Then just arrange
for this account’s email to be delivered to a suitable maildir (described in the next section).

If the buildbot does not have its own account, extension addresses can be used to distinguish between email
intended for the buildmaster and email intended for the rest of the account. In most modern MTAs, the e.g.
foo@example.org account has control over every email address at example.org which begins with “foo”, such
that email addressed to account-foo@example.org can be delivered to a different destination than account-
bar@example.org. qmail does this by using separate .gmail files for the two destinations (.qmail-foo
and .gmail-bar, with .gmail controlling the base address and .gmail-default controlling all other
extensions). Other MTAs have similar mechanisms.

Thus you can assign an extension address like foo-buildmaster@example.org to the buildmaster, and retain
foo@example.org for your own use.

Using Maildirs

A maildir is a simple directory structure originally developed for gmail that allows safe atomic update without
locking. Create a base directory with three subdirectories: new, tmp, and cur. When messages arrive, they are
put into a uniquely-named file (using pids, timestamps, and random numbers) in tmp. When the file is complete, it
is atomically renamed into new. Eventually the buildmaster notices the file in new, reads and parses the contents,
then moves it into cur. A cronjob can be used to delete files in cur at leisure.

Maildirs are frequently created with the maildirmake tool, but a simple mkdir -p ~/MAILDIR/{cur,new,tmp}
is pretty much equivalent.

Many modern MTAs can deliver directly to maildirs. The usual . forward or .procmailrc syntax is to name
the base directory with a trailing slash, so something like ~/MAILDIR/. qmail and postfix are maildir-capable
MTAs, and procmail is a maildir-capable MDA (Mail Delivery Agent).

Here is an example procmail config, located in ~/ .procmailrc:

.procmailrc

routes incoming mail to appropriate mailboxes
PATH=/usr/bin:/usr/local/bin

MAILDIR=$SHOME/Mail

LOGFILE=.procmail_log

SHELL=/bin/sh

62 Chapter 2. Buildbot Manual

BuildBot Documentation, Release 0.8.12

:0
*

new

If procmail is not setup on a system wide basis, then the following one-line . forward file will invoke it.

! /usr/bin/procmail

For MTAs which cannot put files into maildirs directly, the safecat tool can be executed from a . forward file to
accomplish the same thing.

The Buildmaster uses the linux DNotify facility to receive immediate notification when the maildir’s new directory
has changed. When this facility is not available, it polls the directory for new messages, every 10 seconds by
default.

Parsing Email Change Messages

The second component to setting up an email-based ChangeSource is to parse the actual notices. This is highly
dependent upon the VC system and commit script in use.

A couple of common tools used to create these change emails, along with the buildbot tools to parse them, are:
CVS

Buildbot CVS MailNotifier CVSMaildirSource
SVN

svnmailer http://opensource.perlig.de/en/svnmailer/

commit—-email.pl SVNCommitEmailMaildirSource

Bzr

Launchpad BzrLaunchpadEmailMaildirSource
Mercurial

NotifyExtension http://www.selenic.com/mercurial/wiki/index.cgi/NotifyExtension
Git

post-receive-email http://git.kernel.org/?p=git/git.git;a=blob;f=contrib/hooks/post-receive-
email;hb=HEAD

The following sections describe the parsers available for each of these tools.

Most of these parsers accept a pre f1x= argument, which is used to limit the set of files that the buildmaster pays
attention to. This is most useful for systems like CVS and SVN which put multiple projects in a single repository
(or use repository names to indicate branches). Each filename that appears in the email is tested against the prefix:
if the filename does not start with the prefix, the file is ignored. If the filename does start with the prefix, that prefix
is stripped from the filename before any further processing is done. Thus the prefix usually ends with a slash.

CVSMaildirSource

class buildbot.changes.mail.CVSMaildirSource
This parser works with the buildbot_cvs_maildir.py scriptin the contrib directory.

The script sends an email containing all the files submitted in one directory. It is invoked by using the
CVSROOT/loginfo facility.

The Buildbot’s CVSMaildirSource knows how to parse these messages and turn them into Change objects. It
takes the directory name of the maildir root. For example:

2.4. Configuration 63

http://opensource.perlig.de/en/svnmailer/
http://www.selenic.com/mercurial/wiki/index.cgi/NotifyExtension
http://git.kernel.org/?p=git/git.git;a=blob;f=contrib/hooks/post-receive-email;hb=HEAD
http://git.kernel.org/?p=git/git.git;a=blob;f=contrib/hooks/post-receive-email;hb=HEAD

BuildBot Documentation, Release 0.8.12

from buildbot.plugins import changes

c[’change_source’] = changes.CVSMaildirSource ("/home/buildbot/Mail™)

Configuration of CVS and buildbot_cvs_mail.py CVS must be configured to invoke the buildbot_cvs_mail.py
script when files are checked in. This is done via the CVS loginfo configuration file.

To update this, first do:
cvs checkout CVSROOT
cd to the CVSROOT directory and edit the file loginfo, adding a line like:

SomeModule /cvsroot/CVSROOT/buildbot_cvs_mail.py —-cvsroot :ext:example.com:/cvsroot —e buildbot

Note: For cvs version 1.12.x, the -——path %p option is required. Version 1.11.x and 1.12.x report the directory
path differently.

The above example you put the buildbot_cvs_mail.py script under /cvsroot/CVSROOT. It can be anywhere. Run
the script with —help to see all the options. At the very least, the options —e (email) and —P (project) should be
specified. The line must end with % { sVv} — this is expanded to the files that were modified.

Additional entries can be added to support more modules.

See buildbot_cvs_mail.py —help* for more information on the available options.

SVNCommitEmailMaildirSource

class buildbot.changes.mail.SVNCommitEmailMaildirSource

SVNCommitEmailMaildirSource parses message sent out by the commit—email.pl script, which is
included in the Subversion distribution.

It does not currently handle branches: all of the Change objects that it creates will be associated with the default
(i.e. trunk) branch.

from buildbot.plugins import changes

c[’change_source’] = changes.SVNCommitEmailMaildirSource ("~/maildir-buildbot™")

BzrLaunchpadEmailMaildirSource

class buildbot .changes.mail .BzrLaunchpadEmailMaildirSource

BzrLaunchpadEmailMaildirSource parses the mails that are sent to addresses that subscribe to branch
revision notifications for a bzr branch hosted on Launchpad.

The branch name defaults to 1p: Launchpad path. For example 1p:~maria-captains/maria/5.1.
If only a single branch is used, the default branch name can be changed by setting defaultBranch.

For multiple branches, pass a dictionary as the value of the branchMap option to map specific repository paths
to specific branch names (see example below). The leading 1p: prefix of the path is optional.

The prefix option is not supported (it is silently ignored). Use the branchMap and defaultBranch instead
to assign changes to branches (and just do not subscribe the buildbot to branches that are not of interest).

The revision number is obtained from the email text. The bzr revision id is not available in the mails sent by
Launchpad. However, it is possible to set the bzr append_revisions_only option for public shared repositories to
avoid new pushes of merges changing the meaning of old revision numbers.

64 Chapter 2. Buildbot Manual

BuildBot Documentation, Release 0.8.12

from buildbot.plugins import changes

bm = {
"lp:~maria-captains/maria/5.1": 5.1,
"lp:~maria-captains/maria/6.0": 76.0'
}
c[’change_source’] = changes.BzrLaunchpadEmailMaildirSource ("~/maildir-buildbot",
branchMap=bm)

PBChangeSource

class buildbot.changes.pb.PBChangeSource

PBChangeSource actually listens on a TCP port for clients to connect and push change notices into the Build-
master. This is used by the built-in buildbot sendchange notification tool, as well as several version-control
hook scripts. This change is also useful for creating new kinds of change sources that work on a push model in-
stead of some kind of subscription scheme, for example a script which is run out of an email . forward file. This
ChangeSource always runs on the same TCP port as the slaves. It shares the same protocol, and in fact shares the
same space of “usernames”, so you cannot configure a PRBChangeSource with the same name as a slave.

If you have a publicly accessible slave port, and are using PBChangeSource, you must establish a secure
username and password for the change source. If your sendchange credentials are known (e.g., the defaults), then
your buildmaster is susceptible to injection of arbitrary changes, which (depending on the build factories) could
lead to arbitrary code execution on buildslaves.

The PBChangeSource is created with the following arguments.
port which port to listen on. If None (which is the default), it shares the port used for buildslave connections.
user The user account that the client program must use to connect. Defaults to change

passwd The password for the connection - defaults to changepw. Do not use this default on a publicly exposed
port!

prefix The prefix to be found and stripped from filenames delivered over the connection, defaulting to None.
Any filenames which do not start with this prefix will be removed. If all the filenames in a given Change are
removed, the that whole Change will be dropped. This string should probably end with a directory separator.

This is useful for changes coming from version control systems that represent branches as par-
ent directories within the repository (like SVN and Perforce). Use a prefix of trunk/ or
project/branches/foobranch/ to only follow one branch and to get correct tree-relative file-
names. Without a prefix, the PBChangeSource will probably deliver Changes with filenames like
trunk/foo.c instead of just foo.c. Of course this also depends upon the tool sending the Changes
in (like buildbot sendchange) and what filenames it is delivering: that tool may be filtering and
stripping prefixes at the sending end.

For example:

from buildbot.plugins import changes
c[’change_source’] = changes.PBChangeSource (port=9999, user=’laura’, passwd=’fpga’)

The following hooks are useful for sending changes to a PRChangeSource:

Bzr Hook

Bzr is also written in Python, and the Bzr hook depends on Twisted to send the changes.

To install, put contrib/bzr_buildbot.py in one of your plugins locations a bzr plugins directory (e.g.,
~/.bazaar/plugins). Then, in one of your bazaar conf files (e.g., ~/ .bazaar/locations.conf), set
the location you want to connect with buildbot with these keys:

2.4. Configuration 65

BuildBot Documentation, Release 0.8.12

buildbot_on one of ‘commit’, ‘push, or ‘change’. Turns the plugin on to report changes via commit, changes
via push, or any changes to the trunk. ‘change’ is recommended.

buildbot_server (required to send to a buildbot master) the URL of the buildbot master to which you will
connect (as of this writing, the same server and port to which slaves connect).

buildbot_port (optional, defaults to 9989) the port of the buildbot master to which you will connect (as of
this writing, the same server and port to which slaves connect)

buildbot_pgm (optional, defaults to not pqm) Normally, the user that commits the revision is the user that
is responsible for the change. When run in a pqm (Patch Queue Manager, see https://launchpad.net/pgm)
environment, the user that commits is the Patch Queue Manager, and the user that committed the parent
revision is responsible for the change. To turn on the pqm mode, set this value to any of (case-insensitive)
“Yes”, “Y”, “True”, or “T”.

buildbot_dry_run (optional, defaults to not a dry run) Normally, the post-commit hook will attempt to
communicate with the configured buildbot server and port. If this parameter is included and any of (case-
insensitive) “Yes”, “Y”, “True”, or “T”, then the hook will simply print what it would have sent, but not
attempt to contact the buildbot master.

buildbot_send_branch_name (optional, defaults to not sending the branch name) If your buildbot’s bzr
source build step uses a repourl, do not turn this on. If your buildbot’s bzr build step uses a baseURL, then
you may set this value to any of (case-insensitive) “Yes”, “Y”, “True”, or “T” to have the buildbot master
append the branch name to the baseURL.

Note: The bzr smart server (as of version 2.2.2) doesn’t know how to resolve bzr: // urls into absolute paths
so any paths in locations.conf won’t match, hence no change notifications will be sent to Buildbot. Set-

ting configuration parameters globally or in-branch might still work. When buildbot no longer has a hardcoded
password, it will be a configuration option here as well.

Here’s a simple example that you might have in your ~/ .bazaar/locations.conf.

[chroot-*:///var/local/myrepo/mybranch]
buildbot_on = change
buildbot_server = localhost

P4Source

The P4Source periodically polls a Perforce (http://www.perforce.com/) depot for changes. It accepts the fol-
lowing arguments:

pdport The Perforce server to connect to (as host : port).

p4user The Perforce user.

p4passwd The Perforce password.

p4base The base depot path to watch, without the trailing ‘/...".

p4bin An optional string parameter. Specify the location of the perforce command line binary (p4). You only
need to do this if the perforce binary is not in the path of the buildbot user. Defaults to p4.

split_file A function that maps a pathname, without the leading p4base, to a (branch, filename) tuple.
The default just returns (None, branchfile), which effectively disables branch support. You should
supply a function which understands your repository structure.

pollInterval How often to poll, in seconds. Defaults to 600 (10 minutes).

project Set the name of the project to be used for the P4Source. This will then be set in any changes
generated by the P4Source, and can be used in a Change Filter for triggering particular builders.

pollAtLaunch Determines when the first poll occurs. True = immediately on launch, False = wait for one
polllnterval (default).

66 Chapter 2. Buildbot Manual

https://launchpad.net/pqm
http://www.perforce.com/

BuildBot Documentation, Release 0.8.12

histmax The maximum number of changes to inspect at a time. If more than this number occur since the last
poll, older changes will be silently ignored.

encoding The character encoding of p4 ‘s output. This defaults to “utf8”, but if your commit messages are in
another encoding, specify that here. For example, if you’re using Perforce on Windows, you may need to
use “cp437” as the encoding if “utf8” generates errors in your master log.

server_tz The timezone of the Perforce server, using the usual timezone format (e.g: Europe/Stockholm)
in case it’s in a different timezone than the buildbot master.

use_tickets Setto True to use ticket-based authentication, instead of passwords (but you still need to specify
pdpasswd).

ticket_login_interval How often to get a new ticket, in seconds, when use_tickets is enabled.
Defaults to 86400 (24 hours).

Example

This configuration uses the PAPORT, PAUSER, and PA4PASSWD specified in the buildmaster’s environment. It
watches a project in which the branch name is simply the next path component, and the file is all path components
after.

from buildbot.plugins import changes

s = changes.P4Source (pd4base='//depot/project/’,
split_file=lambda branchfile: branchfile.split(’/’,1))
c[’change_source’] = s

BonsaiPoller

The BonsaiPoller periodically polls a Bonsai server. This is a CGI script accessed through a web server that
provides information about a CVS tree, for example the Mozilla bonsai server at http://bonsai.mozilla.org. Bonsai
servers are usable by both humans and machines. In this case, the buildbot’s change source forms a query which
asks about any files in the specified branch which have changed since the last query.

BonsaiPoller accepts the following arguments:

bonsaiURL The base URL of the Bonsai server, e.g., http://bonsai.mozilla.org

module The module to look for changes in. Commonly thisis all.

branch The branch to look for changes in. This will appear in the branch field of the resulting change objects.
tree The tree to look for changes in. Commonly thisis all.

cvsroot The CVS root of the repository. Usually this is /cvsroot.

pollInterval The time (in seconds) between queries for changes.

pollAtLaunch Determines when the first poll occurs. True = immediately on launch, False = wait for one
polllnterval (default).

project The project name to attach to all change objects produced by this change source.

SVNPoller

class buildbot.changes.svnpoller.SVNPoller

The SVNPoller is a ChangeSource which periodically polls a Subversion (http://subversion.tigris.org/) reposi-
tory for new revisions, by running the svn log command in a subshell. It can watch a single branch or multiple
branches.

SVNPo1ller accepts the following arguments:

2.4. Configuration 67

http://bonsai.mozilla.org
http://subversion.tigris.org/

BuildBot Documentation, Release 0.8.12

svnurl The base URL path to watch, like svn://svn.twistedmatrix.com/svn/Twisted/trunk,
orhttp://divmod.org/svn/Divmo/,oreven file:///home/svn/Repository/ProjectA/branches/1.
This must include the access scheme, the location of the repository (both the hostname for remote ones, and
any additional directory names necessary to get to the repository), and the sub-path within the repository’s
virtual filesystem for the project and branch of interest.

The SVNPoller will only pay attention to files inside the subdirectory specified by the complete svnurl.

split_file A function to convert pathnames into (branch, relative_pathname) tuples. Use this to
explain your repository’s branch-naming policy to SVNPo1ller. This function must accept a single string
(the pathname relative to the repository) and return a two-entry tuple. Directory pathnames always end with
aright slash to distinguish them from files, like t runk /src/, or src/. There are a few utility functions in
buildbot.changes.svnpoller that can be used as a split_file function; see below for details.

For directories, the relative pathname returned by split_file should end with a right slash but an
empty string is also accepted for the root, like ("branches/1.5.x", "") being converted from
"branches/1.5.x/".

The default value always returns (None, path), which indicates that all files are on the trunk.

Subclasses of SVNPoller can override the split_file method instead of using the split_file=
argument.

project Set the name of the project to be used for the SVNPoller. This will then be set in any changes
generated by the SVNPoller, and can be used in a Change Filter for triggering particular builders.

svnuser An optional string parameter. If set, the ——user argument will be added to all svn commands. Use
this if you have to authenticate to the svn server before you can do svn info or svn log commands.

svnpasswd Like svnuser, this will cause a ——password argument to be passed to all svn commands.

pollInterval How often to poll, in seconds. Defaults to 600 (checking once every 10 minutes). Lower this
if you want the buildbot to notice changes faster, raise it if you want to reduce the network and CPU load
on your svn server. Please be considerate of public SVN repositories by using a large interval when polling
them.

pollAtLaunch Determines when the first poll occurs. True = immediately on launch, False = wait for one
pollnterval (default).

histmax The maximum number of changes to inspect at a time. Every pollInterval seconds, the
SVNPoller asks for the last histmax changes and looks through them for any revisions it does not al-
ready know about. If more than histmax revisions have been committed since the last poll, older changes
will be silently ignored. Larger values of histmax will cause more time and memory to be consumed on
each poll attempt. histmax defaults to 100.

svnbin This controls the svn executable to use. If subversion is installed in a weird place on your system
(outside of the buildmaster’s PATH), use this to tell SVNPo1l1ler where to find it. The default value of svn
will almost always be sufficient.

revlinktmpl This parameter is deprecated in favour of specifying a global revlink option. This parameter
allows a link to be provided for each revision (for example, to websvn or viewvc). These links appear
anywhere changes are shown, such as on build or change pages. The proper form for this parameter
is an URL with the portion that will substitute for a revision number replaced by “%s’‘. For example,
"http://myserver/websvn/revision.php?rev=%s’ could be used to cause revision links to
be created to a websvn repository viewer.

cachepath If specified, this is a pathname of a cache file that SVNPo1ler will use to store its state between
restarts of the master.

extra_args If specified, the extra arguments will be added to the svn command args.

Several split file functions are available for common SVN repository layouts. For a poller that is only monitoring
trunk, the default split file function is available explicitly as split_file_alwaystrunk:

from buildbot.plugins import changes, util

68 Chapter 2. Buildbot Manual

BuildBot Documentation, Release 0.8.12

c[’change_source’] = changes.SVNPoller (
svnurl="svn://svn.twistedmatrix.com/svn/Twisted/trunk",
split_file=util.svn.split_file_alwaystrunk)

For repositories with the /t runk and /branches/ {BRANCH} layout, split_file_branches will do the
job:

from buildbot.plugins import changes, util

c[’change_source’] = changes.SVNPoller (

svnurl="https://amanda.svn.sourceforge.net/svnroot/amanda/amanda",
split_file=util.svn.split_file_branches)

When using this splitter the poller will set the pro ject attribute of any changes to the project attribute of the
poller.

For repositories with the {PROJECT}/trunk and {PROJECT}/branches/{BRANCH} layout,
split_file_projects_branches will do the job:

from buildbot.plugins import changes, util
c[’change_source’] = changes.SVNPoller (

svnurl="https://amanda.svn.sourceforge.net/svnroot/amanda/",
split_file=util.svn.split_file_projects_branches)

When using this splitter the poller will set the pro ject attribute of any changes to the project determined by the
splitter.

The SVNPoller is highly adaptable to various Subversion layouts. See Customizing SVNPoller for details and
some common scenarios.

Bzr Poller

If you cannot insert a Bzr hook in the server, you can use the Bzr Poller. To use, put
contrib/bzr_buildbot.py somewhere that your buildbot configuration can import it. Even putting it
in the same directory as the master.cfg should work. Install the poller in the buildbot configuration as with
any other change source. Minimally, provide a URL that you want to poll (bzr://, bzr+ssh://, or 1p:),
making sure the buildbot user has necessary privileges.

bzr_buildbot.py in the same directory as master.cfg
from bzr_ buildbot import BzrPoller

c[’change_source’] = BzrPoller (url='bzr://hostname/my_project’,
poll_interval=300)

The BzrPoller parameters are:
url The URL to poll.
poll_interval The number of seconds to wait between polls. Defaults to 10 minutes.

branch_name Any value to be used as the branch name. Defaults to None, or specify a string, or specify the
constants from bzr_buildbot .py SHORT or FULL to get the short branch name or full branch address.

blame_merge_author normally, the user that commits the revision is the user that is responsible for the
change. When run in a pqm (Patch Queue Manager, see https://launchpad.net/pgm) environment, the user
that commits is the Patch Queue Manager, and the user that committed the merged, parent revision is
responsible for the change. Set this value to True if this is pointed against a PQM-managed branch.

GitPoller

If you cannot take advantage of post-receive hooks as provided by contrib/git_buildbot . py for example,
then you can use the GitPoller.

2.4. Configuration 69

https://launchpad.net/pqm

BuildBot Documentation, Release 0.8.12

The GitPoller periodically fetches from a remote Git repository and processes any changes. It requires its
own working directory for operation. The default should be adequate, but it can be overridden via the workdir

property.

Note: There can only be a single GitPoller pointed at any given repository.

The GitPoller requires Git-1.7 and later. It accepts the following arguments:

repourl the git-url that describes the remote repository, e.g. git@example.com: foobaz/myrepo.git
(see the git fetch help for more info on git-url formats)

branches One of the following:
* alist of the branches to fetch.
* True indicating that all branches should be fetched

e a callable which takes a single argument. It should take a remote refspec (such as
"refs/heads/master’, and return a boolean indicating whether that branch should be fetched.

branch accepts a single branch name to fetch. Exists for backwards compatibility with old configurations.
pollInterval interval in seconds between polls, default is 10 minutes

pollAtLaunch Determines when the first poll occurs. True = immediately on launch, False = wait for one
polllnterval (default).

gitbin path to the Git binary, defaults to just “ git’

category Set the category to be used for the changes produced by the GitPoller. This will then be set in
any changes generated by the GitPoller, and can be used in a Change Filter for triggering particular
builders.

project Set the name of the project to be used for the GitPoller. This will then be set in any changes
generated by the GitPoller, and can be used in a Change Filter for triggering particular builders.

usetimestamps parse each revision’s commit timestamp (default is True), or ignore it in favor of the current
time (so recently processed commits appear together in the waterfall page)

encoding Set encoding will be used to parse author’s name and commit message. Default encoding is
"ut £-8’. This will not be applied to file names since Git will translate non-ascii file names to unreadable
escape sequences.

workdir the directory where the poller should keep its local repository. The default is gitpoller_work. If
this is a relative path, it will be interpreted relative to the master’s basedir. Multiple Git pollers can share
the same directory.

A configuration for the Git poller might look like this:

from buildbot.plugins import changes

c[’change_source’] = changes.GitPoller (repourl='git@example.com:foobaz/myrepo.git’,
branches=["master’, ’'great_new_feature’])

HgPoller

The HgPoller periodically pulls a named branch from a remote Mercurial repository and processes any changes.
It requires its own working directory for operation, which must be specified via the workdir property.

The HgPoller requires a working hg executable, and at least a read-only access to the repository it polls (pos-
sibly through ssh keys or by tweaking the hgrc of the system user buildbot runs as).

The HgPoller will not transmit any change if there are several heads on the watched named branch. This is
similar (although not identical) to the Mercurial executable behaviour. This exceptional condition is usually the
result of a developer mistake, and usually does not last for long. It is reported in logs. If fixed by a later merge,

70 Chapter 2. Buildbot Manual

BuildBot Documentation, Release 0.8.12

the buildmaster administrator does not have anything to do: that merge will be transmitted, together with the
intermediate ones.

The HgPoller accepts the following arguments:

repourl the url that describes the remote repository, e.g. http://hg.example.com/projects/myrepo.
Any url suitable for hg pull can be specified.

branch the desired branch to pull, will default to * default’

workdir the directory where the poller should keep its local repository. It is mandatory for now, although later
releases may provide a meaningful default.

It also serves to identify the poller in the buildmaster internal database. Changing it may result in re-
processing all changes so far.

Several HgPoller instances may share the same workdir for mutualisation of the common history
between two different branches, thus easing on local and remote system resources and bandwidth.

If relative, the workdir will be interpreted from the master directory.
pollInterval interval in seconds between polls, default is 10 minutes

pollAtLaunch Determines when the first poll occurs. True = immediately on launch, False = wait for one
polllnterval (default).

hgbin path to the Mercurial binary, defaults to just ’ hg’

category Set the category to be used for the changes produced by the HgPo1 ler. This will then be set in any
changes generated by the HgPoller, and can be used in a Change Filter for triggering particular builders.

project Set the name of the project to be used for the HgPoller. This will then be set in any changes
generated by the HgPoller, and can be used in a Change Filter for triggering particular builders.

usetimestamps parse each revision’s commit timestamp (default is True), or ignore it in favor of the current
time (so recently processed commits appear together in the waterfall page)

encoding Set encoding will be used to parse author’s name and commit message. Default encoding is
"utf-8'.

A configuration for the Mercurial poller might look like this:

from buildbot.plugins import changes

c[’change_source’] = changes.HgPoller (repourl="http://hg.example.org/projects/myrepo’,
branch='great_new_feature’,
workdir="hg-myrepo’)

BitbucketPullrequestPoller

class buildbot .changes.bitbucket .BitbucketPullrequestPoller

This BitbucketPullrequestPoller periodically polls Bitbucket for new or
updated pull requests. It uses Bitbuckets powerful Pull Request REST API
(https://confluence.atlassian.com/display/BITBUCKET/pullrequests+Resource) to gather the information
needed.

The BitbucketPullrequestPoller accepts the following arguments:

owner The owner of the Bitbucket repository. All Bitbucket Urls are of the form
https://bitbucket.org/owner/slug/.

slug The name of the Bitbucket repository.

branch A single branch or a list of branches which should be processed. If it is None (the default) all pull
requests are used.

pollInterval Interval in seconds between polls, default is 10 minutes.

2.4. Configuration 7

https://confluence.atlassian.com/display/BITBUCKET/pullrequests+Resource
https://bitbucket.org/owner/slug/

BuildBot Documentation, Release 0.8.12

pollAtLaunch Determines when the first poll occurs. True = immediately on launch, False = wait for one
pollInterval (default).

category Set the category to be used for the changes produced by the BitbucketPullrequestPoller.
This will then be set in any changes generated by the BitbucketPullrequestPoller, and can be
used in a Change Filter for triggering particular builders.

project Set the name of the project to be used for the BitbucketPullrequestPoller. This will then
be set in any changes generated by the BitbucketPullrequestPoller, and can be used in a Change
Filter for triggering particular builders.

pullrequest_filter A callable which takes one parameter, the decoded Python object of the pull request
JSON. If the it returns False the pull request is ignored. It can be used to define custom filters based on
the content of the pull request. See the Bitbucket documentation for more information about the format of
the response. By default the filter always returns True.

usetimestamps parse each revision’s commit timestamp (default is True), or ignore it in favor of the current
time (so recently processed commits appear together in the waterfall page)

encoding Set encoding will be used to parse author’s name and commit message. Default encoding is
"utf-8'.

A minimal configuration for the Bitbucket pull request poller might look like this:

from buildbot.plugins import changes

c[’change_source’] = changes.BitbucketPullrequestPoller (
owner='myname’ ,
slug="myrepo’,

)

Here is a more complex configuration using a pullrequest_filter. The pull request is only processed if at
least 3 people have already approved it:

from buildbot.plugins import changes

def approve_filter (pr, threshold):
approves = 0
for participant in pr[’participants’]:
if participant[’approved’]:
approves = approves + 1

if approves < threshold:
return False
return True

c[’change_source’] = changes.BitbucketPullrequestPoller (
owner='myname’,
slug='myrepo’,
branch="mybranch’,
project="myproject’,
pullrequest_filter=lambda pr: approve_filter (pr, 3),
pollInterval=600)

Warning: Anyone who can create pull requests for the Bitbucket repository can initiate a change, potentially
causing the buildmaster to run arbitrary code.

GerritChangeSource

class buildbot.changes.gerritchangesource.GerritChangeSource

72 Chapter 2. Buildbot Manual

BuildBot Documentation, Release 0.8.12

The GerritChangeSource class connects to a Gerrit server by its SSH interface and uses its event
source mechanism, gerrit stream-events (http://gerrit.googlecode.com/svn/documentation/2.2.1/cmd-stream-
events.html).

The GerritChangeSource accepts the following arguments:

gerritserver the dns or ip that host the gerrit ssh server

gerritport the port of the gerrit ssh server

username the username to use to connect to gerrit

identity_ file ssh identity file to for authentication (optional). Pay attention to the ssh passphrase
handled_events event to be handled (optional). By default processes patchset-created and ref-updated
By default this class adds a change to the buildbot system for each of the following events:

patchset-created A change is proposed for review. Automatic checks like checkpatch.pl can be
automatically triggered. Beware of what kind of automatic task you trigger. At this point, no trusted human
has reviewed the code, and a patch could be specially crafted by an attacker to compromise your buildslaves.

ref-updated A change has been merged into the repository. Typically, this kind of event can lead to a complete
rebuild of the project, and upload binaries to an incremental build results server.

But you can specify how to handle Events:
* Any event with change and patchSet will be processed by universal collector by default.

* In case you’ve specified processing function for the given kind of events, all events of this kind will be
processed only by this function, bypassing universal collector.

An example:

from buildbot.plugins import changes

class MyGerritChangeSource (changes.GerritChangeSource) :

"""Custom GerritChangeSource
mmn

def eventReceived_patchset_created(self, properties, event):

"""Handler events without properties
mmn

properties = {}
self.addChangeFromEvent (properties, event)

This class will populate the property list of the triggered build with the info received from Gerrit server in JSON
format.

In case of patchset—-created event, these properties will be:

event .change.branch Branch of the Change

event .change.id Change’s ID in the Gerrit system (the Changeld: in commit comments)
event . change.number Change’s number in Gerrit system

event .change.owner.email Change’s owner email (owner is first uploader)

event .change.owner.name Change’s owner name

event .change.project Project of the Change

event . change. subject Change’s subject

event .change.url URL of the Change in the Gerrit’s web interface

event .patchSet .number Patchset’s version number

event .patchSet.ref Patchset’s Gerrit “virtual branch”

event .patchSet.revision Patchset’s Git commit ID

2.4. Configuration 73

http://gerrit.googlecode.com/svn/documentation/2.2.1/cmd-stream-events.html

BuildBot Documentation, Release 0.8.12

event .patchSet.uploader.email Patchset uploader’s email (owner is first uploader)
event .patchSet .uploader.name Patchset uploader’s name (owner is first uploader)
event .type Eventtype (patchset-created)

event .uploader.email Patchset uploader’s email

event .uploader.name Patchset uploader’s name

In case of ref-updated event, these properties will be:

event . refUpdate.newRev New Git commit ID (after merger)

event .refUpdate.oldRev Previous Git commit ID (before merger)

event . refUpdate.project Project that was updated

event .refUpdate.refName Branch that was updated

event .submitter.email Submitter’s email (merger responsible)

event .submitter.name Submitter’s name (merger responsible)

event .type Eventtype (ref-updated)

event .submitter.email Submitter’s email (merger responsible)

event . submitter.name Submitter’s name (merger responsible)

A configuration for this source might look like:

from buildbot.plugins import changes

c[’change_source’] = changes.GerritChangeSource (
"gerrit.example.com",
"gerrit_user",
handled_events=["patchset-created", "change-merged"])

Seemaster/docs/examples/git_gerrit.cfgormaster/docs/examples/repo_gerrit.cfg
in the Buildbot distribution for a full example setup of Git+Gerrit or Repo+Gerrit of GerritChangeSource.

GerritChangeFilter

class buildbot .changes.gerritchangesource.GerritChangeFilter

GerritChangeFilter is a ready to use ChangeFilter you can pass to AnyBranchScheduler in order to filter changes,
to create pre-commit builders or post-commit schedulers. It has the same api as Change Filter, except it has
additionnal eventtype set of filter (can as well be specified as value, list, regular expression or callable)

An example is following:

this scheduler will create builds when a patch is uploaded to gerrit
but only if it is uploaded to the "main" branch
AnyBranchScheduler (name="main-precommit",
change_filter=GerritChangeFilter (branch="main",
eventtype="patchset—-created"),
treeStableTimer=15%60,
builderNames=["main-precommit"])

"

this scheduler will create builds when a patch is merged in the "main" branch
for post-commit tests
AnyBranchScheduler (name="main-postcommit",
change_filter=GerritChangeFilter ("main",
"ref-updated"),
treeStableTimer=15%60,

builderNames=["main-postcommit"])

74 Chapter 2. Buildbot Manual

BuildBot Documentation, Release 0.8.12

Change Hooks (HTTP Notifications)

Buildbot already provides a web frontend, and that frontend can easily be used to receive HTTP push notifications
of commits from services like GitHub or GoogleCode. See Change Hooks for more information.

GoogleCodeAtomPoller

The GoogleCodeAtomPoller periodically polls a Google Code Project’s commit feed for changes. Works on
SVN, Git, and Mercurial repositories. Branches are not understood (yet). It accepts the following arguments:
feedurl The commit Atom feed URL of the GoogleCode repository (MANDATORY)

pollinterval Polling frequency for the feed (in seconds). Default is 1 hour (OPTIONAL)

As an example, to poll the Ostinato project’s commit feed every 3 hours, the configuration would look like this:

from buildbot.plugins import changes

c[’change_source’] = changes.GoogleCodeAtomPoller (
feedurl="http://code.google.com/feeds/p/ostinato/hgchanges/basic",
pollinterval=10800)

Note: You will need to download googlecode_atom.py from the Buildbot source and install it somewhere
on your PYTHONPATH first.

2.4.4 Schedulers

* Configuring Schedulers

* Change Filters

* SingleBranchScheduler

* AnyBranchScheduler

* Dependent Scheduler

* Periodic Scheduler

* Nightly Scheduler

* Try Schedulers
 Triggerable Scheduler

* NightlyTriggerable Scheduler
* ForceScheduler Scheduler

Schedulers are responsible for initiating builds on builders.

Some schedulers listen for changes from ChangeSources and generate build sets in response to these changes.
Others generate build sets without changes, based on other events in the buildmaster.

Configuring Schedulers

The schedulers configuration parameter gives a list of Scheduler instances, each of which causes builds to
be started on a particular set of Builders. The two basic Scheduler classes you are likely to start with are
SingleBranchScheduler and Periodic, but you can write a customized subclass to implement more
complicated build scheduling.

Scheduler arguments should always be specified by name (as keyword arguments), to allow for future expansion:

from buildbot.plugins import schedulers

sched = schedulers.SingleBranchScheduler (name="quick", builderNames=['"1lin’, ’"win’])

2.4. Configuration 75

BuildBot Documentation, Release 0.8.12

There are several common arguments for schedulers, although not all are available with all schedulers.

name Each Scheduler must have a unique name. This is used in status displays, and is also available in the build
property scheduler.

builderNames This is the set of builders which this scheduler should trigger, specified as a list of names
(strings).

properties This is a dictionary specifying properties that will be transmitted to all builds started by this
scheduler. The owner property may be of particular interest, as its contents (as a list) will be added to the
list of “interested users” (Doing Things With Users) for each triggered build. For example

sched = Scheduler(...,
properties = {’owner’: [’zorro@company.com’, ’silver@company.com’]})

fileIsImportant A callable which takes one argument, a Change instance, and returns True if the change
is worth building, and False if it is not. Unimportant Changes are accumulated until the build is triggered
by an important change. The default value of None means that all Changes are important.

change_filter The change filter that will determine which changes are recognized by this scheduler; Change
Filters. Note that this is different from fileIsImportant: if the change filter filters out a Change,
then it is completely ignored by the scheduler. If a Change is allowed by the change filter, but is deemed
unimportant, then it will not cause builds to start, but will be remembered and shown in status displays.

codebases When the scheduler processes data from more than 1 repository at the same time then a correspond-
ing codebase definition should be passed for each repository. A codebase definition is a dictionary with one
or more of the following keys: repository, branch, revision. The codebase definitions have also to be passed
as dictionary.

codebases = {’codebasel’: {’'repository’:’"....",
"branch’ :"default’,
"revision’: None},
"codebase2’: {’repository’:’....7} }

Important: codebases behaves also like a change_filter on codebase. The scheduler will only process
changes when their codebases are found in codebases. By default codebasesissetto {’’ : { } } which

means that only changes with codebase ** (default value for codebase) will be accepted by the scheduler.

Buildsteps can have a reference to one of the codebases. The step will only get information (revision, branch
etc.) that is related to that codebase. When a scheduler is triggered by new changes, these changes (having
a codebase) will be incorporated by the new build. The buildsteps referencing to the codebases that have
changes get information about those changes. The buildstep that references to a codebase that does not have
changes in the build get the information from the codebases definition as configured in the scheduler.

onlyImportant A boolean that, when True, only adds important changes to the buildset as specified in
the fileIsImportant callable. This means that unimportant changes are ignored the same way a
change_filter filters changes. This defaults to False and only applies when fileIsImportant
is given.

reason A string that will be used as the reason for the triggered build.

The remaining subsections represent a catalog of the available Scheduler types. All these Schedulers are defined
in modules under buildbot.schedulers, and the docstrings there are the best source of documentation on
the arguments taken by each one.

Change Filters

Several schedulers perform filtering on an incoming set of changes. The filter can most generically be specified as
aChangeFilter. Setup a ChangeFilter like this:

from buildbot.plugins import util

my_filter = util.ChangeFilter (

76 Chapter 2. Buildbot Manual

BuildBot Documentation, Release 0.8.12

project_re=""baseproduct/.*",
branch="devel")

and then add it to a scheduler with the change_filter parameter:

sch = SomeSchedulerClass(...,
change_filter=my_filter)

There are five attributes of changes on which you can filter:

project the project string, as defined by the ChangeSource.

repository the repository in which this change occurred.

branch the branch on which this change occurred. Note that ‘trunk’ or ‘master’ is often denoted by None.
category the category, again as defined by the ChangeSource.

codebase the change’s codebase.

For each attribute, the filter can look for a single, specific value:

my_filter = ChangeFilter (project="myproject’)

or accept any of a set of values:

my_filter = ChangeFilter (project=['myproject’, ’Jjimsproject’])

or apply a regular expression, using the attribute name with a “_re” suffix:

my_filter = ChangeFilter (category_re='.xdeve.*")

or, to use regular expression flags:

import re

my_filter = ChangeFilter (category_re=re.compile (’ .xdeve.x’, re.I))

For anything more complicated, define a Python function to recognize the strings you want:

def my_branch_fn (branch) :
return branch in branches_to_build and branch not in branches_to_ignore
my_filter = ChangeFilter (branch_fn=my_branch_fn)

The special argument filter_fn can be used to specify a function that is given the entire Change object, and
returns a boolean.

The entire set of allowed arguments, then, is

project project_re project_fn
repository | repository_re | repository_fn
branch branch_re branch_fn
category category_re category_fn
codebase codebase_re codebase_fn
filter_fn

A Change passes the filter only if all arguments are satisfied. If no filter object is given to a scheduler, then all
changes will be built (subject to any other restrictions the scheduler enforces).

SingleBranchScheduler

This is the original and still most popular scheduler class. It follows exactly one branch, and starts a configurable
tree-stable-timer after each change on that branch. When the timer expires, it starts a build on some set of Builders.
The Scheduler accepts a fileIsImportant function which can be used to ignore some Changes if they do not
affect any important files.

If treeStableTimer is not set, then this scheduler starts a build for every Change that matches its
change_filter and statsfies fileIsImportant. If treeStableTimer is set, then a build is triggered
for each set of Changes which arrive within the configured time, and match the filters.

2.4. Configuration 77

BuildBot Documentation, Release 0.8.12

Note: The behavior of this scheduler is undefined, if treeStableTimer is set, and changes from multiple
branches, repositories or codebases are accepted by the filter.

Note: The codebases argument will filter out codebases not specified there, but won’t filter based on the
branches specified there.

The arguments to this scheduler are:
name

builderNames

properties
fileIsImportant
change_filter
onlyImportant

reason

createAbsoluteSourceStamps This option only has effect when using multiple codebases. When True,
it uses the last seen revision for each codebase that does not have a change. When False, the default value,
codebases without changes will use the revision from the codebases argument.

treeStableTimer The scheduler will wait for this many seconds before starting the build. If new changes
are made during this interval, the timer will be restarted, so really the build will be started after a change
and then after this many seconds of inactivity.

If treeStableTimer is None, then a separate build is started immediately for each Change.

fileIsImportant A callable which takes one argument, a Change instance, and returns True if the change
is worth building, and False if it is not. Unimportant Changes are accumulated until the build is triggered
by an important change. The default value of None means that all Changes are important.

categories (deprecated; use change_filter) A list of categories of changes that this scheduler will respond
to. If this is specified, then any non-matching changes are ignored.

branch (deprecated; use change_filter) The scheduler will pay attention to this branch, ignoring Changes that
occur on other branches. Setting branch equal to the special value of None means it should only pay
attention to the default branch.

Note: None is a keyword, not a string, so write None and not "None".

Example:

from buildbot.plugins import schedulers, util

quick = schedulers.SingleBranchScheduler (name="quick",
change_filter=util.ChangeFilter (branch="master’),
treeStableTimer=60,
builderNames=["quick—-1linux", "quick-netbsd"])

full = schedulers.SingleBranchScheduler (name="full",
change_filter=util.ChangeFilter (branch='"master’),
treeStableTimer=5+x60,
builderNames=["full-1inux", "full-netbsd", "full-0SX"])

c[’schedulers’] = [quick, full]

In this example, the two quick builders are triggered 60 seconds after the tree has been changed. The fu!l builds do
not run quite so quickly (they wait 5 minutes), so hopefully if the quick builds fail due to a missing file or really
simple typo, the developer can discover and fix the problem before the full builds are started. Both Schedulers
only pay attention to the default branch: any changes on other branches are ignored by these schedulers. Each
scheduler triggers a different set of Builders, referenced by name.

78 Chapter 2. Buildbot Manual

BuildBot Documentation, Release 0.8.12

The old names for this scheduler, buildbot.scheduler.Scheduler and
buildbot.schedulers.basic.Scheduler, are deprecated in favor of the more accurate name
buildbot.schedulers.basic.SingleBranchScheduler.

AnyBranchScheduler

This scheduler uses a tree-stable-timer like the default one, but uses a separate timer for each branch.

If treeStableTimer is not set, then this scheduler is indistinguishable from
bb:sched:SingleBranchScheduler. If treeStableTimer is set, then a build is triggered for each
set of Changes which arrive within the configured time, and match the filters.

The arguments to this scheduler are:
name

builderNames

properties

fileIsImportant
change_filter
onlyImportant

reason See Configuring Schedulers.

treeStableTimer The scheduler will wait for this many seconds before starting the build. If new changes
are made on the same branch during this interval, the timer will be restarted.

branches (deprecated; use change_filter) Changes on branches not specified on this list will be ignored.

categories (deprecated; use change_filter) A list of categories of changes that this scheduler will respond
to. If this is specified, then any non-matching changes are ignored.

Dependent Scheduler

It is common to wind up with one kind of build which should only be performed if the same source code was
successfully handled by some other kind of build first. An example might be a packaging step: you might only
want to produce .deb or RPM packages from a tree that was known to compile successfully and pass all unit tests.
You could put the packaging step in the same Build as the compile and testing steps, but there might be other
reasons to not do this (in particular you might have several Builders worth of compiles/tests, but only wish to do
the packaging once). Another example is if you want to skip the full builds after a failing guick build of the same
source code. Or, if one Build creates a product (like a compiled library) that is used by some other Builder, you’d
want to make sure the consuming Build is run after the producing one.

You can use Dependencies to express this relationship to the Buildbot. There is a special kind of scheduler named
scheduler.Dependent that will watch an upstream scheduler for builds to complete successfully (on all of
its Builders). Each time that happens, the same source code (i.e. the same SourceStamp) will be used to start a
new set of builds, on a different set of Builders. This downstream scheduler doesn’t pay attention to Changes at
all. It only pays attention to the upstream scheduler.

If the build fails on any of the Builders in the upstream set, the downstream builds will not fire. Note that,
for SourceStamps generated by a ChangeSource, the revision is None, meaning HEAD. If any changes are
committed between the time the upstream scheduler begins its build and the time the dependent scheduler begins
its build, then those changes will be included in the downstream build. See the Triggerable Scheduler for a more
flexible dependency mechanism that can avoid this problem.

The keyword arguments to this scheduler are:
name
builderNames

properties See Configuring Schedulers.

2.4. Configuration 79

BuildBot Documentation, Release 0.8.12

upstream The upstream scheduler to watch. Note that this is an instance, not the name of the scheduler.
Example:

from buildbot.plugins import schedulers

tests = schedulers.SingleBranchScheduler (name="just-tests",
treeStableTimer=5+60,
builderNames=["full-1linux", "full-netbsd", "full-0SX"])
package = schedulers.Dependent (name="build-package",
upstream=tests, # <- no quotes!
builderNames=["make-tarball", "make-deb", "make-rpm"])
c[’schedulers’] = [tests, package]

Periodic Scheduler

This simple scheduler just triggers a build every N seconds.

The arguments to this scheduler are:

name

builderNames

properties

onlyImportant

reason See Configuring Schedulers.

periodicBuildTimer The time, in seconds, after which to start a build.
Example:

from buildbot.plugins import schedulers

nightly = schedulers.Periodic (name="daily",
builderNames=["full-solaris"],
periodicBuildTimer=24+x60%60)
c[’schedulers’] = [nightly]

The scheduler in this example just runs the full solaris build once per day. Note that this scheduler only lets
you control the time between builds, not the absolute time-of-day of each Build, so this could easily wind up an
evening or every afternoon scheduler depending upon when it was first activated.

Nightly Scheduler

This is highly configurable periodic build scheduler, which triggers a build at particular times of day, week, month,
or year. The configuration syntax is very similar to the well-known crontab format, in which you provide values
for minute, hour, day, and month (some of which can be wildcards), and a build is triggered whenever the current
time matches the given constraints. This can run a build every night, every morning, every weekend, alternate
Thursdays, on your boss’s birthday, etc.

Pass some subset of minute, hour, dayOfMonth, month, and dayOfWeek; each may be a single number
or a list of valid values. The builds will be triggered whenever the current time matches these values. Wildcards
are represented by a “*’ string. All fields default to a wildcard except ‘minute’, so with no fields this defaults to a
build every hour, on the hour. The full list of parameters is:

name
builderNames
properties

fileIsImportant

80 Chapter 2. Buildbot Manual

BuildBot Documentation, Release 0.8.12

change_filter
onlyImportant
reason
codebases

createAbsoluteSourceStamps This option only has effect when using multiple codebases. When True,
it uses the last seen revision for each codebase that does not have a change. When False, the default value,
codebases without changes will use the revision from the codebases argument.

Note that fileIsImportant, change_filter and createAbsoluteSourceStamps are only
relevant if onlyIfChangedis True.

onlyIfChanged If this is true, then builds will not be scheduled at the designated time unless the specified
branch has seen an important change since the previous build.

branch (required) The branch to build when the time comes. Remember that a value of None here means the
default branch, and will not match other branches!

minute The minute of the hour on which to start the build. This defaults to 0, meaning an hourly build.

hour The hour of the day on which to start the build, in 24-hour notation. This defaults to %, meaning every
hour.

dayOfMonth The day of the month to start a build. This defaults to =, meaning every day.
month The month in which to start the build, with January = 1. This defaults to », meaning every month.

dayOfWeek The day of the week to start a build, with Monday = 0. This defaults to =, meaning every day of
the week.

For example, the following master.cfg clause will cause a build to be started every night at 3:00am:

from buildbot.plugins import schedulers

c[’schedulers’] .append/(
schedulers.Nightly (name="nightly’,
branch="master’,
builderNames=['builderl’, ’'builder2’],
hour=3,
minute=0))

This scheduler will perform a build each Monday morning at 6:23am and again at 8:23am, but only if someone
has committed code in the interim:

c[’schedulers’] .append(
schedulers.Nightly (name=’'RBeforeWork’,

branch=‘default?,
builderNames=['builderl’],
dayOfWeek=0,
hour=[6,8],
minute=23,
onlyIfChanged=True))

The following runs a build every two hours, using Python’s range function:

c[’schedulers’] .append/(
schedulers.Nightly (name='every2hours’,
branch=None, # default branch
builderNames=[’builderl’],
hour=range (0, 24, 2)))

Finally, this example will run only on December 24th:

2.4. Configuration 81

BuildBot Documentation, Release 0.8.12

c[’schedulers’] .append/(
schedulers.Nightly (name=’SleighPreflightCheck’,

branch=None, # default branch
builderNames=[’'flying circuits’, ’radar’],
month=12,

dayOfMonth=24,

hour=12,

minute=0))

Try Schedulers

This scheduler allows developers to use the buildbot try command to trigger builds of code they have not yet
committed. See t ry for complete details.

Two implementations are available: Try_Jobdir and Try_Userpass. The former monitors a job directory,
specified by the jobdir parameter, while the latter listens for PB connections on a specific port, and authenti-
cates against userport.

The buildmaster must have a scheduler instance in the config file’s schedulers list to receive try requests. This
lets the administrator control who may initiate these #rial builds, which branches are eligible for trial builds, and
which Builders should be used for them.

The scheduler has various means to accept build requests. All of them enforce more security than the usual
buildmaster ports do. Any source code being built can be used to compromise the buildslave accounts, but in
general that code must be checked out from the VC repository first, so only people with commit privileges can
get control of the buildslaves. The usual force-build control channels can waste buildslave time but do not allow
arbitrary commands to be executed by people who don’t have those commit privileges. However, the source code
patch that is provided with the trial build does not have to go through the VC system first, so it is important to
make sure these builds cannot be abused by a non-committer to acquire as much control over the buildslaves as a
committer has. Ideally, only developers who have commit access to the VC repository would be able to start trial
builds, but unfortunately the buildmaster does not, in general, have access to VC system’s user list.

As aresult, the try scheduler requires a bit more configuration. There are currently two ways to set this up:

jobdir (ssh) This approach creates a command queue directory, called the jobdir, in the buildmaster’s work-
ing directory. The buildmaster admin sets the ownership and permissions of this directory to only grant
write access to the desired set of developers, all of whom must have accounts on the machine. The buildbot
try command creates a special file containing the source stamp information and drops it in the jobdir, just
like a standard maildir. When the buildmaster notices the new file, it unpacks the information inside and
starts the builds.

The config file entries used by ‘buildbot try’ either specify a local queuedir (for which write and mv are
used) or a remote one (using scp and ssh).

The advantage of this scheme is that it is quite secure, the disadvantage is that it requires fiddling outside
the buildmaster config (to set the permissions on the jobdir correctly). If the buildmaster machine happens
to also house the VC repository, then it can be fairly easy to keep the VC userlist in sync with the trial-build
userlist. If they are on different machines, this will be much more of a hassle. It may also involve granting
developer accounts on a machine that would not otherwise require them.

To implement this, the buildslave invokes ssh -1 username host buildbot tryserver
ARGS, passing the patch contents over stdin. The arguments must include the inlet directory and the re-
vision information.

user+password (PB) In this approach, each developer gets a username/password pair, which are all listed
in the buildmaster’s configuration file. When the developer runs buildbet try, their machine connects to
the buildmaster via PB and authenticates themselves using that username and password, then sends a PB
command to start the trial build.

The advantage of this scheme is that the entire configuration is performed inside the buildmaster’s config
file. The disadvantages are that it is less secure (while the cred authentication system does not expose the
password in plaintext over the wire, it does not offer most of the other security properties that SSH does).

82 Chapter 2. Buildbot Manual

BuildBot Documentation, Release 0.8.12

In addition, the buildmaster admin is responsible for maintaining the username/password list, adding and
deleting entries as developers come and go.

For example, to set up the jobdir style of trial build, using a command queue directory of MASTERDIR/ jobdir
(and assuming that all your project developers were members of the developers unix group), you would first
set up that directory:

mkdir -p MASTERDIR/jobdir MASTERDIR/jobdir/new MASTERDIR/jobdir/cur MASTERDIR/jobdir/tmp
chgrp developers MASTERDIR/jobdir MASTERDIR/jobdir/ =
chmod g+rwx,o-rwx MASTERDIR/jobdir MASTERDIR/jobdir/*

and then use the following scheduler in the buildmaster’s config file:

from buildbot.plugins import schedulers

s = schedulers.Try_Jobdir (name="tryl",
builderNames=["full-1linux", "full-netbsd", "full-0SX"],
jobdir="jobdir")

c[’schedulers’] = [s]

Note that you must create the jobdir before telling the buildmaster to use this configuration, otherwise you will get
an error. Also remember that the buildmaster must be able to read and write to the jobdir as well. Be sure to watch
the twistd. log file (Logfiles) as you start using the jobdir, to make sure the buildmaster is happy with it.

Note: Patches in the jobdir are encoded using netstrings, which place an arbitrary upper limit on patch size of
99999 bytes. If your submitted try jobs are rejected with BadJobfile, try increasing this limit with a snippet like

this in your master.cfg:

from twisted.protocols.basic import NetstringReceiver
NetstringReceiver .MAX_LENGTH = 1000000

To use the username/password form of authentication, create a Try_Userpass instance instead. It takes the
same builderNames argument as the Try_ Jobdir form, but accepts an additional port argument (to specify
the TCP port to listen on) and a userpass list of username/password pairs to accept. Remember to use good
passwords for this: the security of the buildslave accounts depends upon it:

from buildbot.plugins import schedulers

s = schedulers.Try_Userpass (name="try2",
builderNames=["full-1linux", "full-netbsd", "full-0SX"],
port=8031,
userpass=[("alice","pwl"), ("bob", "pw2")])
c[’schedulers’] = [s]
Like most places in the buildbot, the port argument takes a strports specification. See

twisted.application.strports for details.

Triggerable Scheduler

The Triggerable scheduler waits to be triggered by a Trigger step (see Triggering Schedulers) in another
build. That step can optionally wait for the scheduler’s builds to complete. This provides two advantages over
Dependent schedulers. First, the same scheduler can be triggered from multiple builds. Second, the ability to wait
for a Triggerable’s builds to complete provides a form of “subroutine call”, where one or more builds can “call”
a scheduler to perform some work for them, perhaps on other buildslaves. The Triggerable-Scheduler supports
multiple codebases. The scheduler filters out all codebases from Trigger steps that are not configured in the
scheduler.

The parameters are just the basics:
name

builderNames

2.4. Configuration 83

BuildBot Documentation, Release 0.8.12

properties
codebases See Configuring Schedulers.
This class is only useful in conjunction with the Trigger step. Here is a fully-worked example:

from buildbot.plugins import steps, schedulers, util

checkin = schedulers.SingleBranchScheduler (name="checkin",
branch=None,
treeStableTimer=5+60,
builderNames=["checkin"])
nightly = schedulers.Nightly (name=’"nightly’,
branch=None,
builderNames=['nightly’],
hour=3,
minute=0)

mktarball = schedulers.Triggerable (name="mktarball",
builderNames=["mktarball"])

build = schedulers.Triggerable (name="build-all-platforms",
builderNames=["build-all-platforms"])

test = schedulers.Triggerable (name="distributed-test",
builderNames=["distributed-test"])
package = schedulers.Triggerable (name="package-all-platforms",

builderNames=["package—-all-platforms"])
c[’schedulers’] = [mktarball, checkin, nightly, build, test, package]

on checkin, make a tarball, build it, and test it

checkin_factory = util.BuildFactory ()

checkin_factory.addStep (steps.Trigger (schedulerNames=['mktarball’],
waltForFinish=True))

checkin_factory.addStep (steps.Trigger (schedulerNames=['build-all-platforms’],
waitForFinish=True))

checkin_factory.addStep (steps.Trigger (schedulerNames=[’'distributed-test’],
wailtForFinish=True))

and every night, make a tarball, build it, and package it

nightly_factory = util.BuildFactory ()

nightly_factory.addStep (steps.Trigger (schedulerNames=['mktarball’],
waltForFinish=True))

nightly_factory.addStep(steps.Trigger (schedulerNames=["build-all-platforms’],
waltForFinish=True))

nightly_factory.addStep(steps.Trigger (schedulerNames=[’'package-all-platforms’],
wailtForFinish=True))

NightlyTriggerable Scheduler

class buildbot.schedulers.timed.NightlyTriggerable

The NightlyTriggerable scheduler is a mix of the Night 1y and Triggerable schedulers. This sched-
uler triggers builds at a particular time of day, week, or year, exactly as the Night 1y scheduler. However, the
source stamp set that is used that provided by the last Trigger step that targeted this scheduler.

The parameters are just the basics:
name

builderNames

properties

codebases See Configuring Schedulers.

84 Chapter 2. Buildbot Manual

BuildBot Documentation, Release 0.8.12

minute

hour

dayOfMonth

month

dayOfWeek See Nightly.

This class is only useful in conjunction with the Trigger step. Note that waitForFinish is ignored by
Trigger steps targeting this scheduler.

Here is a fully-worked example:

from buildbot.plugins import schedulers, util, steps

checkin = schedulers.SingleBranchScheduler (name="checkin",
branch=None,
treeStableTimer=5+60,
builderNames=["checkin"])

nightly = schedulers.NightlyTriggerable (name="nightly’,
builderNames=['nightly’],
hour=3,
minute=0)

c[’schedulers’] = [checkin, nightly]

on checkin, run tests

checkin_factory = util.BuildFactory ()

checkin_factory.addStep (steps.Test ())
checkin_factory.addStep (steps.Trigger (schedulerNames=["nightly’]))

and every night, package the latest successful build
nightly_factory = util.BuildFactory ()
nightly_factory.addStep (steps.ShellCommand (command=["make’, ’'package’]))

ForceScheduler Scheduler

The ForceScheduler scheduler is the way you can configure a force build form in the web UL

In the builder/<builder-name> web page, you will see one form for each ForceScheduler scheduler that
was configured for this builder.

This allows you to customize exactly how the build form looks, which builders have a force build form (it might
not make sense to force build every builder), and who is allowed to force builds on which builders.

The scheduler takes the following parameters:
name
builderNames
See Configuring Schedulers.
reason

A parameter specifying the reason for the build. The default value is a string parameter with value
“force build”.

reasonString

A string that will be used to create the build reason for the forced build. This string can contain the
placeholders ‘%(owner)s’ and ‘%(reason)s’, which represents the value typed into the reason field.

username

A parameter specifying the project for the build. The default value is a username parameter,

2.4. Configuration 85

BuildBot Documentation, Release 0.8.12

codebases

A list of strings or CodebaseParameter specifying the codebases that should be presented. The default
is a single codebase with no name.

properties

A list of parameters, one for each property. These can be arbitrary parameters, where the parameter’s
name is taken as the property name, or AnyPropertyParameter, which allows the web user to
specify the property name.

buttonName
The name of the “submit” button on the resulting force-build form. This defaults to “Force Build”.
An example may be better than long explanation. What you need in your config file is something like:

from buildbot.plugins import schedulers, util

sch = schedulers.ForceScheduler (name="force",
builderNames=["my-builder"],

will generate a combo box
branch=util.ChoiceStringParameter (name="branch",
choices=["main", "devel"], defaul

will generate a text input
reason=util.StringParameter (name="reason", label="reason:
",
required=True, size=80),

will generate nothing in the form, but revision, repository,
and project are needed by buildbot scheduling system so we
need to pass a value ("")

revision=util.FixedParameter (name="revision", default=""),
repository=util.FixedParameter (name="repository", default=""),
project=util.FixedParameter (name="project", default=""),

in case you dont require authentication this will display
input for user to type his name
username=util.UserNameParameter (label="your name:
", size=80),

A completely customized property list. The name of the
property is the name of the parameter
properties=|[
util.BooleanParameter (name="force_build_clean",
label="force a make clean", default=Fal
util.StringParameter (name="pull url",
label="optionally give a public Git pull
default="", size=80)

c[’schedulers’] .append(sch)

Authorization

The force scheduler uses the web status’s authorization framework to determine which user has the right to force
which build. Here is an example of code on how you can define which user has which right:

user_mapping = {
re.compile ("projectl-builder"): ["projectl-maintainer", "john"],
re.compile ("project2-builder"): ["project2-maintainer", "jack"],
re.compile(".x"): ["root"]

86 Chapter 2. Buildbot Manual

BuildBot Documentation, Release 0.8.12

def force_auth (user, status):
global user_mapping
for r, users in user_mapping.items():
if r.match(status.name) :
if user in users:
return True
return False

use authz_cfg in your WebStatus setup
authz_cfg=authz.Authz (

auth=my_auth,

forceBuild=force_auth

ForceSched Parameters

Most of the arguments to ForceScheduler are “parameters”. Several classes of parameters are available, each
describing a different kind of input from a force-build form.

All parameter types have a few common arguments:
name (required)

The name of the parameter. For properties, this will correspond to the name of the property that your
parameter will set. The name is also used internally as the identifier for in the HTML form.

label (optional; default is same as name)

The label of the parameter. This is what is displayed to the user. HTML is permitted here.
default (optional; default:)

The default value for the parameter, that is used if there is no user input.
required (optional; default: False)

If this is true, then an error will be shown to user if there is no input in this field

The parameter types are:

FixedParameter

from buildbot.plugins import util
util.FixedParameter (name="branch", default="trunk"),

This parameter type will not be shown on the web form, and always generate a property with its default value.

StringParameter

from buildbot.plugins import util

util.StringParameter (name="pull url",
label="optionally give a public Git pull url:
",
default="", size=80)

This parameter type will show a single-line text-entry box, and allow the user to enter an arbitrary string. It adds
the following arguments:

regex (optional)
a string that will be compiled as a regex, and used to validate the input of this parameter
size (optional; default: 10)

The width of the input field (in characters)

2.4. Configuration 87

BuildBot Documentation, Release 0.8.12

TextParameter

from buildbot.plugins import util

util.StringParameter (name="comments",
label="comments to be displayed to the user of the built binary",
default="This is a development build",
cols=60, rows=5)

This parameter type is similar to StringParameter, except that it is represented in the HTML form as a textarea,
allowing multi-line input. It adds the StringParameter arguments, this type allows:
cols (optional; default: 80)
The number of columns the textarea will have
rows (optional; default: 20)
The number of rows the textarea will have

This class could be subclassed in order to have more customization e.g.

¢ developer could send a list of Git branches to pull from

* developer could send a list of gerrit changes to cherry-pick,

* developer could send a shell script to amend the build.
beware of security issues anyway.
IntParameter
from buildbot.plugins import util
util.IntParameter (name="debug_level",

label="debug level (1-10)",
default=2)
This parameter type accepts an integer value using a text-entry box.
BooleanParameter
from buildbot.plugins import util
util.BooleanParameter (name="force_build clean",
label="force a make clean",
default=False)

This type represents a boolean value. It will be presented as a checkbox.
UserNameParameter
from buildbot.plugins import util

util.UserNameParameter (label="your name:
", size=80)

This parameter type accepts a username. If authentication is active, it will use the authenticated user instead of
displaying a text-entry box.

size (optional; default: 10) The width of the input field (in characters)

need_email (optional; default True) If true, require a full email address rather than arbitrary text.

ChoiceStringParameter

88 Chapter 2. Buildbot Manual

BuildBot Documentation, Release 0.8.12

from buildbot.plugins import util

util.ChoiceStringParameter (name="branch",
choices=["main", "devel"],
default="main")

This parameter type lets the user choose between several choices (e.g the list of branches you are supporting, or
the test campaign to run). If multiple is false, then its result is a string - one of the choices. If multiple is
true, then the result is a list of strings from the choices.

Note that for some use cases, the choices need to be generated dynamically. This can be done via subclass-
ing and overiding the ‘getChoices’ member function. An example of this is provided by the source for the
InheritBuildParameter class.

Its arguments, in addition to the common options, are:
choices

The list of available choices.
strict (optional; default: True)

If true, verify that the user’s input is from the list. Note that this only affects the validation of the
form request; even if this argument is False, there is no HTML form component available to enter an
arbitrary value.

multiple
If true, then the user may select multiple choices.
Example:

from buildbot.plugins import util, steps

util.ChoiceStringParameter (name="forced_ tests",

label="smoke test campaign to run",

default=default_tests,

multiple=True,

strict=True,

choices=["test_builderl",
"test_builder2",
"test_builder3"])

.. and later base the schedulers to trigger off this property:

triggers the tests depending on the property forced test
builderl.factory.addStep (steps.Trigger (name="Trigger tests",
schedulerNames=util.Property ("forced_ tests")))

CodebaseParameter

from buildbot.plugins import util

util.CodebaseParameter (codebase="myrepo")

This is a parameter group to specify a sourcestamp for a given codebase.
codebase
The name of the codebase.
branch (optional; default: StringParameter)
A parameter specifying the branch to build. The default value is a string parameter.
revision (optional; default: StringParameter)

A parameter specifying the revision to build. The default value is a string parameter.

2.4. Configuration 89

BuildBot Documentation, Release 0.8.12

repository (optional; default: StringParameter)
A parameter specifying the repository for the build. The default value is a string parameter.
project (optional; default: StringParameter)

A parameter specifying the project for the build. The default value is a string parameter.

InheritBuildParameter This is a special parameter for inheriting force build properties from another build. The
user is presented with a list of compatible builds from which to choose, and all forced-build parameters from the
selected build are copied into the new build. The new parameter is:

compatible_builds

A function to find compatible builds in the build history. This function is given the master Status

instance as first argument, and the current builder name as second argument, or None when forcing
all builds.

Example:

from buildbot.plugins import util

def get_compatible_builds (status, builder):
if builder is None: # this 1is the case for force build all
return ["cannot generate build list here"]
find all successful builds in builderl and builder2
builds = []
for builder in ["builderl", "builder2"]:
builder_status = status.getBuilder (builder)

for num in xrange(l, 40): # 40 last builds
b builder_status.getBuild (-num)
if not b:
continue
if b.getResults() == util.FAILURE:
continue

builds.append (builder+"/"+str (b.getNumber ()))
return builds

sched = Scheduler(...,
properties=|[
util.InheritBuildParameter (
name="inherit",
label="promote a build for merge",
compatible_builds=get_compatible_builds,
required = True),

BuildslaveChoiceParameter This parameter allows a scheduler to require that a build is assigned to the chosen
buildslave. The choice is assigned to the slavename property for the build. The enforceChosenSlave functor
must be assigned to the canStartBuild parameter for the Builder.

Example:

from buildbot.plugins import util

schedulers:
ForceScheduler (
#
properties=|[
BuildslaveChoiceParameter (),

920 Chapter 2. Buildbot Manual

BuildBot Documentation, Release 0.8.12

builders:

BuilderConfig(
#
canStartBuild=util.enforceChosenSlave,

AnyPropertyParameter This parameter type can only be used in properties, and allows the user to specify
both the property name and value in the HTML form.

This Parameter is here to reimplement old Buildbot behavior, and should be avoided. Stricter parameter name and
type should be preferred.

2.4.5 Buildslaves

The slaves configuration key specifies a list of known buildslaves. In the common case, each buildslave is
defined by an instance of the BuildSlave class. It represents a standard, manually started machine that will try
to connect to the buildbot master as a slave. Buildbot also supports “on-demand”, or latent, buildslaves, which
allow buildbot to dynamically start and stop buildslave instances.

* Defining Buildslaves
* BuildSlave Options
* Latent Buildslaves

Defining Buildslaves

A BuildSlave instance is created with a slavename and a slavepassword. These are the same two
values that need to be provided to the buildslave administrator when they create the buildslave.

The slavename must be unique, of course. The password exists to prevent evildoers from interfering with the
buildbot by inserting their own (broken) buildslaves into the system and thus displacing the real ones.

Buildslaves with an unrecognized slavename or a non-matching password will be rejected when they attempt to
connect, and a message describing the problem will be written to the log file (see Logfiles).

A configuration for two slaves would look like:

from buildbot.plugins import buildslave

c[’"slaves’] = [
buildslave.BuildSlave (' bot-solaris’, ’solarispasswd’),
buildslave.BuildSlave ('bot-bsd’, ’"bsdpasswd’),

BuildSlave Options

BuildSlave objects can also be created with an optional properties argument, a dictionary specifying
properties that will be available to any builds performed on this slave. For example:

c[’"slaves’] = [
buildslave.BuildSlave (' bot-solaris’, ’solarispasswd’,
properties={
"os’: ’'solaris’

Py

2.4. Configuration 91

BuildBot Documentation, Release 0.8.12

The BuildSlave constructor can also take an optional max_builds parameter to limit the number of builds
that it will execute simultaneously:

c[’"slaves’] = [
buildslave.BuildSlave ("bot-linux", "linuxpassword", max_builds=2)

Master-Slave TCP Keepalive

By default, the buildmaster sends a simple, non-blocking message to each slave every hour. These keepalives
ensure that traffic is flowing over the underlying TCP connection, allowing the system’s network stack to detect
any problems before a build is started.

The interval can be modified by specifying the interval in seconds using the keepalive_interval parameter
of BuildSlave:

c[’"slaves’] = [
buildslave.BuildSlave (' bot-linux’, ’linuxpasswd’,
keepalive_interval=3600),

]

The interval can be set to None to disable this functionality altogether.

When Buildslaves Go Missing

Sometimes, the buildslaves go away. One very common reason for this is when the buildslave process is started
once (manually) and left running, but then later the machine reboots and the process is not automatically restarted.

If you’d like to have the administrator of the buildslave (or other people) be notified by email when the buildslave
has been missing for too long, just add the notify_on_missing= argument to the BuildSlave definition.
This value can be a single email address, or a list of addresses:

c[’slaves’] = [
buildslave.BuildSlave ('bot-solaris’, ’solarispasswd’,
notify_on_missing="boblexample.com"),

]

By default, this will send email when the buildslave has been disconnected for more than one hour. Only one
email per connection-loss event will be sent. To change the timeout, use missing_timeout= and give it a
number of seconds (the default is 3600).

You can have the buildmaster send email to multiple recipients: just provide a list of addresses instead of a single
one:

c[’"slaves’] = [
buildslave.BuildSlave (' bot-solaris’, ’solarispasswd’,

notify_on_missing=["boblexample.comn",
"alicelexample.org"],
missing_timeout=300 # notify after 5 minutes

)y
]

The email sent this way will use a MailNotifier (see MailNotifier) status target, if one is configured.
This provides a way for you to control the from address of the email, as well as the relayhost (aka smarthost) to
use as an SMTP server. If no MailNotifier is configured on this buildmaster, the buildslave-missing emails
will be sent using a default configuration.

Note that if you want to have a MailNotifier for buildslave-missing emails but not for regular build emails,
just create one with builders=[], as follows:

92 Chapter 2. Buildbot Manual

BuildBot Documentation, Release 0.8.12

from buildbot.plugins import status, buildslave

m = status.MailNotifier (fromaddr="buildbot@localhost", builders=[],
relayhost="smtp.example.org")
c[’status’].append(m)

c[’"slaves’] = [
buildslave.BuildSlave (' bot-solaris’, ’'solarispasswd’,
notify_on_missing="boblexample.com"),

Latent Buildslaves

The standard buildbot model has slaves started manually. The previous section described how to configure the
master for this approach.

Another approach is to let the buildbot master start slaves when builds are ready, on-demand. Thanks to services
such as Amazon Web Services’ Elastic Compute Cloud (“AWS EC2”), this is relatively easy to set up, and can be
very useful for some situations.

The buildslaves that are started on-demand are called “latent” buildslaves. As of this writing, buildbot ships with
an abstract base class for building latent buildslaves, and a concrete implementation for AWS EC2 and for libvirt.

Common Options

The following options are available for all latent buildslaves.

build_wait_timeout This option allows you to specify how long a latent slave should wait after a build for
another build before it shuts down. It defaults to 10 minutes. If this is set to O then the slave will be shut
down immediately. If it is less than O it will never automatically shutdown.

Amazon Web Services Elastic Compute Cloud (“AWS EC2”)

EC2 (http://aws.amazon.com/ec2/) is a web service that allows you to start virtual machines in an Amazon data
center. Please see their website for details, including costs. Using the AWS EC2 latent buildslaves involves getting
an EC2 account with AWS and setting up payment; customizing one or more EC2 machine images (“AMIs”) on
your desired operating system(s) and publishing them (privately if needed); and configuring the buildbot master
to know how to start your customized images for “substantiating” your latent slaves.

Get an AWS EC2 Account To start off, to use the AWS EC2 latent buildslave, you need to get an AWS devel-
oper account and sign up for EC2. Although Amazon often changes this process, these instructions should help
you get started:

1. Go to http://aws.amazon.com/ and click to “Sign Up Now” for an AWS account.

2. Once you are logged into your account, you need to sign up for EC2. Instructions for how to do this have
changed over time because Amazon changes their website, so the best advice is to hunt for it. After signing
up for EC2, it may say it wants you to upload an x.509 cert. You will need this to create images (see below)
but it is not technically necessary for the buildbot master configuration.

3. You must enter a valid credit card before you will be able to use EC2. Do that under ‘Payment Method’.

4. Make sure you’re signed up for EC2 by going to ‘Your Account’->’Account Activity’ and verifying EC2 is
listed.

2.4. Configuration 93

http://aws.amazon.com/ec2/
http://aws.amazon.com/

BuildBot Documentation, Release 0.8.12

Create an AMI Now you need to create an AMI and configure the master. You may need to run through this
cycle a few times to get it working, but these instructions should get you started.

Creating an AMI is out of the scope of this document. The EC2 Getting Started Guide
(http://docs.amazonwebservices.com/AW SEC2/latest/GettingStartedGuide/) is a good resource for this task. Here
are a few additional hints.

* When an instance of the image starts, it needs to automatically start a buildbot slave that connects to your
master (to create a buildbot slave, Creating a buildslave; to make a daemon, Launching the daemons).

* You may want to make an instance of the buildbot slave, configure it as a standard buildslave in the master
(i.e., not as a latent slave), and test and debug it that way before you turn it into an AMI and convert to a
latent slave in the master.

Configure the Master with an EC2LatentBuildSlave Now let’s assume you have an AMI that should work
with the EC2LatentBuildSlave. It’s now time to set up your buildbot master configuration.

You will need some information from your AWS account: the Access Key Id and the Secret Access Key. If you've
built the AMI yourself, you probably already are familiar with these values. If you have not, and someone has
given you access to an AMI, these hints may help you find the necessary values:

* While logged into your AWS account, find the “Access Identifiers” link (either on the left, or via “Your
Account” -> “Access Identifiers”.

* On the page, you’ll see alphanumeric values for “Your Access Key Id:” and “Your Secret Access Key:”.
Make a note of these. Later on, we’ll call the first one your identifier and the second one your
secret_identifier.

When creating an EC2LatentBuildSlave in the buildbot master configuration, the first three arguments are required.
The name and password are the first two arguments, and work the same as with normal buildslaves. The next
argument specifies the type of the EC2 virtual machine (available options as of this writing include m1.small,
ml.large,ml.xlarge, cl.medium,and cl.xlarge; see the EC2 documentation for descriptions of these
machines).

Here is the simplest example of configuring an EC2 latent buildslave. It specifies all necessary remaining values
explicitly in the instantiation.

from buildbot.plugins import buildslave

c[’slaves’] = [
buildslave.EC2LatentBuildSlave ('botl’, ’'sekrit’, ’'ml.large’,
ami="ami-12345",
identifier='publickey’,
secret_identifier="privatekey’)

]

The ami argument specifies the AMI that the master should start. The identifier argument specifies the
AWS Access Key Id, and the secret_identifier specifies the AWS Secret Access Key. Both the AMI and
the account information can be specified in alternate ways.

Note: Whoever has your identifier and secret_identifier values can request AWS work charged to
your account, so these values need to be carefully protected. Another way to specify these access keys is to put

them in a separate file. You can then make the access privileges stricter for this separate file, and potentially let
more people read your main configuration file.

By default, you can make an .ec?2 directory in the home folder of the user running the buildbot master. In that
directory, create a file called aws_id. The first line of that file should be your access key id; the second line
should be your secret access key id. Then you can instantiate the build slave as follows.

from buildbot.plugins import buildslave

c[’"slaves’] = [
buildslave.EC2LatentBuildSlave ('botl’, ’sekrit’, ’'ml.large’,

94 Chapter 2. Buildbot Manual

http://docs.amazonwebservices.com/AWSEC2/latest/GettingStartedGuide/

BuildBot Documentation, Release 0.8.12

ami=’ami-12345")

If you want to put the key information in another file, use the aws_1id_file_path initialization argument.

Previous examples used a particular AMI. If the Buildbot master will be deployed in a process-controlled environ-
ment, it may be convenient to specify the AMI more flexibly. Rather than specifying an individual AMI, specify
one or two AMI filters.

In all cases, the AMI that sorts last by its location (the S3 bucket and manifest name) will be preferred.

One available filter is to specify the acceptable AMI owners, by AWS account number (the 12 digit number,
usually rendered in AWS with hyphens like “1234-5678-9012”, should be entered as in integer).

from buildbot.plugins import buildslave

botl = buildslave.EC2LatentBuildSlave (’botl’, ’sekrit’, ’'ml.large’,
valid_ami_owners=[11111111111,
2222222222217,
identifier='publickey’,
secret_identifier='privatekey’)

The other available filter is to provide a regular expression string that will be matched against each AMI’s location
(the S3 bucket and manifest name).

from buildbot.plugins import buildslave

botl = buildslave.EC2LatentBuildSlave (
"botl’, ’sekrit’, ’'ml.large’,
valid_ami_location_regex=r’buildbot\-.*/image.manifest.xml’,
identifier='publickey’, secret_identifier='privatekey’)

The regular expression can specify a group, which will be preferred for the sorting. Only the first group is used;
subsequent groups are ignored.

from buildbot.plugins import buildslave

botl = buildslave.EC2LatentBuildSlave (
"botl’, ’'sekrit’, ’'ml.large’,
valid_ami_location_regex=r’buildbot\-.*\-(.*)/image.manifest.xml’,
identifier='publickey’, secret_identifier='privatekey’)

If the group can be cast to an integer, it will be. This allows 10 to sort after 1, for instance.

from buildbot.plugins import buildslave

botl = buildslave.EC2LatentBuildSlave (
"botl’, ’'sekrit’, ’'ml.large’,
valid_ami_location_regex=r’buildbot\-.*\-(\d+)/image.manifest.xml’,
identifier='publickey’, secret_identifier='privatekey’)

In addition to using the password as a handshake between the master and the slave, you may want to use a firewall
to assert that only machines from a specific IP can connect as slaves. This is possible with AWS EC2 by using the
Elastic IP feature. To configure, generate a Elastic IP in AWS, and then specify it in your configuration using the
elastic_ip argument.

from buildbot.plugins import buildslave

c[’slaves’] = [
buildslave.EC2LatentBuildSlave ('botl’, ’'sekrit’, ’'ml.large’,
"ami-12345",
identifier='publickey’,
secret_identifier="privatekey’,
elastic_ip="208.77.188.166")

2.4. Configuration 95

BuildBot Documentation, Release 0.8.12

One other way to configure a slave is by settings AWS tags. They can for example be used to have a more
restrictive security IAM (http://aws.amazon.com/iam/) policy. To get Buildbot to tag the latent slave specify the
tag keys and values in your configuration using the tags argument.

from buildbot.plugins import buildslave

c[’slaves’] = [
buildslave.EC2LatentBuildSlave ('botl’, ’sekrit’, 'ml.large’,
fami-12345",
identifier='publickey’,
secret_identifier="privatekey’,
tags={’SomeTag’: "foo’})
1

The EC2LatentBuildSlave supports all other configuration from the standard BuildSlave. The
missing_timeout and notify_on_missing specify how long to wait for an EC2 instance to attach before
considering the attempt to have failed, and email addresses to alert, respectively. missing_timeout defaults
to 20 minutes.

volumes expects a list of (volume_id, mount_point) tuples to attempt attaching when your instance has been
created.

keypair_name and security_name allow you to specify different names for these AWS EC2 values. They
both default to latent_buildbot_slave.

Spot instances If you would prefer to use spot instances for running your builds, you can accomplish that by
passing in a True value to the spot__instance parameter to the EC2LatentBuildSlave constructor. Additionally,
you may want to specify max_spot_price and price_multiplier in order to limit your builds’ budget
consumption.

from buildbot.plugins import buildslave

c[’slaves’] = [
buildslave.EC2LatentBuildSlave ('botl’, ’sekrit’, ’'ml.large’,

"ami-12345’, region='us-west-2',
identifier='publickey’,
secret_identifier='privatekey’,
elastic_ip='208.77.188.166",
placement='Db’, spot_instance=True,
max_spot_price=0.09,
price_multiplier=1.15)

1

This example would attempt to create a ml.large spot instance in the us-west-2b region costing no more
than $0.09/hour. The spot prices for that region in the last 24 hours will be averaged and multiplied by the
price_multiplier parameter, then a spot request will be sent to Amazon with the above details. If the spot
request is rejected, an error message will be logged with the final status.

Libvirt
libvirt (http://www.libvirt.org/) is a virtualization API for interacting with the virtualization capabilities of recent

versions of Linux and other OSes. It is LGPL and comes with a stable C API, and Python bindings.

This means we know have an API which when tied to buildbot allows us to have slaves that run under Xen, QEMU,
KVM, LXC, OpenVZ, User Mode Linux, VirtualBox and VMWare.

The libvirt code in Buildbot was developed against libvirt 0.7.5 on Ubuntu Lucid. It is used with KVM to test
Python code on Karmic VM’s, but obviously isn’t limited to that. Each build is run on a new VM, images are
temporary and thrown away after each build.

96 Chapter 2. Buildbot Manual

http://aws.amazon.com/iam/
http://www.libvirt.org/

BuildBot Documentation, Release 0.8.12

Setting up libvirt We won’t show you how to set up libvirt as it is quite different on each platform, but there are
a few things you should keep in mind.

* If you are running on Ubuntu, your master should run Lucid. Libvirt and apparmor are buggy on Karmic.
* If you are using the system libvirt, your buildbot master user will need to be in the libvirtd group.
¢ If you are using KVM, your buildbot master user will need to be in the KVM group.

* You need to think carefully about your virtual network firsz. Will NAT be enough? What IP will my VM’s
need to connect to for connecting to the master?

Configuring your base image You need to create a base image for your builds that has everything needed to
build your software. You need to configure the base image with a buildbot slave that is configured to connect to
the master on boot.

Because this image may need updating a lot, we strongly suggest scripting its creation.

If you want to have multiple slaves using the same base image it can be annoying to duplicate the image just to
change the buildbot credentials. One option is to use libvirt’s DHCP server to allocate an identity to the slave:
DHCP sets a hostname, and the slave takes its identity from that.

Doing all this is really beyond the scope of the manual, but there is a vmbuilder script and a network .xml
file to create such a DHCP server in contrib/ (Contrib Scripts) that should get you started:

sudo apt-get install ubuntu-vm-builder
sudo contrib/libvirt/vmbuilder

Should create an ubuntu/ folder with a suitable image in it.

virsh net-define contrib/libvirt/network.xml
virsh net-start buildbot-network

Should set up a KVM compatible libvirt network for your buildbot VM’s to run on.

Configuring your Master If you want to add a simple on demand VM to your setup, you only need the follow-
ing. We set the username to minion1, the password to sekrit. The base image is called base_image and
a copy of it will be made for the duration of the VM’s life. That copy will be thrown away every time a build is
complete.

from buildbot.plugins import buildslave, util
c[’slaves’] = [
buildslave.LibVirtSlave (‘minionl’, ’'sekrit’,
util.Connection ("gemu:///session"),
" /home/buildbot/images/minionl’,

" /home /buildbot/images/base_image’)
]

You can use virt-manager to define minionl with the correct hardware. If you don’t, buildbot won’t be able to
find a VM to start.

LibVvirtSlave accepts the following arguments:

name Both a buildbot username and the name of the virtual machine.

password A password for the buildbot to login to the master with.

connection Connection instance wrapping connection to libvirt.

hd_image The path to a libvirt disk image, normally in qcow2 format when using KVM.

base_image If given a base image, buildbot will clone it every time it starts a VM. This means you always
have a clean environment to do your build in.

xml If a VM isn’t predefined in virt-manager, then you can instead provide XML like that used with virsh
define. The VM will be created automatically when needed, and destroyed when not needed any longer.

2.4. Configuration 97

BuildBot Documentation, Release 0.8.12

OpenStack

OpenStack (http://openstack.org/) is a series of interconnected components that facilitates managing compute,
storage, and network resources in a data center. It is available under the Apache License and has a REST interface
along with a Python client.

Get an Account in an OpenStack cloud Setting up OpenStack is outside the domain of this document. There
are four account details necessary for the Buildbot master to interact with your OpenStack cloud: username,
password, a tenant name, and the auth URL to use.

Create an Image OpenStack supports a large number of image formats. OpenStack maintains a short
list of prebuilt images; if the desired image is not listed, The OpenStack Compute Administration Manual
(http://docs.openstack.org/trunk/openstack-compute/admin/content/index.html) is a good resource for creating
new images. You need to configure the image with a buildbot slave to connect to the master on boot.

Configure the Master with an OpenStackLatentBuildSlave With the configured image in hand, it is time
to configure the buildbot master to create OpenStack instances of it. You will need the aforementioned account
details. These are the same details set in either environment variables or passed as options to an OpenStack client.

OpenStackLatentBuildSlave accepts the following arguments:
name The buildslave name.

password A password for the buildslave to login to the master with.
flavor The flavor ID to use for the instance.

image A string containing the image UUID to use for the instance. A callable may instead be passed. It will be
passed the list of available images and must return the image to use.

O0s_username
os_password
Os_tenant_name

os_auth_url The OpenStack authentication needed to create and delete instances. These are the same as the
environment variables with uppercase names of the arguments.

meta A dictionary of string key-value pairs to pass to the instance. These will be available under the metadata
key from the metadata service.

Here is the simplest example of configuring an OpenStack latent buildslave.

from buildbot.plugins import buildslave

c[’slaves’] = [
buildslave.OpenStackLatentBuildSlave (' bot2’, ’sekrit’,
flavor=1, image=’8ac9d4a4-5e03-48b0-acde-77a0345a9%abl’,
os_username='user’, os_password=’'password’,
os_tenant_name=’tenant’,
os_auth_url="http://127.0.0.1:35357/v2.0")
1

The image argument also supports being given a callable. The callable will be passed the list of available images
and must return the image to use. The invocation happens in a separate thread to prevent blocking the build master
when interacting with OpenStack.

from buildbot.plugins import buildslave

def find_image (images) :
Sort oldest to newest.
cmp_fn = lambda x,y: cmp(x.created, y.created)

98 Chapter 2. Buildbot Manual

http://openstack.org/
http://docs.openstack.org/trunk/openstack-compute/admin/content/index.html

BuildBot Documentation, Release 0.8.12

candidate_images = sorted(images, cmp=cmp_£fn)
Return the oldest candiate image.
return candidate_images[0]

c[’slaves’] = [
buildslave.OpenStackLatentBuildSlave (' bot2’, ’'sekrit’,
flavor=1, image=find_image,
os_username="user’, os_password=’'password’,
os_tenant_name=’tenant’,
os_auth_url="http://127.0.0.1:35357/v2.0")
1

OpenStackLatentBuildSlave supports all other configuration from the standard BuildSlave. The
missing_timeout and notify_on_missing specify how long to wait for an OpenStack instance to attach
before considering the attempt to have failed and email addresses to alert, respectively. missing_timeout
defaults to 20 minutes.

Dangers with Latent Buildslaves

Any latent build slave that interacts with a for-fee service, such as the EC2LatentBuildSlave, brings significant
risks. As already identified, the configuration will need access to account information that, if obtained by a crimi-
nal, can be used to charge services to your account. Also, bugs in the buildbot software may lead to unnecessary
charges. In particular, if the master neglects to shut down an instance for some reason, a virtual machine may be
running unnecessarily, charging against your account. Manual and/or automatic (e.g. nagios with a plugin using a
library like boto) double-checking may be appropriate.

A comparatively trivial note is that currently if two instances try to attach to the same latent buildslave, it is likely
that the system will become confused. This should not occur, unless, for instance, you configure a normal build
slave to connect with the authentication of a latent buildbot. If this situation does occurs, stop all attached instances
and restart the master.

2.4.6 Builder Configuration

* Merging Build Requests
* Prioritizing Builds

The builders configuration key is a list of objects giving configuration for the Builders. For more information
on the function of Builders in Buildbot, see the Concepts chapter. The class definition for the builder configuration
isin buildbot .config. In the configuration file, its use looks like:

from buildbot.plugins import util

c["builders’] = [
util.BuilderConfig(name="quick’, slavenames=[’botl’, ’'bot2’], factory=f_quick),
util.BuilderConfig(name=’thorough’, slavename='botl’, factory=f_thorough),

]

BuilderConfig takes the following keyword arguments:
name This specifies the Builder’s name, which is used in status reports.
slavename

slavenames These arguments specify the buildslave or buildslaves that will be used by this Builder. All slaves
names must appear in the slaves configuration parameter. Each buildslave can accommodate multiple
builders. The slavenames parameter can be a list of names, while slavename can specify only one
slave.

2.4. Configuration 99

BuildBot Documentation, Release 0.8.12

factory This is a buildbot.process.factory.BuildFactory instance which controls how the
build is performed by defining the steps in the build. Full details appear in their own section, Build Factories.

Other optional keys may be set on each BuilderConfig:

builddir Specifies the name of a subdirectory of the master’s basedir in which everything related to this builder
will be stored. This holds build status information. If not set, this parameter defaults to the builder name,
with some characters escaped. Each builder must have a unique build directory.

slavebuilddir Specifies the name of a subdirectory (under the slave’s configured base directory) in which
everything related to this builder will be placed on the buildslave. This is where checkouts, compiles, and
tests are run. If not set, defaults to builddir. If a slave is connected to multiple builders that share the
same slavebuilddir, make sure the slave is set to run one build at a time or ensure this is fine to run
multiple builds from the same directory simultaneously.

tags If provided, this is a list of strings that identifies tags for the builder. Status clients can limit themselves
to a subset of the available tags. A common use for this is to add new builders to your setup (for a new
module, or for a new buildslave) that do not work correctly yet and allow you to integrate them with the
active builders. You can tag these new builders with a t est tag, make your main status clients ignore them,
and have only private status clients pick them up. As soon as they work, you can move them over to the
active tag.

nextSlave If provided, this is a function that controls which slave will be assigned future jobs. The function
is passed two arguments, the Builder object which is assigning a new job, and a list of SlaveBuilder
objects. The function should return one of the S1aveBuilder objects, or None if none of the available
slaves should be used. As an example, for each slave in the list, slave.slave willbeaBuildSlave
object, and slave.slave.slavename is the slave’s name. The function can optionally return a De-
ferred, which should fire with the same results.

nextBuild If provided, this is a function that controls which build request will be handled next. The function
is passed two arguments, the Builder object which is assigning a new job, and a list of BuildRequest
objects of pending builds. The function should return one of the Bui1dRequest objects, or None if none
of the pending builds should be started. This function can optionally return a Deferred which should fire
with the same results.

canStartBuild If provided, this is a function that can veto whether a particular buildslave should be used
for a given build request. The function is passed three arguments: the Builder, a BuildSlave, and a
BuildRequest. The function should return True if the combination is acceptable, or False otherwise.
This function can optionally return a Deferred which should fire with the same results.

locks This argument specifies a list of locks that apply to this builder; see /nterlocks.

env A Builder may be given a dictionary of environment variables in this parameter. The variables are used in
ShellCommand steps in builds created by this builder. The environment variables will override anything
in the buildslave’s environment. Variables passed directly to a ShellCommand will override variables of
the same name passed to the Builder.

For example, if you have a pool of identical slaves it is often easier to manage variables like PATH from
Buildbot rather than manually editing it inside of the slaves’ environment.

f = factory.BuildFactory
f.addStep (ShellCommand (

command=[’'bash’, ’./configure’]))
f.addStep (Compile())

c[’builders’] = [
BuilderConfig (name="test’, factory=f,
slavenames=['slavel’, ’'slave2’, ’"slave3’, ’'slaved’],
env={’'PATH’ : ' /opt/local/bin:/opt/app/bin:/usr/local/bin:/usr/bin’}),
]

Unlike most builder configuration arguments, this argument can contain renderables.

mergeRequests Specifies how build requests for this builder should be merged. See Merging Build Requests,
below.

100 Chapter 2. Buildbot Manual

BuildBot Documentation, Release 0.8.12

properties A builder may be given a dictionary of Build Properties specific for this builder in this parameter.
Those values can be used later on like other properties. Interpolate.

description A builder may be given an arbitrary description, which will show up in the web status on the
builder’s page.

Merging Build Requests

When more than one build request is available for a builder, Buildbot can “merge” the requests into a single build.
This is desirable when build requests arrive more quickly than the available slaves can satisfy them, but has the
drawback that separate results for each build are not available.

Requests are only candidated for a merge if both requests have exactly the same codebases.

This behavior can be controlled globally, using the mergeRequests parameter, and on a per-Builder ba-
sis, using the mergeRequests argument to the Builder configuration. If mergeRequests is given, it
completely overrides the global configuration.

For either configuration parameter, a value of True (the default) causes buildbot to merge BuildRequests that
have “compatible” source stamps. Source stamps are compatible if:

* their codebase, branch, project, and repository attributes match exactly;
* neither source stamp has a patch (e.g., from a try scheduler); and

* either both source stamps are associated with changes, or neither ar associated with changes but they have
matching revisions.

This algorithm is implemented by the SourceStamp method canBeMergedWith.
A configuration value of False indicates that requests should never be merged.

The configuration value can also be a callable, specifying a custom merging function. See Merge Request Func-
tions for details.

Prioritizing Builds

The BuilderConfig parameter nextBuild can be use to prioritize build requests within a builder. Note that
this is orthogonal to Prioritizing Builders, which controls the order in which builders are called on to start their
builds. The details of writing such a function are in Build Priority Functions.

Such a function can be provided to the BuilderConfig as follows:
def pickNextBuild(builder, requests):
c[’builders’] = [

BuilderConfig (name=’"test’, factory=f,

nextBuild=pickNextBuild,
slavenames=[’'slavel’, ’'slave2’, ’'slave3’, ’'slaved’]),

2.4.7 Build Factories

Each Builder is equipped with a build factory, which is defines the steps used to perform that particular
type of build. This factory is created in the configuration file, and attached to a Builder through the factory
element of its dictionary.

The steps used by these builds are defined in the next section, Build Steps.

Note: Build factories are used with builders, and are not added directly to the buildmaster configuration dictio-
nary.

2.4. Configuration 101

BuildBot Documentation, Release 0.8.12

* Defining a Build Factory
¢ Predefined Build Factories

Defining a Build Factory

A BuildFactory defines the steps that every build will follow. Think of it as a glorified script. For example, a
build factory which consists of an SVN checkout followed by a make build would be configured as follows:

from buildbot.plugins import util, steps

f = util.BuildFactory ()
f.addStep (steps.SVN (svnurl="http://..", mode="incremental™))
f.addStep (steps.Compile (command=["make", "build"]))

This factory would then be attached to one builder (or several, if desired):

c[’builders’] .append (
BuilderConfig (name='"quick’, slavenames=[’botl’, ’'bot2’], factory=f))

It is also possible to pass a list of steps into the BuildFactory when it is created. Using addStep is usually
simpler, but there are cases where is is more convenient to create the list of steps ahead of time, perhaps using
some Python tricks to generate the steps.

from buildbot.plugins import steps, util

all_steps = [
steps.CVS (cvsroot=CVSROOT, cvsmodule="project", mode="update"),
steps.Compile (command=["make", "build"]),

1
f = util.BuildFactory (all_steps)

Finally, you can also add a sequence of steps all at once:

f.addSteps (all_steps)

Attributes

The following attributes can be set on a build factory after it is created, e.g.:

f = util.BuildFactory ()
f.useProgress = False

useProgress (defaults to True): if True, the buildmaster keeps track of how long each step takes, so it can
provide estimates of how long future builds will take. If builds are not expected to take a consistent amount
of time (such as incremental builds in which a random set of files are recompiled or tested each time), this
should be set to False to inhibit progress-tracking.

workdir (defaults to ‘build’): workdir given to every build step created by this factory as default. The workdir
can be overridden in a build step definition.

If this attribute is set to a string, that string will be used for constructing the workdir (buildslave base
+ builder builddir + workdir). The attribute can also be a Python callable, for more complex cases, as
described in Factory Workdir Functions.

Predefined Build Factories

Buildbot includes a few predefined build factories that perform common build sequences. In practice, these
are rarely used, as every site has slightly different requirements, but the source for these factories may provide
examples for implementation of those requirements.

102 Chapter 2. Buildbot Manual

BuildBot Documentation, Release 0.8.12

GNUAutoconf

class buildbot .process.factory.GNUAutoconf

GNU Autoconf (http://www.gnu.org/software/autoconf/) is a software portability tool, intended to make it possible
to write programs in C (and other languages) which will run on a variety of UNIX-like systems. Most GNU
software is built using autoconf. It is frequently used in combination with GNU automake. These tools both
encourage a build process which usually looks like this:

oe

CONFIG_ENV=foo ./configure --with-flags
make all

make check

make install

o o

=

(except of course the Buildbot always skips the make install part).

The Buildbot’s buildbot .process.factory.GNUAutoconf factory is designed to build projects which
use GNU autoconf and/or automake. The configuration environment variables, the configure flags, and command
lines used for the compile and test are all configurable, in general the default values will be suitable.

Example:

f = util.GNUAutoconf (source=steps.SVN (svnurl=URL, mode="copy"),
flags=["-—-disable-nls"])

Required Arguments:
source This argument must be a step specification tuple that provides a BuildStep to generate the source tree.
Optional Arguments:

configure The command used to configure the tree. Defaults to ./configure. Accepts either a string or a list
of shell argv elements.

configureEnv The environment used for the initial configuration step. This accepts a dictionary which
will be merged into the buildslave’s normal environment. This is commonly used to provide things like
CFLAGS="-02 —-g" (to turn off debug symbols during the compile). Defaults to an empty dictionary.

configureFlags A list of flags to be appended to the argument list of the configure command. This
is commonly used to enable or disable specific features of the autoconf-controlled package, like
["-—without-x"] to disable windowing support. Defaults to an empty list.

reconf use autoreconf to generate the ./configure file, set to True to use a buildbot default autoreconf command,
or define the command for the ShellCommand.

compile this is a shell command or list of argv values which is used to actually compile the tree. It defaults to
make all. If set to None, the compile step is skipped.

test this is a shell command or list of argv values which is used to run the tree’s self-tests. It defaults to make
check. If set to None, the test step is skipped.

distcheck this is a shell command or list of argv values which is used to run the packaging test. It defaults to
make distcheck. If set to None, the test step is skipped.

BasicBuildFactory

class buildbot .process.factory.BasicBuildFactory

This is a subclass of GNUAutoconf which assumes the source is in CVS, and uses mode=’ full’ and
method=’"clobber’ to always build from a clean working copy.

BasicSVN

class buildbot .process.factory.BasicSVN

2.4. Configuration 103

http://www.gnu.org/software/autoconf/

BuildBot Documentation, Release 0.8.12

This class is similar to QuickBuildFactory, but uses SVN instead of CVS.

QuickBuildFactory

class buildbot .process.factory.QuickBuildFactory

The QuickBuildFactory class is a subclass of GNUAutoconf which assumes the source is in CVS, and
uses mode=' incremental’ to get incremental updates.

The difference between a full build and a quick build is that quick builds are generally done incrementally, starting
with the tree where the previous build was performed. That simply means that the source-checkout step should be
given amode='"incremental’ flag, to do the source update in-place.

In addition to that, this class sets the useProgress flag to False. Incremental builds will (or at least the ought
to) compile as few files as necessary, so they will take an unpredictable amount of time to run. Therefore it would
be misleading to claim to predict how long the build will take.

This class is probably not of use to new projects.

CPAN

class buildbot .process.factory.CPAN

Most Perl modules available from the CPAN (http://www.cpan.org/) archive use the MakeMaker module to
provide configuration, build, and test services. The standard build routine for these modules looks like:

oe

perl Makefile.PL
make

make test

make install

o° o

=

(except again Buildbot skips the install step)

Buildbot provides a CPAN factory to compile and test these projects.

Arguments:

source (required): A step specification tuple, like that used by GNUAutoconf.

perl A string which specifies the perl executable to use. Defaults to just perl.

Distutils

class buildbot .process.factory.Distutils

Most Python modules use the distutils package to provide configuration and build services. The standard
build process looks like:

o°

python ./setup.py build
python ./setup.py install

o°

Unfortunately, although Python provides a standard unit-test framework named unittest, to the best of my
knowledge distutils does not provide a standardized target to run such unit tests. (Please let me know if I'm
wrong, and I will update this factory.)

The Distutils factory provides support for running the build part of this process. It accepts the same source=
parameter as the other build factories.

Arguments:
source (required): A step specification tuple, like that used by GNUAutoconf.

python A string which specifies the python executable to use. Defaults to just python.

104 Chapter 2. Buildbot Manual

http://www.cpan.org/

BuildBot Documentation, Release 0.8.12

test Provides a shell command which runs unit tests. This accepts either a string or a list. The default value is
None, which disables the test step (since there is no common default command to run unit tests in distutils
modules).

Trial

class buildbot .process.factory.Trial

Twisted provides a unit test tool named trial which provides a few improvements over Python’s built-in
unittest module. Many python projects which use Twisted for their networking or application services also
use trial for their unit tests. These modules are usually built and tested with something like the following:

o°

python ./setup.py build
PYTHONPATH=build/lib.linux-1686-2.3 trial -v PROJECTNAME.test
python ./setup.py install

o°

o\

Unfortunately, the build/1ib directory into which the built/copied . py files are placed is actually architecture-
dependent, and I do not yet know of a simple way to calculate its value. For many projects it is sufficient to import
their libraries in place from the tree’s base directory (PYTHONPATH=.).

In addition, the PROJECTNAME value where the test files are located is project-dependent: it is usually just the
project’s top-level library directory, as common practice suggests the unit test files are put in the t est sub-module.
This value cannot be guessed, the Trial class must be told where to find the test files.

The Trial class provides support for building and testing projects which use distutils and trial. If the test module
name is specified, trial will be invoked. The library path used for testing can also be set.

One advantage of trial is that the Buildbot happens to know how to parse trial output, letting it identify which
tests passed and which ones failed. The Buildbot can then provide fine-grained reports about how many tests have
failed, when individual tests fail when they had been passing previously, etc.

Another feature of trial is that you can give it a series of source .py files, and it will search them for special
test-case—name tags that indicate which test cases provide coverage for that file. Trial can then run just the
appropriate tests. This is useful for quick builds, where you want to only run the test cases that cover the changed
functionality.

Arguments:

testpath Provides a directory to add to PYTHONPATH when running the unit tests, if tests are being run.
Defaults to . to include the project files in-place. The generated build library is frequently architecture-
dependent, but may simply be build/1ib for pure-python modules.

python which Python executable to use. This list will form the start of the argv array that will launch trial.
If you use this, you should set trial to an explicit path (like /usr/bin/trial or ./bin/trial).
The parameter defaults to None, which leaves it out entirely (running trial args instead of python
./bin/trial args). Likely values are [’python’], [’python2.2’], or [’python’,
"-Wall’].

trial provides the name of the trial command. It is occasionally useful to use an alternate executable, such as
trial2.2 which might run the tests under an older version of Python. Defaults to trial.

trialMode a list of arguments to pass to trial, specifically to set the reporting mode. This defaults to
[" ——reporter=bwverbose’], which only works for Twisted-2.1.0 and later.

trialArgs alist of arguments to pass to trial, available to turn on any extra flags you like. Defaults to [].

tests Provides a module name or names which contain the unit tests for this project. Accepts a string, typically
PROJECTNAME . test, or a list of strings. Defaults to None, indicating that no tests should be run. You
must either set this or testChanges.

testChanges if True, ignore the tests parameter and instead ask the Build for all the files that make up
the Changes going into this build. Pass these filenames to trial and ask it to look for test-case-name tags,
running just the tests necessary to cover the changes.

2.4. Configuration 105

BuildBot Documentation, Release 0.8.12

recurse If True, tells Trial (with the ——recurse argument) to look in all subdirectories for additional test
cases.

reactor which reactor to use, like ‘gtk’ or ‘java’. If not provided, the Twisted’s usual platform-dependent
default is used.

randomly If True, tells Trial (with the ——random=0 argument) to run the test cases in random order, which
sometimes catches subtle inter-test dependency bugs. Defaults to False.

The step can also take any of the ShellCommand arguments, e.g., haltOnFailure.

Unless one of tests or testChanges are set, the step will generate an exception.

2.4.8 Properties

Build properties are a generalized way to provide configuration information to build steps; see Build Properties
for the conceptual overview of properties.

* Common Build Properties
* Source Stamp Attributes
* Using Properties in Steps

Some build properties come from external sources and are set before the build begins; others are set during the
build, and available for later steps. The sources for properties are:

global configuration These properties apply to all builds.
schedulers A scheduler can specify properties that become available to all builds it starts.

changes A change can have properties attached to it, supplying extra information gathered by the change source.
This is most commonly used with the sendchange command.

forced builds The “Force Build” form allows users to specify properties
buildslaves A buildslave can pass properties on to the builds it performs.
builds A build automatically sets a number of properties on itself.
builders A builder can set properties on all the builds it runs.

steps The steps of a build can set properties that are available to subsequent steps. In particular, source steps set
the got_revision property.

If the same property is supplied in multiple places, the final appearance takes precedence. For example, a property
set in a builder configuration will override one supplied by a scheduler.

Properties are stored internally in JSON format, so they are limited to basic types of data: numbers, strings, lists,
and dictionaries.

Common Build Properties

The following build properties are set when the build is started, and are available to all steps.

got_revision This property is set when a Source step checks out the source tree, and provides the revision
that was actually obtained from the VC system. In general this should be the same as revision, except for
non-absolute sourcestamps, where got_revision indicates what revision was current when the checkout
was performed. This can be used to rebuild the same source code later.

Note: For some VC systems (Darcs in particular), the revision is a large string containing newlines, and is
not suitable for interpolation into a filename.

For multi-codebase builds (where codebase is not the default), this property is a dictionary, keyed by
codebase.

106 Chapter 2. Buildbot Manual

BuildBot Documentation, Release 0.8.12

buildername This is a string that indicates which Builder the build was a part of. The combination of
buildername and buildnumber uniquely identify a build.

buildnumber Each build gets a number, scoped to the Builder (so the first build performed on any given
Builder will have a build number of 0). This integer property contains the build’s number.

slavename This is a string which identifies which buildslave the build is running on.
scheduler If the build was started from a scheduler, then this property will contain the name of that scheduler.
workdir The absolute path of the base working directory on the slave, of the current builder.

I3

For single codebase builds, where the codebase is *’, the following Source Stamp Attributes are also available as
properties: branch, revision, repository, and project .

Source Stamp Attributes

branch revision repository project codebase
For details of these attributes see Concepts.
changes

This attribute is a list of dictionaries reperesnting the changes that make up this sourcestamp.
Using Properties in Steps
For the most part, properties are used to alter the behavior of build steps during a build. This is done by annotating

the step definition in master.cfg with placeholders. When the step is executed, these placeholders will be
replaced using the current values of the build properties.

Note: Properties are defined while a build is in progress; their values are not available when the configuration file
is parsed. This can sometimes confuse newcomers to Buildbot! In particular, the following is a common error:

if Property(’'release_train’) == ’"alpha’:
f.addStep(...)

This does not work because the value of the property is not available when the i f statement is executed. However,
Python will not detect this as an error - you will just never see the step added to the factory.

You can use build properties in most step parameters. Please file bugs for any parameters which do not accept
properties.

Property

The simplest form of annotation is to wrap the property name with Property:

from buildbot.plugins import steps, util
f.addStep (steps.ShellCommand (command=[’echo’, ’'buildername:’, util.Property(’buildername’)]))

You can specify a default value by passing a default keyword argument:

f.addStep (steps.ShellCommand (command=[’echo’, ’‘warnings:’, util.Property(’warnings’, default='non

The default value is used when the property doesn’t exist, or when the value is something Python regards as
False. The defaultWhenFalse argument can be set to False to force Buildbot to use the default argument
only if the parameter is not set:

f.addStep (steps.ShellCommand (command=[’echo’, ’'warnings:’,
util.Property ('warnings’, default='none’, defaultWhenFalse=False)]))

2.4. Configuration 107

BuildBot Documentation, Release 0.8.12

The default value can reference other properties, e.g.:

command=util.Property (' command’, default=util.Property(’'default-command’))

Interpolate

Property can only be used to replace an entire argument: in the example above, it replaces an argument to
echo. Often, properties need to be interpolated into strings, instead. The tool for that job is Interpolate.

The more common pattern is to wuse Python dictionary-style string interpolation by using the
% (prop:<propname>) s syntax. In this form, the property name goes in the parentheses, as above. A

[TP%1)

common mistake is to omit the trailing “s”, leading to a rather obscure error from Python (“ValueError:
unsupported format character”).

from buildbot.plugins import steps, util

f.addStep (steps.ShellCommand (command=["make’,
util.Interpolate (' REVISION=% (prop:got_revision)s’),
"dist’]))

This example will result in a make command with an argument like REVISION=12098. The syntax of
dictionary-style interpolation is a selector, followed by a colon, followed by a selector specific key, optionally
followed by a colon and a string indicating how to interpret the value produced by the key.

The following selectors are supported.

prop The key is the name of a property.

src The key is a codebase and source stamp attribute, separated by a colon.
kw The key refers to a keyword argument passed to Interpolate.

slave The key to the per-buildslave “info” dictionary (e.g., the “Slave information” properties shown in the
buildslave web page for each buildslave)

The following ways of interpreting the value are available.

-replacement If the key exists, substitute its value; otherwise, substitute replacement. replacement
may be empty (% (prop:propname: —) s). This is the default.

~replacement Like -replacement, but only substitutes the value of the key if it is something Python
regards as True. Python considers None, 0, empty lists, and the empty string to be false, so such values
will be replaced by replacement.

+replacement If the key exists, substitute replacement; otherwise, substitute an empty string.
?lsub_if exists|sub_if missing

#?|sub_if_ true|sub_if false Ternary substitution, depending on either the key being present (with 2,
similar to +) or being True (with # 2, like ~). Notice that there is a pipe immediately following the question
mark and between the two substitution alternatives. The character that follows the question mark is used as
the delimiter between the two alternatives. In the above examples, it is a pipe, but any character other than

(can be used.

Although these are similar to shell substitutions, no other substitutions are currently supported.
Example:

from buildbot.plugins import steps, util
f.addStep (steps.ShellCommand (command=['make’,

util.Interpolate (' REVISION=% (prop:got_revision:—%(src::revi
"dist’]))

In addition, Interpolate supports using positional string interpolation. Here, % s is used as a placeholder, and
the substitutions (which may themselves be placeholders), are given as subsequent arguments:

108 Chapter 2. Buildbot Manual

BuildBot Documentation, Release 0.8.12

TODO

Note: Like Python, you can use either positional interpolation or dictionary-style interpolation, not both. Thus
you cannot use a string like Interpolate ("foo-% (src::revision)s-%s", "branch").

Renderer

While Interpolate can handle many simple cases, and even some common conditionals, more complex cases are
best handled with Python code. The renderer decorator creates a renderable object that will be replaced with
the result of the function, called when the step it’s passed to begins. The function receives an IProperties
object, which it can use to examine the values of any and all properties. For example:

from buildbot.plugins import steps, util

@util.renderer
def makeCommand (props) :
command = [’'make’]
cpus = props.getProperty (' CPUs")
if cpus:
command += [’-7j’, str(cpus + 1)]
else:
command += ["—-7", "27]
command += ["all’]
return command

f.addStep (steps.ShellCommand (command=makeCommand))

You can think of renderer as saying “call this function when the step starts”.

FlattenList

If nested list should be flatten for some renderables, FlattenList could be used. For example:

from buildbot.plugins import steps, util
f.addStep (steps.ShellCommand (command=[’'make’], descriptionDone=util.FlattenList ([’'make 7, [’done’

descriptionDone would be set to ["make’, ’done’] when the ShellCommand executes. This is
useful when a list-returning property is used in renderables.

Note: ShellCommand automatically flattens nested lists in its command argument, so there is no need to use
FlattenList forit.

WithProperties

Warning: This placeholder is deprecated. It is an older version of Interpolate. It exists for compatibility with
older configs.

The simplest use of this class is with positional string interpolation. Here, % s is used as a placeholder, and property
names are given as subsequent arguments:

from buildbot.plugins import steps, util

f.addStep (steps.ShellCommand (
command=["tar", "czf",

2.4. Configuration 109

BuildBot Documentation, Release 0.8.12

util.WithProperties ("build-%s-%s.tar.gz", "branch", "revision"),

"source"]))

If this BuildStep were used in a tree obtained from Git, it would create a tarball with a name like
build-master-a7d3a333db708e786edb34b6af646edd8d4d3ad9.tar.gz.

The more common pattern is to use Python dictionary-style string interpolation by using the % (propname) s
syntax. In this form, the property name goes in the parentheses, as above. A common mistake is to omit the trailing
s, leading to a rather obscure error from Python (ValueError: unsupported format character).

from buildbot.plugins import steps, util

f.addStep (steps.ShellCommand (command=[’'make’, util.WithProperties (' REVISION=
"dist’]))

This example will result in a make command with an argument like REVISION=12098. The dictionary-style
interpolation supports a number of more advanced syntaxes in the parentheses.

propname: -replacement If propname exists, substitute its value; otherwise, substitute replacement.
replacement may be empty (% (propname: —) s)

propname: ~replacement Like propname:-replacement, but only substitutes the value of property
propname if it is something Python regards as True. Python considers None, 0, empty lists, and the
empty string to be false, so such values will be replaced by replacement.

propname:+replacement If propname exists, substitute replacement; otherwise, substitute an empty
string.

Although these are similar to shell substitutions, no other substitutions are currently supported, and
replacement in the above cannot contain more substitutions.

Note: like Python, you can use either positional interpolation or dictionary-style interpolation, not both. Thus you
cannot use a string like WithProperties ("foo-% (revision)s-%s", "branch").

Custom Renderables

If the options described above are not sufficient, more complex substitutions can be achieved by writing custom
renderables.

Renderables are objects providing the IRenderable interface. That interface is simple - objects must provide a
getRenderingFor method. The method should take one argument - an IProperties provider - and should return
a string or a deferred firing with a string. Pass instances of the class anywhere other renderables are accepted. For
example:

from buildbot.interfaces import IRenderable
from buildbot.plugins import steps

class DetermineFoo (object) :
implements (IRenderable)
def getRenderingFor (self, props):
if props.hasProperty (’'bar’):
return props|[’bar’]
elif props.hasProperty('baz’):
return props|[’baz’]
return ’qux’

steps.ShellCommand (command=[’"echo’, DetermineFoo()])

or, more practically,:

class Now (object) :
implements (IRenderable)
def getRenderingFor (self, props):

110 Chapter 2. Buildbot Manual

BuildBot Documentation, Release 0.8.12

return time.clock ()
ShellCommand (command=['make’, Interpolate ('’ TIME=% (kw:now)s’, now=Now())])

This is equivalent to:

@renderer
def now (props):
return time.clock ()
ShellCommand (command=[’make’, Interpolate ('’ TIME=% (kw:now)s’, now=now)])

Note that a custom renderable must be instantiated (and its constructor can take whatever arguments you’d like),
whereas a function decorated with renderer can be used directly.

2.4.9 Build Steps

BuildSteps are usually specified in the buildmaster’s configuration file, in a list that goes into the
BuildFactory. The BuildStep instances in this list are used as templates to construct new independent
copies for each build (so that state can be kept on the BuildStep in one build without affecting a later build).
Each BuildFactory can be created with a list of steps, or the factory can be created empty and then steps
added to it using the addStep method:

from buildbot.plugins import util, steps

f = util.BuildFactory ()

f.addStep (steps.SVN (svnurl="http://svn.example.org/Trunk/"))
f.addStep (steps.ShellCommand (command=["make", "all"]))
f.addStep (steps.ShellCommand (command=["make", "test"]))

The basic behavior for a BuildStep is to:
* run for a while, then stop
* possibly invoke some RemoteCommands on the attached build slave
* possibly produce a set of log files

* finish with a status described by one of four values defined in buildbot.plugins.util: SUCCESS,
WARNINGS, FATLURE, SKIPPED

* provide a list of short strings to describe the step

The rest of this section describes all the standard BuildStep objects available for use in a Build, and the
parameters which can be used to control each. A full list of build steps is available in the step.

2.4. Configuration 111

BuildBot Documentation, Release 0.8.12

¢ Common Parameters
* Source Checkout

— Common Parameters

— Mercurial

- Git

- SVN

- CVS

- Bzr

- P4

- Repo

- Gerrit

— Darcs

— Monotone
¢ Source Checkout (Slave-Side)

— CVS (Slave-Side)
SVN (Slave-Side)
Darcs (Slave-Side)
Mercurial (Slave-Side)
Bzr (Slave-Side)
P4 (Slave-Side)
Git (Slave-Side)
BitKeeper (Slave-Side)
Repo (Slave-Side)

— Monotone (Slave-Side)
¢ ShellCommand
Using ShellCommands
Configure
Compile
Visual C++
Robocopy
Test
TreeSize
PerlModuleTest
MTR (mysql-test-run)
SubunitShellCommand
 Slave Filesystem Steps

— FileExists

— CopyDirectory

— RemoveDirectory

— MakeDirectory
¢ Python BuildSteps

— BuildEPYDoc
PyFlakes
Sphinx
PyLint

— Trial

— RemovePYCs
* Transferring Files

— Other Parameters

— Transfering Directories

— Transferring Multiple Files At Once
» Transfering Strings
* Running Commands on the Master

— LogRenderable
 Setting Properties

— SetProperty

— SetPropertyFromCommand

— SetPropertiesFromEnv
* Setting Buildslave Info

SetSlavelnfo
DTV EHHO

112

 Triggering Schedulers Chapter 2. Buildbot Manual
— Dynamic Trigger

* RPM-Related Steps
— RpmBuild

BuildBot Documentation, Release 0.8.12

Common Parameters

All BuildSteps accept some common parameters. Some of these control how their individual status affects the
overall build. Others are used to specify which Locks (see Interlocks) should be acquired before allowing the step
to run.

Arguments common to all BuildStep subclasses:

name the name used to describe the step on the status display. It is also used to give a name to any LogFiles
created by this step.

haltOnFailure if True, a FAILURE of this build step will cause the build to halt immediately. Steps with
alwaysRun=True are still run. Generally speaking, haltOnFailure implies flunkOnFailure
(the default for most BuildSteps). In some cases, particularly series of tests, it makes sense to
haltOnFailure if something fails early on but not flunkOnFailure. This can be achieved with
haltOnFailure=True, flunkOnFailure=False.

flunkOnWarnings when True, a WARNINGS or FAILURE of this build step will mark the overall build as
FAILURE. The remaining steps will still be executed.

flunkOnFailure when True, a FAILURE of this build step will mark the overall build as a FATLURE. The
remaining steps will still be executed.

warnOnWarnings when True, a WARNINGS or FAILURE of this build step will mark the overall build as
having WARNINGS. The remaining steps will still be executed.

warnOnFailure when True, a FAILURE of this build step will mark the overall build as having WARNINGS.
The remaining steps will still be executed.

alwaysRun if True, this build step will always be run, even if a previous buildstep with
haltOnFailure=True has failed.

description This will be used to describe the command (on the Waterfall display) while the command is still
running. It should be a single imperfect-tense verb, like compiling or testing. The preferred form is a list of
short strings, which allows the HTML displays to create narrower columns by emitting a
 tag between
each word. You may also provide a single string.

descriptionDone This will be used to describe the command once it has finished. A simple noun like compile
or fests should be used. Like description, this may either be a list of short strings or a single string.

If neither description nor descriptionDone are set, the actual command arguments will be used
to construct the description. This may be a bit too wide to fit comfortably on the Waterfall display.

All subclasses of BuildStep will contain the description attributes. Consequently, you could add a
ShellCommand step like so:

from buildbot.plugins import steps

f.addStep (steps.ShellCommand (command=["make", "test"],
description=["testing"],
descriptionDone=["tests"]))

descriptionSuffix This is an optional suffix appended to the end of the description (ie, after
descriptionand descriptionDone). This can be used to distinguish between build steps that would
display the same descriptions in the waterfall. This parameter may be set to list of short strings, a single
string, or None.

For example, a builder might use the Compile step to build two different codebases. The
descriptionSuffix could be set to projectFoo and projectBar, respectively for each step, which will
result in the full descriptions compiling projectFoo and compiling projectBar to be shown in the waterfall.

doStepIf A step can be configured to only run under certain conditions. To do this, set the step’s doStepIf
to a boolean value, or to a function that returns a boolean value or Deferred. If the value or function result
is false, then the step will return SKIPPED without doing anything. Otherwise, the step will be executed
normally. If you set doStepIf to a function, that function should accept one parameter, which will be the
Step object itself.

2.4. Configuration 113

BuildBot Documentation, Release 0.8.12

hideStepIf A step can be optionally hidden from the waterfall and build details web pages. To do this, set
the step’s hideStepIf to a boolean value, or to a function that takes two parameters — the results and the
BuildStep — and returns a boolean value. Steps are always shown while they execute, however after the
step as finished, this parameter is evaluated (if a function) and if the value is True, the step is hidden. For
example, in order to hide the step if the step has been skipped:

factory.addStep (Foo (..., hideStepIf=lambda results, s: results==util.SKIPPED))

locks a list of Locks (instances of buildbot.locks.SlavelLock or
buildbot.locks.MasterLock) that should be acquired before starting this Step. The Locks will
be released when the step is complete. Note that this is a list of actual Lock instances, not names. Also
note that all Locks must have unique names. See Interlocks.

Source Checkout

At the moment, Buildbot contains two implementations of most source steps:

* the new implementation handles most of the logic on the master side, and has a simpler, more unified
approach;

* the older implementation handles the logic on the slave side, and some of the classes have a bewildering
array of options.

Note: Both implementations perform the checkout on the slave side. The difference is where the parameters are
processed and where the logic is implemented.

The old source steps are imported like this:

from buildbot.steps.source.oldsource import Git
... Git
while new source steps are in separate Python modules for each version-control system and, using
from buildbot.plugins import steps

... steps.Git

New users should, where possible, use the new implementations. The old implementations are deprecated and is
removed in the next major release (0.9.0). Old users should take this opportunity to switch to the new implemen-
tations while both are supported by Buildbot.

Note: Some version control systems have not yet been implemented as master-side steps. If you are interested
in continued support for such a version control system, please consider helping the Buildbot developers to create

such an implementation. In particular, version-control systems with proprietary licenses will not be supported
without access to the version-control system for development.

Below are described the master-side steps, the information about slave-side steps you can find in Source Checkout
(Slave-Side).

Common Parameters

All source checkout steps accept some common parameters to control how they get the sources and where they
should be placed. The remaining per-VC-system parameters are mostly to specify where exactly the sources are
coming from.

mode method

These two parameters specify the means by which the source is checked out. mode specifies the type
of checkout and method tells about the way to implement it.

114 Chapter 2. Buildbot Manual

BuildBot Documentation, Release 0.8.12

from buildbot.plugins import steps, util

factory = util.BuildFactory ()
factory.addStep (steps.Mercurial (repourl='path/to/repo’,
mode=’"full’, method=’"fresh’))

The mode parameter a string describing the kind of VC operation that is desired, defaulting to
incremental. The options are

incremental Update the source to the desired revision, but do not remove any other files gener-
ated by previous builds. This allows compilers to take advantage of object files from previous
builds. This mode is exactly same as the old update mode.

full Update the source, but delete remnants of previous builds. Build steps that follow will need to
regenerate all object files.

Methods are specific to the version-control system in question, as they may take advantage of special
behaviors in that version-control system that can make checkouts more efficient or reliable.

workdir like all Steps, this indicates the directory where the build will take place. Source Steps are special in
that they perform some operations outside of the workdir (like creating the workdir itself).

alwaysUseLatest if True, bypass the usual behavior of checking out the revision in the source stamp, and
always update to the latest revision in the repository instead.

retry If set, this specifies a tuple of (delay, repeats) which means that when a full VC checkout fails,
it should be retried up to repeats times, waiting delay seconds between attempts. If you don’t provide
this, it defaults to None, which means VC operations should not be retried. This is provided to make life
easier for buildslaves which are stuck behind poor network connections.

repository The name of this parameter might vary depending on the Source step you are running. The concept
explained here is common to all steps and applies to repourl as well as for baseURL (when applicable).

A common idiom is to pass Property (' repository’, ’'url://default/repo/path’) as
repository. This grabs the repository from the source stamp of the build. This can be a security issue,
if you allow force builds from the web, or have the WebStatus change hooks enabled; as the buildslave
will download code from an arbitrary repository.

codebase This specifies which codebase the source step should use to select the right source stamp. The default
codebase value is ’. The codebase must correspond to a codebase assigned by the codebaseGenerator.
If there is no codebaseGenerator defined in the master then codebase doesn’t need to be set, the default value
will then match all changes.

timeout Specifies the timeout for slave-side operations, in seconds. If your repositories are particularly large,
then you may need to increase this value from its default of 1200 (20 minutes).

logEnviron If this option is true (the default), then the step’s logfile will describe the environment variables
on the slave. In situations where the environment is not relevant and is long, it may be easier to set logEnv-
iron=False.

env a dictionary of environment strings which will be added to the child command’s environment. The usual
property interpolations can be used in environment variable names and values - see Properties.

Mercurial

class buildbot.steps.source.mercurial .Mercurial
The Mercurial build step performs a Mercurial (http://selenic.com/mercurial) (aka hg) checkout or update.

Branches are available in two modes: dirname, where the name of the branch is a suffix of the name of the repos-
itory, or inrepo, which uses Hg’s named-branches support. Make sure this setting matches your changehook, if
you have that installed.

2.4. Configuration 115

http://selenic.com/mercurial

BuildBot Documentation, Release 0.8.12

from buildbot.plugins import steps

factory.addStep (steps.Mercurial (repourl='path/to/repo’, mode=’'full’,
method=’"fresh’, branchType=’inrepo’))

The Mercurial step takes the following arguments:
repourl where the Mercurial source repository is available.

defaultBranch this specifies the name of the branch to use when a Build does not provide one of its own.
This will be appended to repourl to create the string that will be passed to the hg clone command.

branchType ceither ‘dirname’ (default) or ‘inrepo’ depending on whether the branch name should be appended
to the repourl or the branch is a Mercurial named branch and can be found within the repourl.

clobberOnBranchChange boolean, defaults to True. If set and using inrepos branches, clobber the tree at
each branch change. Otherwise, just update to the branch.

mode method
Mercurial’s incremental mode does not require a method. The full mode has three methods defined:

clobber It removes the build directory entirely then makes full clone from repo. This can be slow
as it need to clone whole repository

fresh This remove all other files except those tracked by VCS. First it does hg purge —all then
pull/update

clean All the files which are tracked by Mercurial and listed ignore files are not deleted. Remaining
all other files will be deleted before pull/update. This is equivalent to hg purge then pull/update.

Git

class buildbot.steps.source.git.Git

The Git build step clones or updates a Git (http://git.or.cz/) repository and checks out the specified branch or
revision. Note that the buildbot supports Git version 1.2.0 and later: earlier versions (such as the one shipped in
Ubuntu ‘Dapper’) do not support the git init command that the buildbot uses.

from buildbot.plugins import steps

factory.addStep (steps.Git (repourl="git://path/to/repo’, mode='full’,
method=’clobber’, submodules=True))

The Git step takes the following arguments:
repourl (required): the URL of the upstream Git repository.

branch (optional): this specifies the name of the branch to use when a Build does not provide one of its own. If
this this parameter is not specified, and the Build does not provide a branch, the default branch of the remote
repository will be used.

submodules (optional): when initializing/updating a Git repository, this decides whether or not buildbot should
consider Git submodules. Default: False.

shallow (optional): instructs git to attempt shallow clones (——depth 1). This option can be used only in full
builds with clobber method.

reference (optional): use the specified string as a path to a reference repository on the local machine. Git will
try to grab objects from this path first instead of the main repository, if they exist.

progress (optional): passes the (——progress) flag to (git fetch). This solves issues of long fetches being
killed due to lack of output, but requires Git 1.7.2 or later.

retryFetch (optional): defaults to False. If true, if the git fetch fails then buildbot retries to fetch again
instead of failing the entire source checkout.

116 Chapter 2. Buildbot Manual

http://git.or.cz/

BuildBot Documentation, Release 0.8.12

clobberOnFailure (optional): defaults to False. If a fetch or full clone fails we can checkout source
removing everything. This way new repository will be cloned. If retry fails it fails the source checkout step.

mode
(optional): defaults to * incremental’ . Specifies whether to clean the build tree or not.
incremental The source is update, but any built files are left untouched.

full The build tree is clean of any built files. The exact method for doing this is con-
trolled by the method argument.

method

(optional): defaults to fresh when mode is full. Git’s incremental mode does not require a
method. The full mode has four methods defined:

clobber It removes the build directory entirely then makes full clone from repo. This can be slow
as it need to clone whole repository. To make faster clones enable shallow option. If shallow
options is enabled and build request have unknown revision value, then this step fails.

fresh This remove all other files except those tracked by Git. First it does git clean -d -f -f -x
then fetch/checkout to a specified revision(if any). This option is equal to update mode with
ignore_ignores=True in old steps.

clean All the files which are tracked by Git and listed ignore files are not deleted. Remaining all
other files will be deleted before fetch/checkout. This is equivalent to git clean -d -f -f then
fetch. This is equivalent to ignore_ignores=False in old steps.

copy This first checkout source into source directory then copy the source directory to build
directory then performs the build operation in the copied directory. This way we make fresh
builds with very less bandwidth to download source. The behavior of source checkout follows
exactly same as incremental. It performs all the incremental checkout behavior in source
directory.

getDescription

(optional) After checkout, invoke a git describe on the revision and save the result in a property; the
property’s name is either commit—-description or commit-description-foo, depending
on whether the codebase argument was also provided. The argument should either be a bool or
dict, and will change how git describe is called:

* getDescription=False: disables this feature explicitly
* getDescription=True or empty dict (): Run git describe with no args

* getDescription={...}: adict with keys named the same as the Git option. Each key’s
value can be False or None to explicitly skip that argument.

For the following keys, a value of True appends the same-named Git argument:
- all:—all
— always: —always
— contains: —contains
— debug: —debug
— long: —long‘
- exact-match: —exact-match
- tags: —rags
— dirty: —dirty

For the following keys, an integer or string value (depending on what Git expects) will set the
argument’s parameter appropriately. Examples show the key-value pair:

— match=foo: —match foo

2.4. Configuration 117

BuildBot Documentation, Release 0.8.12

— abbrev=7: —abbrev=7

— candidates=7: —candidates=7

— dirty=foo: —dirty=foo
config

(optional) A dict of git configuration settings to pass to the remote git commands.

SVN

class buildbot.steps.source.svn.SVN

The SVN build step performs a Subversion (http://subversion.tigris.org) checkout or update. There are two basic
ways of setting up the checkout step, depending upon whether you are using multiple branches or not.

The SVN step should be created with the repourl argument:

repourl (required): this specifies the URL argument that will be given to the svn checkout command. It dictates
both where the repository is located and which sub-tree should be extracted. One way to specify the branch
is to use Interpolate. For example, if you wanted to check out the trunk repository, you could use
repourl=Interpolate ("http://svn.example.com/repos/% (src: :branch)s") Alter-
natively, if you are using a remote Subversion repository which is accessible through HTTP at a URL
of http://svn.example.com/repos, and you wanted to check out the trunk/calc sub-tree,
you would directly use repourl="http://svn.example.com/repos/trunk/calc" as an ar-
gument to your SVN step.

If you are building from multiple branches, then you should create the SVN step with the repourl and provide
branch information with Interpolate:

from buildbot.plugins import steps

factory.addStep (steps.SVN (mode='"incremental’,
repourl=Interpolate ('svn://svn.example.org/svn/% (src::branch)s/myprojec

Alternatively, the repourl argument can be used to create the SVN step without Interpolate:

from buildbot.plugins import steps

factory.addStep (steps.SVN (mode="full’,
repourl='svn://svn.example.org/svn/myproject/trunk’))

username (optional): if specified, this will be passed to the svn binary with a ——username option.
password (optional): if specified, this will be passed to the svn binary with a ~—password option.
extra_args (optional): if specified, an array of strings that will be passed as extra arguments to the svn binary.

keep_on_purge (optional): specific files or directories to keep between purges, like some build outputs that
can be reused between builds.

depth (optional): Specify depth argument to achieve sparse checkout. Only available if slave has Subversion
1.5 or higher.

If set to empty updates will not pull in any files or subdirectories not already present. If set to files,
updates will pull in any files not already present, but not directories. If set to immediates, updates will
pull in any files or subdirectories not already present, the new subdirectories will have depth: empty. If set
to infinity, updates will pull in any files or subdirectories not already present; the new subdirectories
will have depth-infinity. Infinity is equivalent to SVN default update behavior, without specifying any depth
argument.

preferLastChangedRev (optional): By default, the got_revision property is set to the repository’s
global revision (“Revision” in the svn info output). Set this parameter to True to have it set to the “Last
Changed Rev” instead.

118 Chapter 2. Buildbot Manual

http://subversion.tigris.org

BuildBot Documentation, Release 0.8.12

mode method
SVN’s incremental mode does not require a method. The full mode has five methods defined:
clobber It removes the working directory for each build then makes full checkout.

fresh This always always purges local changes before updating. This deletes unversioned files and
reverts everything that would appear in a svn status —no-ignore. This is equivalent to the old
update mode with always_purge.

clean This is same as fresh except that it deletes all unversioned files generated by svn status.

copy This first checkout source into source directory then copy the source directory to build
directory then performs the build operation in the copied directory. This way we make fresh
builds with very less bandwidth to download source. The behavior of source checkout follows
exactly same as incremental. It performs all the incremental checkout behavior in source
directory.

export Similar to method=' copy’, exceptusing svn export to create build directory so that
there are no . svn directories in the build directory.

If you are using branches, you must also make sure your ChangeSource will report the correct branch names.

CVSs

class buildbot.steps.source.cvs.CVS
The CVS build step performs a CVS (http://www.nongnu.org/cvs/) checkout or update.

from buildbot.plugins import steps

factory.addStep (steps.CVS (mode="incremental’,
cvsroot=':pserver:melcvs.sourceforge.net:/cvsroot/myproj’,
cvsmodule="buildbot’))

This step takes the following arguments:

cvsroot (required): specify the CVSROOT value, which points to a CVS repository, prob-
ably on a remote machine. For example, if Buildbot was hosted in CVS then the
cvsroot value you would use to get a copy of the Buildbot source code might be
:pserver:anonymous@cvs.sourceforge.net:/cvsroot/buildbot.

cvsmodule (required): specify the cvs module, which is generally a subdirectory of the CVSROOQOT. The
cvsmodule for the Buildbot source code is buildbot.

branch a string which will be used in a —r argument. This is most useful for specifying a branch to work on.
Defaults to HEAD.

global_options a list of flags to be put before the argument checkout in the CVS command.
extra_options alist of flags to be put after the checkout in the CVS command.
mode method

No method is needed for incremental mode. For full mode, method can take the values shown below.
If no value is given, it defaults to fresh.

clobber This specifies to remove the workdir and make a full checkout.

fresh This method first runs cvsdisard in the build directory, then updates it. This requires
cvsdiscard which is a part of the cvsutil package.

clean This method is the same as method=' fresh’, but it runs cvsdiscard —--ignore
instead of cvsdiscard.

copy This maintains a source directory for source, which it updates copies to the build directory.
This allows Buildbot to start with a fresh directory, without downloading the entire repository
on every build.

2.4. Configuration 119

http://www.nongnu.org/cvs/

BuildBot Documentation, Release 0.8.12

login Password to use while performing login to the remote CVS server. Default is None meaning that no login
needs to be peformed.

Bzr

class buildbot.steps.source.bzr.Bzr

bzr is a descendant of Arch/Baz, and is frequently referred to as simply Bazaar. The repository-vs-workspace
model is similar to Darcs, but it uses a strictly linear sequence of revisions (one history per branch) like Arch.
Branches are put in subdirectories. This makes it look very much like Mercurial.

from buildbot.plugins import steps

factory.addStep (steps.Bzr (mode=’"incremental’,
repourl='1lp:~knielsen/maria/tmp-buildbot-test’))

The step takes the following arguments:

repourl (required unless baseURL is provided): the URL at which the Bzr source repository is available.

baseURL (required unless repourl is provided): the base repository URL, to which a branch name will be
appended. It should probably end in a slash.

defaultBranch (allowed if and only if baseURL is provided): this specifies the name of the branch to use
when a Build does not provide one of its own. This will be appended to baseURL to create the string that
will be passed to the bzr checkout command.

mode method

No method is needed for incremental mode. For full mode, method can take the values shown below.
If no value is given, it defaults to fresh.

clobber This specifies to remove the workdir and make a full checkout.

fresh This method firstruns bzr clean-tree toremove all the unversioned files then update
the repo. This remove all unversioned files including those in .bzrignore.

clean This is same as fresh except that it doesn’t remove the files mentioned in .bzrginore i.e, by
running bzr clean-tree —--ignore.

copy A local bzr repository is maintained and the repo is copied to build directory for each build.
Before each build the local bzr repo is updated then copied to bui1d for next steps.

P4

class buildbot.steps.source.p4.P4
The P4 build step creates a Perforce (http://www.perforce.com/) client specification and performs an update.

from buildbot.plugins import steps

factory.addStep (steps.P4 (pd4port=pédport,
p4client=WithProperties (’ - - "y,
pd4user=p4user,
pébase=’//depot’,
p4viewspec=pdviewspec,
mode='"1incremental’))

You can specify the client spec in two different ways. You can use the p4base, p4branch, and (optionally)
pdextra_views to build up the viewspec, or you can utilize the p4viewspec to specify the whole viewspec
as a set of tuples.

Using p4viewspec will allow you to add lines such as:

120 Chapter 2. Buildbot Manual

http://www.perforce.com/

BuildBot Documentation, Release 0.8.12

//depot/branch/mybranch/. .. //<pdclient>/...
—-//depot/branch/mybranch/notthisdir/... //<p4client>/notthisdir/...

If you specify p4viewspec and any of p4dbase, p4dbranch, and/or pdextra_views you will receive a
configuration error exception.
pébase A view into the Perforce depot without branch name or trailing ““/...”. Typically //depot/proj.

p4branch (optional): A single string, which is appended to the pdbase as follows
<pdbase>/<p4branch>/. .. to form the first line in the viewspec

pdextra_views (optional): a list of (depotpath, clientpath) tuples containing extra views to be
mapped into the client specification. Both will have /. .. appended automatically. The client name and
source directory will be prepended to the client path.

p4viewspec This will override any p4branch, p4base, and/or p4extra_views specified. The viewspec will be
an array of tuples as follows:

[("//depot/main/","")]

It yields a viewspec with just:

//depot/main/... //<pdclient>/...

p4viewspec_suffix (optional): The pdviewspec lets you customize the client spec for a builder but, as

the previous example shows, it automatically adds . . . at the end of each line. If you need to also specify
file-level remappings, you can set the p4dviewspec_suffix to None so that nothing is added to your
viewspec:

[("//depot/main/...", "..."),
("-//depot/main/config.xml’, ’config.xml’),
(" //depot/main/config.vancouver.xml’, ’‘config.xml’)]

It yields a viewspec with:

//depot/main/... //<pdclient>/...
—-//depot/main/config.xml //<pd4client/main/config.xml
//depot/main/config.vancouver.xml //<p4client>/main/config.xml

Note how, with pdviewspec_suffix setto None, you need to manually add . . . where you need it.

p4client_spec_options (optional): By default, clients are created with the allwrite rmdir options.
This string lets you change that.

p4port (optional): the host : port string describing how to get to the P4 Depot (repository), used as the —p
argument for all p4 commands.

pduser (optional): the Perforce user, used as the —u argument to all p4 commands.
p4passwd (optional): the Perforce password, used as the —p argument to all p4 commands.

p4client (optional): The name of the client to use. In mode=’full’ and mode='incremental’, it’s
particularly important that a unique name is used for each checkout directory to avoid incorrect synchro-
nization. For this reason, Python percent substitution will be performed on this value to replace %(slave)s
with the slave name and %(builder)s with the builder name. The default is buildbot_%(slave)s_%(build)s.

p4line_end (optional): The type of line ending handling P4 should use. This is added directly to the client
spec’s LineEnd property. The defaultis 1ocal.

pdextra_args (optional): Extra arguments to be added to the P4 command-line for the sync command. So
for instance if you want to sync only to populate a Perforce proxy (without actually syncing files to disk),
you can do:

P4 (pdextra_args=['-Zproxyload’'], ...)

use_tickets Setto True to use ticket-based authentication, instead of passwords (but you still need to specify
pdpasswd).

2.4. Configuration 121

BuildBot Documentation, Release 0.8.12

Repo

class buildbot.steps.source.repo.Repo

The Repo build step performs a Repo (http://lwn.net/Articles/304488/) init and sync.

It is a drop-in replacement for Repo (Slave-Side), which should not be used anymore for new and old projects.
The Repo step takes the following arguments:

manifestURL (required): the URL at which the Repo’s manifests source repository is available.

manifestBranch (optional, defaults to master): the manifest repository branch on which repo will take its
manifest. Corresponds to the —b argument to the repo init command.

manifestFile (optional, defaults to default.xml): the manifest filename. Corresponds to the —m argu-
ment to the repo init command.

tarball (optional, defaults to None): the repo tarball used for fast bootstrap. If not present the tarball will be
created automatically after first sync. It is a copy of the . repo directory which contains all the Git objects.
This feature helps to minimize network usage on very big projects with lots of slaves.

jobs (optional, defaults to None): Number of projects to fetch simultaneously while syncing. Passed to repo
sync subcommand with “-j”.

syncAllBranches (optional, defaults to False): renderable boolean to control whether repo syncs all
branches, i.e. repo sync -c

depth (optional, defaults to 0): Depth argument passed to repo init. Specifies the amount of git history to store.
A depth of 1 is useful for shallow clones. This can save considerable disk space on very large projects.

updateTarballAge (optional, defaults to “one week”): renderable to control the policy of updating of the
tarball given properties. Returns: max age of tarball in seconds, or None, if we want to skip tarball update.
The default value should be good trade off on size of the tarball, and update frequency compared to cost of
tarball creation

repoDownloads (optional, defaults to None): list of repo download commands to perform at the end of
the Repo step each string in the list will be prefixed repo download, and run as is. This means you can
include parameter in the string. e.g:

e ["-c project 1234/4"] will cherry-pick patchset 4 of patch 1234 in project project

e ["-f project 1234/4"] will enforce fast-forward on patchset 4 of patch 1234 in project
project

class buildbot.steps.source.repo.RepoDownloadsFromProperties

RepoDownloadsFromProperties can be used as a renderable of the repoDownload parameter it will
look in passed properties for string with following possible format:

* repo download project change_number/patchset_number.
* project change_number/patchset_number.
* project/change_number/patchset_number.

All of these properties will be translated into a repo download. This feature allows integrators to build with
several pending interdependent changes, which at the moment cannot be described properly in Gerrit, and can
only be described by humans.

class buildbot.steps.source.repo.RepoDownloadsFromChangeSource
RepoDownloadsFromChangeSource can be used as a renderable of the repoDownload parameter

This rendereable integrates with GerritChangeSource, and will automatically use the repo download com-
mand of repo to download the additionnal changes introduced by a pending changeset.

Note: You can use the two above Rendereable in conjuction by using the class
buildbot.process.properties.FlattenlList

122 Chapter 2. Buildbot Manual

http://lwn.net/Articles/304488/

BuildBot Documentation, Release 0.8.12

for example:

ftom buildbot.plugins import steps, util

factory.addStep (steps.Repo (manifestURL='git://mygerrit.org/manifest.git’,
repoDownloads=util.FlattenList ([
util.repo.DownloadsFromChangeSource (),
util.repo.DownloadsFromProperties ("repo_downloads")

1))

Gerrit

class buildbot.steps.source.gerrit.Gerrit

This Source step is exactly like the Git checkout step , except that it integrates with GerritChangeSource,
and will automatically checkout the additional changes.

Gerrit integration can be also triggered using forced build with property named gerrit_change with values
in format change_number/patchset_number. This property will be translated into a branch name. This
feature allows integrators to build with several pending interdependent changes, which at the moment cannot be
described properly in Gerrit, and can only be described by humans.

Darcs

class buildbot.steps.source.darcs.Darcs
The Darcs build step performs a Darcs (http://darcs.net/) checkout or update.

from buildbot.plugins import steps

factory.addStep (steps.Darcs (repourl='http://path/to/repo’,
mode="full’, method=’clobber’, retry=(10, 1)))

Darecs step takes the following arguments:
repourl (required): The URL at which the Darcs source repository is available.
mode
(optional): defaults to * incremental’ . Specifies whether to clean the build tree or not.
incremental The source is update, but any built files are left untouched.

full The build tree is clean of any built files. The exact method for doing this is con-
trolled by the method argument.

method (optional): defaults to copy when mode is full. Darcs’ incremental mode does not require a method.
The full mode has two methods defined:

clobber It removes the working directory for each build then makes full checkout.

copy This first checkout source into source directory then copy the source directory to build directory
then performs the build operation in the copied directory. This way we make fresh builds with very less
bandwidth to download source. The behavior of source checkout follows exactly same as incremental.
It performs all the incremental checkout behavior in source directory.

Monotone

class buildbot.steps.source.mtn.Monotone

The Monotone build step performs a Monotone (http://www.monotone.ca/) checkout or update.

2.4. Configuration 123

http://darcs.net/
http://www.monotone.ca/

BuildBot Documentation, Release 0.8.12

from buildbot.plugins import steps

factory.addStep (steps.Monotone (repourl="http://path/to/repo’,
mode='full’, method=’clobber’,
branch=’ some.branch.name’,
retry=(10, 1)))

Monotone step takes the following arguments:
repourl the URL at which the Monotone source repository is available.

branch this specifies the name of the branch to use when a Build does not provide one of its own.

progress this is a boolean that has a pull from the repository use ——ticker=dot instead of the default
——ticker=none.

mode
(optional): defaults to * incremental’ . Specifies whether to clean the build tree or not.
incremental The source is update, but any built files are left untouched.

full The build tree is clean of any built files. The exact method for doing this is con-
trolled by the method argument.

method

(optional): defaults to copy when mode is full. Monotone’s incremental mode does not require a
method. The full mode has four methods defined:

clobber It removes the build directory entirely then makes full clone from repo. This can be slow
as it need to clone whole repository.

clean This remove all other files except those tracked and ignored by Monotone. It will remove all
the files that appear in mtn Is unknown. Then it will pull from remote and update the working
directory.

fresh This remove all other files except those tracked by Monotone. It will remove all the files that
appear in mtn Is ignored and mtn Is unknows. Then pull and update similar to clean

copy This first checkout source into source directory then copy the source directory to build
directory then performs the build operation in the copied directory. This way we make fresh
builds with very less bandwidth to download source. The behavior of source checkout follows
exactly same as incremental. It performs all the incremental checkout behavior in source
directory.

Source Checkout (Slave-Side)

This section describes the more mature slave-side source steps. Where possible, new users should use the master-
side source checkout steps, as the slave-side steps will be removed in a future version. See Source Checkout.

The first step of any build is typically to acquire the source code from which the build will be performed. There
are several classes to handle this, one for each of the different source control system that Buildbot knows about.
For a description of how Buildbot treats source control in general, see Version Control Systems.

All source checkout steps accept some common parameters to control how they get the sources and where they
should be placed. The remaining per-VC-system parameters are mostly to specify where exactly the sources are
coming from.

mode a string describing the kind of VC operation that is desired. Defaults to update.

update specifies that the CVS checkout/update should be performed directly into the workdir. Each
build is performed in the same directory, allowing for incremental builds. This minimizes disk space,
bandwidth, and CPU time. However, it may encounter problems if the build process does not handle
dependencies properly (sometimes you must do a clean build to make sure everything gets compiled),
or if source files are deleted but generated files can influence test behavior (e.g. Python’s .pyc files),

124 Chapter 2. Buildbot Manual

BuildBot Documentation, Release 0.8.12

or when source directories are deleted but generated files prevent CVS from removing them. Builds
ought to be correct regardless of whether they are done from scratch or incrementally, but it is useful
to test both kinds: this mode exercises the incremental-build style.

copy specifies that the CVS workspace should be maintained in a separate directory (called the
copydir), using checkout or update as necessary. For each build, a new workdir is created with
a copy of the source tree (rm —-rf workdir; cp -r copydir workdir). This doubles the
disk space required, but keeps the bandwidth low (update instead of a full checkout). A full ‘clean’
build is performed each time. This avoids any generated-file build problems, but is still occasionally
vulnerable to CVS problems such as a repository being manually rearranged, causing CVS errors on
update which are not an issue with a full checkout.

clobber specifies that the working directory should be deleted each time, necessitating a full checkout for
each build. This insures a clean build off a complete checkout, avoiding any of the problems described
above. This mode exercises the from-scratch build style.

export this is like clobber, except that the cvs export command is used to create the working
directory. This command removes all CVS metadata files (the CVS/ directories) from the tree, which
is sometimes useful for creating source tarballs (to avoid including the metadata in the tar file).

workdir As for all steps, this indicates the directory where the build will take place. Source Steps are special
in that they perform some operations outside of the workdir (like creating the workdir itself).

alwaysUseLatest if True, bypass the usual update to the last Change behavior, and always update to the
latest changes instead.

retry If set, this specifies a tuple of (delay, repeats) which means that when a full VC checkout fails,
it should be retried up to repeats times, waiting delay seconds between attempts. If you don’t provide this,
it defaults to None, which means VC operations should not be retried. This is provided to make life easier
for buildslaves which are stuck behind poor network connections.

repository The name of this parameter might varies depending on the Source step you are running. The
concept explained here is common to all steps and applies to repourl as well as for baseURL (when
applicable). Buildbot, now being aware of the repository name via the change source, might in some cases
not need the repository url. There are multiple way to pass it through to this step, those correspond to the
type of the parameter given to this step:

None In the case where no parameter is specified, the repository url will be taken exactly from the Change
attribute. You are looking for that one if your ChangeSource step has all information about how to
reach the Change.

string The parameter might be a string, in this case, this string will be taken as the repository url, and
nothing more. the value coming from the ChangeSource step will be forgotten.

format string If the parameter is a string containing % s, then this the repository attribute from the Change
will be place in place of the $s. This is useful when the change source knows where the repository
resides locally, but don’t know the scheme used to access it. For instance ssh: //server/%s makes
sense if the the repository attribute is the local path of the repository.

dict In this case, the repository URL will be the value indexed by the repository attribute in the dict given
as parameter.

callable The callable given as parameter will take the repository attribute from the Change and its return
value will be used as repository URL.

Note: This is quite similar to the mechanism used by the WebStatus for the changecomment1ink,
projects or repositories parameter.

timeout Specifies the timeout for slave-side operations, in seconds. If your repositories are particularly large,
then you may need to increase this value from its default of 1200 (20 minutes).

My habit as a developer is to do a cvs update and make each morning. Problems can occur, either because
of bad code being checked in, or by incomplete dependencies causing a partial rebuild to fail where a complete

2.4. Configuration 125

BuildBot Documentation, Release 0.8.12

from-scratch build might succeed. A quick Builder which emulates this incremental-build behavior would use the
mode='update’ setting.

On the other hand, other kinds of dependency problems can cause a clean build to fail where a partial build might
succeed. This frequently results from a link step that depends upon an object file that was removed from a later
version of the tree: in the partial tree, the object file is still around (even though the Makefiles no longer know how
to create it).

official builds (traceable builds performed from a known set of source revisions) are always done as clean builds,
to make sure it is not influenced by any uncontrolled factors (like leftover files from a previous build). A full
Builder which behaves this way would want to use the mode=' clobber’ setting.

Each VC system has a corresponding source checkout class: their arguments are described on the following pages.

CVS (Slave-Side)

The CVS build step performs a CVS (http://www.nongnu.org/cvs/) checkout or update. It takes the following
arguments:

cvsroot (required): specify the CVSROOT value, which points to a CVS repository, probably on a remote
machine. For example, the cvsroot value you would use to get a copy of the Buildbot source code is
:pserver:anonymous@cvs.sourceforge.net:/cvsroot/buildbot

cvsmodule (required): specify the cvs module, which is generally a subdirectory of the CVSROOT. The
cvsmodule for the Buildbot source code is buildbot.

branch a string which will be used in a —r argument. This is most useful for specifying a branch to work on.
Defaults to HEAD.

global_options alist of flags to be put before the verb in the CVS command.
checkout_options
export_options

extra_options a list of flags to be put after the verb in the CVS command. checkout_options
is only used for checkout operations, export_options is only used for export operations, and
extra_options is used for both.

checkoutDelay if set, the number of seconds to put between the timestamp of the last known Change and the
value used for the —D option. Defaults to half of the parent Build‘s treeStableTimer.

SVN (Slave-Side)

The SVN build step performs a Subversion (http://subversion.tigris.org) checkout or update. There are two basic
ways of setting up the checkout step, depending upon whether you are using multiple branches or not.

The most versatile way to create the SVN step is with the svnurl argument:

svnurl (required): this specifies the URL argument that will be given to the svn checkout command.
It dictates both where the repository is located and which sub-tree should be extracted. In this re-
spect, it is like a combination of the CVS cvsroot and cvsmodule arguments. For example,
if you are using a remote Subversion repository which is accessible through HTTP at a URL of
http://svn.example.com/repos, and you wanted to check out the t runk/calc sub-tree, you
would use svnurl="http://svn.example.com/repos/trunk/calc" as an argument to your
SVN step.

The svnurl argument can be considered as a universal means to create the SVN step as it ignores the branch
information in the SourceStamp.

Alternatively, if you are building from multiple branches, then you should preferentially create the SVN step with
the baseURL and defaultBranch arguments instead:

126 Chapter 2. Buildbot Manual

http://www.nongnu.org/cvs/
http://subversion.tigris.org

BuildBot Documentation, Release 0.8.12

baseURL (required): this specifies the base repository URL, to which a branch name will be appended. It should
probably end in a slash.

defaultBranch (optional): this specifies the name of the branch to use when a Build does not provide one of
its own. This will be appended to baseURL to create the string that will be passed to the svn checkout
command.

It is possible to mix to have a mix of SVN steps that use either the svnurl or baseURL arguments but not
both at the same time.

username (optional): if specified, this will be passed to the svn binary with a ——username option.

password (optional): if specified, this will be passed to the svn binary with a ——password option. The
password itself will be suitably obfuscated in the logs.

extra_args (optional): if specified, an array of strings that will be passed as extra arguments to the svn binary.

keep_on_purge (optional): specific files or directories to keep between purges, like some build outputs that
can be reused between builds.

ignore_ignores (optional): when purging changes, don’t use rules defined in svn: ignore properties and
global-ignores in subversion/config.

always_purge (optional): if set to True, always purge local changes before updating. This deletes unver-
sioned files and reverts everything that would appear in a svn status.

depth (optional): Specify depth argument to achieve sparse checkout. Only available if slave has Subversion
1.5 or higher.

If set to “empty” updates will not pull in any files or subdirectories not already present. If set to “files”,
updates will pull in any files not already present, but not directories. If set to “immediates”, updates will
pull in any files or subdirectories not already present, the new subdirectories will have depth: empty. If
set to “infinity”, updates will pull in any files or subdirectories not already present; the new subdirectories
will have depth-infinity. Infinity is equivalent to SVN default update behavior, without specifying any depth
argument.

If you are using branches, you must also make sure your ChangeSource will report the correct branch names.

Darcs (Slave-Side)

The Darcs build step performs a Darcs (http://darcs.net/) checkout or update.

Like SVN, this step can either be configured to always check out a specific tree, or set up to pull from a par-
ticular branch that gets specified separately for each build. Also like SVN, the repository URL given to Darcs
is created by concatenating a baseURL with the branch name, and if no particular branch is requested, it uses
a defaultBranch. The only difference in usage is that each potential Darcs repository URL must point to
a fully-fledged repository, whereas SVN URLs usually point to sub-trees of the main Subversion repository. In
other words, doing an SVN checkout of baseURL is legal, but silly, since you’d probably wind up with a copy of
every single branch in the whole repository. Doing a Darcs checkout of baseURL is just plain wrong, since the
parent directory of a collection of Darcs repositories is not itself a valid repository.

The Darcs step takes the following arguments:
repourl (required unless baseURL is provided): the URL at which the Darcs source repository is available.

baseURL (required unless repourl is provided): the base repository URL, to which a branch name will be
appended. It should probably end in a slash.

defaultBranch (allowed if and only if baseURL is provided): this specifies the name of the branch to use
when a Build does not provide one of its own. This will be appended to baseURL to create the string that
will be passed to the darcs get command.

2.4. Configuration 127

http://darcs.net/

BuildBot Documentation, Release 0.8.12

Mercurial (Slave-Side)

The Mercurial build step performs a Mercurial (http://selenic.com/mercurial) (aka /g) checkout or update.

Branches are available in two modes: dirname like Darcs, or inrepo, which uses the repository internal branches.
Make sure this setting matches your changehook, if you have that installed.

The Mercurial step takes the following arguments:

repourl (required unless baseURL is provided): the URL at which the Mercurial source repository is avail-
able.

baseURL (required unless repourl is provided): the base repository URL, to which a branch name will be
appended. It should probably end in a slash.

defaultBranch (allowed if and only if baseURL is provided): this specifies the name of the branch to use
when a Build does not provide one of its own. This will be appended to baseURL to create the string that
will be passed to the hg clone command.

branchType ceither ‘dirname’ (default) or ‘inrepo’ depending on whether the branch name should be appended
to the baseURL or the branch is a Mercurial named branch and can be found within the repourl.

clobberOnBranchChange boolean, defaults to True. If set and using inrepos branches, clobber the tree at
each branch change. Otherwise, just update to the branch.

Bzr (Slave-Side)

bzr is a descendant of Arch/Baz, and is frequently referred to as simply Bazaar. The repository-vs-workspace
model is similar to Darcs, but it uses a strictly linear sequence of revisions (one history per branch) like Arch.
Branches are put in subdirectories. This makes it look very much like Mercurial. It takes the following arguments:

repourl (required unless baseURL is provided): the URL at which the Bzr source repository is available.

baseURL (required unless repourl is provided): the base repository URL, to which a branch name will be
appended. It should probably end in a slash.

defaultBranch (allowed if and only if baseURL is provided): this specifies the name of the branch to use
when a Build does not provide one of its own. This will be appended to baseURL to create the string that
will be passed to the bzr checkout command.

forceSharedRepo (boolean, optional, defaults to False): If set to True, the working directory will be made
into a bzr shared repository if it is not already. Shared repository greatly reduces the amount of history data
that needs to be downloaded if not using update/copy mode, or if using update/copy mode with multiple
branches.

P4 (Slave-Side)

The P4 (Slave-Side) build step creates a Perforce (http://www.perforce.com/) client specification and per-
forms an update.

p4base A view into the Perforce depot without branch name or trailing ”...”. Typically //depot/proj/.
defaultBranch A branch name to append on build requests if none is specified. Typically t runk.

p4port (optional): the host : port string describing how to get to the P4 Depot (repository), used as the —p
argument for all p4 commands.

p4user (optional): the Perforce user, used as the —u argument to all p4 commands.
p4passwd (optional): the Perforce password, used as the —p argument to all p4 commands.

pdextra_views (optional): a list of (depotpath, clientpath) tuples containing extra views to be
mapped into the client specification. Both will have “/...” appended automatically. The client name and
source directory will be prepended to the client path.

128 Chapter 2. Buildbot Manual

http://selenic.com/mercurial
http://www.perforce.com/

BuildBot Documentation, Release 0.8.12

p4client (optional): The name of the client to use. In mode=' copy’ and mode='update’, it’s particu-
larly important that a unique name is used for each checkout directory to avoid incorrect synchronization.
For this reason, Python percent substitution will be performed on this value to replace %(slave)s with the
slave name and %(builder)s with the builder name. The default is buildbot_%(slave)s_%(build)s.

p4line_end (optional): The type of line ending handling P4 should use. This is added directly to the client
spec’s LineEnd property. The defaultis Local.

Git (Slave-Side)

The Git build step clones or updates a Git (http://git.or.cz/) repository and checks out the specified branch or
revision. Note that the buildbot supports Git version 1.2.0 and later: earlier versions (such as the one shipped in
Ubuntu ‘Dapper’) do not support the git init command that the buildbot uses.

The Git step takes the following arguments:
repourl (required): the URL of the upstream Git repository.

branch (optional): this specifies the name of the branch to use when a Build does not provide one of its own.
If this this parameter is not specified, and the Build does not provide a branch, the master branch will be
used.

ignore_ignores (optional): when purging changes, don’tuse .gitignore and .git/info/exclude.

submodules (optional): when initializing/updating a Git repository, this decides whether or not buildbot should
consider Git submodules. Default: False.

reference (optional): use the specified string as a path to a reference repository on the local machine. Git will
try to grab objects from this path first instead of the main repository, if they exist.

shallow (optional): instructs Git to attempt shallow clones (—-depth 1). If the user/scheduler asks for a
specific revision, this parameter is ignored.

progress (optional): passes the (——progress) flag to (git fetch). This solves issues of long fetches
being killed due to lack of output, but requires Git 1.7.2 or later.

This Source step integrates with GerritChangeSource, and will automatically use Gerrit’s “virtual branch”
(refs/changes/*) to download the additionnal changes introduced by a pending changeset.

Gerrit integration can be also triggered using forced build with gerrit_change property with value in format:
change_number/patchset_number.

BitKeeper (Slave-Side)

The BX build step performs a BitKeeper (http://www.bitkeeper.com/) checkout or update.
The BitKeeper step takes the following arguments:

repourl (required unless baseURL is provided): the URL at which the BitKeeper source repository is avail-
able.

baseURL (required unless repourl is provided): the base repository URL, to which a branch name will be
appended. It should probably end in a slash.

Repo (Slave-Side)

class buildbot.steps.source.Repo
The Repo (Slave-Side) build step performs a Repo (http://Iwn.net/Articles/304488/) init and sync.
This step is obsolete and should not be used anymore. Please use: Repo instead.

The Repo step takes the following arguments:

2.4. Configuration 129

http://git.or.cz/
http://www.bitkeeper.com/
http://lwn.net/Articles/304488/

BuildBot Documentation, Release 0.8.12

manifest_url (required): the URL at which the Repo’s manifests source repository is available.

manifest_branch (optional, defaults to master): the manifest repository branch on which repo will take
its manifest. Corresponds to the —b argument to the repo init command.

manifest_file (optional, defaults to default .xml): the manifest filename. Corresponds to the —m argu-
ment to the repo init command.

tarball (optional, defaults to None): the repo tarball used for fast bootstrap. If not present the tarball will be
created automatically after first sync. It is a copy of the . repo directory which contains all the Git objects.
This feature helps to minimize network usage on very big projects.

jobs (optional, defaults to None): Number of projects to fetch simultaneously while syncing. Passed to repo
sync subcommand with “-j”.

This Source step integrates with GerritChangeSource, and will automatically use the repo download com-
mand of repo to download the additionnal changes introduced by a pending changeset.

Gerrit integration can be also triggered using forced build with following properties:
repo_d, repo_d[0-9], repo_download, repo_download[0-9] with values in format:
project/change_number/patchset_number. All of these properties will be translated into a
repo download. This feature allows integrators to build with several pending interdependent changes, which at
the moment cannot be described properly in Gerrit, and can only be described by humans.

Monotone (Slave-Side)

The Monotone build step performs a Monotone (http://www.monotone.ca), (aka mtn) checkout or update.
The Monotone step takes the following arguments:

repourl the URL at which the Monotone source repository is available.

branch this specifies the name of the branch to use when a Build does not provide one of its own.

progress this is a boolean that has a pull from the repository use ——ticker=dot instead of the default
——ticker=none.

ShellCommand
Most interesting steps involve executing a process of some sort on the buildslave. The ShellCommand class
handles this activity.

Several subclasses of ShellCommand are provided as starting points for common build steps.

Using ShellCommands

class buildbot.steps.shell.ShellCommand

This is a useful base class for just about everything you might want to do during a build (except for the initial
source checkout). It runs a single command in a child shell on the buildslave. All stdout/stderr is recorded into a
LogFile. The step usually finishes with a status of FAILURE if the command’s exit code is non-zero, otherwise
it has a status of SUCCESS.

The preferred way to specify the command is with a list of argv strings, since this allows for spaces in filenames
and avoids doing any fragile shell-escaping. You can also specify the command with a single string, in which case
the string is given to /bin/sh —-c COMMAND for parsing.

On Windows, commands are run via cmd . exe /c which works well. However, if you’re running a batch file, the
error level does not get propagated correctly unless you add ‘call’ before your batch file’s name: cmd=[’call’,
'myfile.bat’, ...].

The ShellCommand arguments are:

130 Chapter 2. Buildbot Manual

http://www.monotone.ca

BuildBot Documentation, Release 0.8.12

command a list of strings (preferred) or single string (discouraged) which specifies the command to be run. A
list of strings is preferred because it can be used directly as an argv array. Using a single string (with
embedded spaces) requires the buildslave to pass the string to /bin/sh for interpretation, which raises all
sorts of difficult questions about how to escape or interpret shell metacharacters.

If command contains nested lists (for example, from a properties substitution), then that list will be flattened
before it is executed.

On the topic of shell metacharacters, note that in DOS the pipe character (|) is conditionally escaped (to
~|) when it occurs inside a more complex string in a list of strings. It remains unescaped when it occurs as
part of a single string or as a lone pipe in a list of strings.

workdir All ShellCommands are run by default in the workdir, which defaults to the build subdirectory
of the slave builder’s base directory. The absolute path of the workdir will thus be the slave’s basedir (set
as an option to buildslave create-slave, Creating a buildslave) plus the builder’s basedir (set
in the builder’s builddir key in master.cfqg) plus the workdir itself (a class-level attribute of the
BuildFactory, defaults to build).

For example:

from buildbot.plugins import steps

f.addStep (steps.ShellCommand (command=["make", "test"],
workdir="build/tests"))

env a dictionary of environment strings which will be added to the child command’s environment. For example,
to run tests with a different i118n language setting, you might use

from buildbot.plugins import steps

f.addStep (steps.ShellCommand (command=["make", "test"],
env={’'LANG’ : "fr FR’}))

These variable settings will override any existing ones in the buildslave’s environment or the en-
vironment specified in the Builder. The exception is PYTHONPATH, which is merged with
(actually prepended to) any existing PYTHONPATH setting. The following example will prepend
/home/buildbot/lib/python to any existing PYTHONPATH:

from buildbot.plugins import steps

f.addStep (steps.ShellCommand (command=["make", "test"],
env={’PYTHONPATH’ : "/home/buildbot/lib/python"}))

To avoid the need of concatenating path together in the master config file, if the value is a list, it will be
joined together using the right platform dependant separator.

Those variables support expansion so that if you just want to prepend /home/buildbot/bin to the
PATH environment variable, you can do it by putting the value $ {PATH} at the end of the value like in the
example below. Variables that don’t exist on the slave will be replaced by " ".

from buildbot.plugins import steps

f.addStep (steps.ShellCommand (
command=["make", "test"],
env={’PATH’ : ["/home/buildbot/bin",
"S{PATH}"1}))

Note that environment values must be strings (or lists that are turned into strings). In particular, numeric
properties such as buildnumber must be substituted using /nterpolate.

want_stdout if False, stdout from the child process is discarded rather than being sent to the buildmaster
for inclusion in the step’s LogFile.

want_stderr like want_stdout but for stderr. Note that commands run through a PTY do not have
separate stdout/stderr streams: both are merged into stdout.

2.4. Configuration 131

BuildBot Documentation, Release 0.8.12

usePTY Should this command be run in a pty? The default is to observe the configuration of the client (Build-
slave Options), but specifying True or False here will override the default. This option is not available
on Windows.

In general, you do not want to use a pseudo-terminal. This is is only useful for running commands that
require a terminal - for example, testing a command-line application that will only accept passwords read
from a terminal. Using a pseudo-terminal brings lots of compatibility problems, and prevents Buildbot from
distinguishing the standard error (red) and standard output (black) streams.

In previous versions, the advantage of using a pseudo-terminal was that grandchild processes were
more likely to be cleaned up if the build was interrupted or times out. This occurred because using a
pseudo-terminal incidentally puts the command into its own process group.

As of Buildbot-0.8.4, all commands are placed in process groups, and thus grandchild processes will be
cleaned up properly.

logfiles Sometimes commands will log interesting data to a local file, rather than emitting everything to stdout
or stderr. For example, Twisted’s trial command (which runs unit tests) only presents summary information
to stdout, and puts the rest into a file named _trial_temp/test.log. Itis often useful to watch these
files as the command runs, rather than using /bin/cat to dump their contents afterwards.

The logfiles= argument allows you to collect data from these secondary logfiles in near-real-time, as
the step is running. It accepts a dictionary which maps from a local Log name (which is how the log data
is presented in the build results) to either a remote filename (interpreted relative to the build’s working
directory), or a dictionary of options. Each named file will be polled on a regular basis (every couple of
seconds) as the build runs, and any new text will be sent over to the buildmaster.

If you provide a dictionary of options instead of a string, you must specify the £ilename key. You can
optionally provide a follow key which is a boolean controlling whether a logfile is followed or concate-
nated in its entirety. Following is appropriate for logfiles to which the build step will append, where the
pre-existing contents are not interesting. The default value for follow is False, which gives the same
behavior as just providing a string filename.

from buildbot.plugins import steps

f.addStep (steps.ShellCommand (
command=["make", "test"],
logfiles={"triallog": "_trial_temp/test.log"}))

The above example will add a log named ‘triallog’ on the master, based on _trial_temp/test.log
on the slave.

from buildbot.plugins import steps

f.addStep (steps.ShellCommand (
command=["make", "test"],
logfiles={"triallog": {"filename": "_trial_temp/test.log",
"follow": True, }}))

lazylogfiles If set to True, logfiles will be tracked lazily, meaning that they will only be added when and
if something is written to them. This can be used to suppress the display of empty or missing log files. The
defaultis False.

timeout if the command fails to produce any output for this many seconds, it is assumed to be locked up and
will be killed. This defaults to 1200 seconds. Pass None to disable.

maxTime if the command takes longer than this many seconds, it will be killed. This is disabled by default.

logEnviron If this option is True (the default), then the step’s logfile will describe the environment vari-
ables on the slave. In situations where the environment is not relevant and is long, it may be easier to set
logEnviron=False.

interruptSignal If the command should be interrupted (either by buildmaster or timeout etc.), what signal
should be sent to the process, specified by name. By default this is “KILL” (9). Specify “TERM” (15) to
give the process a chance to cleanup. This functionality requires a 0.8.6 slave or newer.

132 Chapter 2. Buildbot Manual

BuildBot Documentation, Release 0.8.12

sigtermTime If set, when interrupting, try to kill the command with SIGTERM and wait for sigtermTime
seconds before firing interuptSignal. If None, interruptSignal will be fired immediately on
interrupt.

initialStdin If the command expects input on stdin, that can be supplied a a string with this parameter. This
value should not be excessively large, as it is handled as a single string throughout Buildbot — for example,
do not pass the contents of a tarball with this parameter.

decodeRC This is a dictionary that decodes exit codes into results value. E.g:
{0:SUCCESS, 1:FAILURE, 2 :WARNINGS}, will treat the exit code 2 as WARNINGS. The de-
fault is to treat just O as successful ({0: SUCCESS}). Any exit code not present in the dictionary will be
treated as FAILURE

Configure

class buildbot.steps.shell.Configure

This is intended to handle the ./configure step from autoconf-style projects, or the perl Makefile.PL step
from perl MakeMaker . pm-style modules. The default command is ./configure but you can change this by
providing a command= parameter. The arguments are identical to ShellCommand.

from buildbot.plugins import steps

f.addStep (steps.Configure())

Compile

This is meant to handle compiling or building a project written in C. The default command is make all.
When the compile is finished, the log file is scanned for GCC warning messages, a summary log is created
with any problems that were seen, and the step is marked as WARNINGS if any were discovered. Through the
WarningCountingShellCommand superclass, the number of warnings is stored in a Build Property named
warnings-count, which is accumulated over all Compile steps (so if two warnings are found in one step, and
three are found in another step, the overall build will have a warnings-count property of 5). Each step can be
optionally given a maximum number of warnings via the maxWarnCount parameter. If this limit is exceeded, the
step will be marked as a failure.

The default regular expression used to detect a warning is ’ . xwarning[:].=*’ , which is fairly liberal and
may cause false-positives. To use a different regexp, provide a warningPattern= argument, or use a subclass
which sets the warningPattern attribute:

from buildbot.plugins import steps

f.addStep (steps.Compile (command=["make", "test"],
warningPattern=""Warning: "))

The warningPattern= can also be a pre-compiled Python regexp object: this makes it possible to add flags
like re. I (to use case-insensitive matching).

Note that the compiled warningPattern will have its match method called, which is subtly different from a
search. Your regular expression must match the from the beginning of the line. This means that to look for the
word “warning” in the middle of a line, you will need to prepend ’ . «’ to your regular expression.

The suppressionFile= argument can be specified as the (relative) path of a file inside the workdir defining
warnings to be suppressed from the warning counting and log file. The file will be uploaded to the master from the
slave before compiling, and any warning matched by a line in the suppression file will be ignored. This is useful
to accept certain warnings (e.g. in some special module of the source tree or in cases where the compiler is being
particularly stupid), yet still be able to easily detect and fix the introduction of new warnings.

The file must contain one line per pattern of warnings to ignore. Empty lines and lines beginning with # are
ignored. Other lines must consist of a regexp matching the file name, followed by a colon (:), followed by a

2.4. Configuration 133

BuildBot Documentation, Release 0.8.12

regexp matching the text of the warning. Optionally this may be followed by another colon and a line number
range. For example:

Sample warning suppression file

mi_packrec.c : .xresult of 32-bit shift implicitly converted to 64 bits.x : 560-600
DictTabInfo.cpp : .xinvalid access to non-static.x
kernel_types.h : .xonly defines private constructors and has no friends.x : 51

If no line number range is specified, the pattern matches the whole file; if only one number is given it matches
only on that line.

The default warningPattern regexp only matches the warning text, so line numbers and file names are ignored.
To enable line number and file name matching, provide a different regexp and provide a function (callable) as the
argument of warningExtractor=. The function is called with three arguments: the BuildStep object, the
line in the log file with the warning, and the SRE_Mat ch object of the regexp search for wvarningPattern. It
should return a tuple (filename, linenumber, warning_test). For example:

f.addStep (Compile (command=["make"],
warningPattern="" (.\%?): ([0-9]+): [Ww]arning: (.\%)S$",
warningExtractor=Compile.warnExtractFromRegexpGroups,
suppressionFile="support-files/compiler_warnings.supp"))

(Compile.warnExtractFromRegexpGroups is a pre-defined function that returns the filename, linenum-
ber, and text from groups (1,2,3) of the regexp match).

In projects with source files in multiple directories, it is possible to get full path names for file names
matched in the suppression file, as long as the build command outputs the names of directories as they are
entered into and left again. For this, specify regexps for the arguments directoryEnterPattern= and
directoryLeavePattern=. The directoryEnterPattern= regexp should return the name of the di-
rectory entered into in the first matched group. The defaults, which are suitable for GNU Make, are these:

directoryEnterPattern = "make.*: Entering directory [\"'/] (.*) [/ *\"]"
directoryLeavePattern = "make.x: Leaving directory"

(TODO: this step needs to be extended to look for GCC error messages as well, and collect them into a separate
logfile, along with the source code filenames involved.)

Visual C++

These steps are meant to handle compilation using Microsoft compilers. VC++ 6-12 (aka Visual Studio 2003-2013
and VCExpress9) are supported via calling devenv. Msbuild as well as Windows Driver Kit 8 are supported via
the MsBuild4 and MsBuild12 steps. These steps will take care of setting up a clean compilation environment,
parsing the generated output in real time, and delivering as detailed as possible information about the compilation
executed.

All of the classes are in buildbot .steps.vstudio. The available classes are:

* VC6

s VC7

* VC8

* VCO

* VC10

e VC11

e VC12

* VS2003

* VS2005

134 Chapter 2. Buildbot Manual

BuildBot Documentation, Release 0.8.12

* VS2008
e VS2010
e VS2012
e VS2013
* VCExpress9
* MsBuild4
* MsBuildl2
The available constructor arguments are

mode The mode default to rebuild, which means that first all the remaining object files will be cleaned by the
compiler. The alternate values are build, where only the updated files will be recompiled, and clean,
where the current build files are removed and no compilation occurs.

projectfile This is a mandatory argument which specifies the project file to be used during the compilation.
config This argument defaults to release an gives to the compiler the configuration to use.

installdir This is the place where the compiler is installed. The default value is compiler specific and is the
default place where the compiler is installed.

useenv This boolean parameter, defaulting to False instruct the compiler to use its own settings or the one
defined through the environment variables PATH, INCLUDE, and LIB. If any of the INCLUDE or LIB
parameter is defined, this parameter automatically switches to True.

PATH This is a list of path to be added to the PATH environment variable. The default value is the one defined in
the compiler options.

INCLUDE This is a list of path where the compiler will first look for include files. Then comes the default paths
defined in the compiler options.

LIB This is a list of path where the compiler will first look for libraries. Then comes the default path defined in
the compiler options.

arch That one is only available with the class VS2005 (VCS). It gives the target architecture of the built artifact.
It defaults to x86 and does not apply to MsBuild4 or MsBuild1l2. Please see plat form below.

project This gives the specific project to build from within a workspace. It defaults to building all projects.
This is useful for building cmake generate projects.

platform This is a mandatory argument for MsBuild4 and MsBuild12 specifying the target platform such
as ‘Win32’, ‘x64’ or ‘Vista Debug’. The last one is an example of driver targets that appear once Windows
Driver Kit 8 is installed.

Here is an example on how to drive compilation with Visual Studio 2013:

from buildbot.plugins import steps

f.addstep (
steps.VS2013 (projectfile="project.sln",
config="release",
arch="x64", mode="build",
INCLUDE=[r’C:\3rd-pary\libmagic\include’],
LIB=[r’C:\3rd-party\libmagic\lib-x64"1))

Here is a similar example using “MsBuild12”:

from buildbot.plugins import steps

Build one project in Release mode for Win32
f.addStep (
steps.MsBuildl2 (projectfile="trunk.sln", config="Release", platform="Win32",
workdir="trunk",

2.4. Configuration 135

BuildBot Documentation, Release 0.8.12

project="tools\\protoc"))

Build the entire solution in Debug mode for x64
f.addstep (
steps.MsBuildl2 (projectfile="trunk.sln", config=’Debug’, platform=’'x64",
workdir="trunk"))

Robocopy

class buildbot.steps.mswin.Robocopy
This step runs robocopy on Windows.

Robocopy (http://technet.microsoft.com/en-us/library/cc733145.aspx) is available in versions of Windows starting
with Windows Vista and Windows Server 2008. For previous versions of Windows, it’s available as part of the
Windows Server 2003 Resource Kit Tools (http://www.microsoft.com/en-us/download/details.aspx?1d=17657).

from buildbot.plugins import steps

f.addStep (steps.Robocopy (
name='deploy_binaries’,

’

description=’'Deploying binaries...’,
descriptionDone=’'Deployed binaries.’,
source=Interpolate (' Build\\Bin\\% (prop:configuration)s’),
destination=Interpolate (' % (prop:deploy_dir)\\Bin\\% (prop:configuration)s’),
mirror=True))

Auvailable constructor arguments are:

source The path to the source directory (mandatory).
destination The path to the destination directory (mandatory).
files An array of file names or patterns to copy.

recursive Copy files and directories recursively (/E parameter).

mirror Mirror the source directory in the destination directory, including removing files that don’t exist anymore
(/MIR parameter).

move Delete the source directory after the copy is complete (/MOVE parameter).

exclude_files An array of file names or patterns to exclude from the copy (/XF parameter).
exclude_dirs An array of directory names or patterns to exclude from the copy (/XD parameter).
custom_opts An array of custom parameters to pass directly to the robocopy command.
verbose Whether to output verbose information (/V /TS /TP parameters).

Note that parameters /TEE /NP will always be appended to the command to signify, respectively, to output
logging to the console, use Unicode logging, and not print any percentage progress information for each file.

Test

from buildbot.plugins import steps
f.addStep (steps.Test ())

This is meant to handle unit tests. The default command is make test, and the warnOnFailure flag is set. The
other arguments are identical to Shel1Command.

136 Chapter 2. Buildbot Manual

http://technet.microsoft.com/en-us/library/cc733145.aspx
http://www.microsoft.com/en-us/download/details.aspx?id=17657

BuildBot Documentation, Release 0.8.12

TreeSize

from buildbot.plugins import steps
f.addStep (steps.TreeSize())

This is a simple command that uses the du tool to measure the size of the code tree. It puts the size (as a
count of 1024-byte blocks, aka ‘KiB’ or ‘kibibytes’) on the step’s status text, and sets a build property named
tree-size-KiB with the same value. All arguments are identical to ShellCommand.

PerlModuleTest

from buildbot.plugins import steps
f.addStep (steps.PerlModuleTest ())

This is a simple command that knows how to run tests of perl modules. It parses the output to determine the
number of tests passed and failed and total number executed, saving the results for later query. The command is
prove —-1lib 1lib -r t, although this can be overridden with the command argument. All other arguments
are identical to those for She 11l Command.

MTR (mysql-test-run)

The MTR class is a subclass of Test. It is used to run test suites using the mysql-test-run program, as used in
MySQL, Drizzle, MariaDB, and MySQL storage engine plugins.

The shell command to run the test suite is specified in the same way as for the Test class. The MTR class will
parse the output of running the test suite, and use the count of tests executed so far to provide more accurate
completion time estimates. Any test failures that occur during the test are summarized on the Waterfall Display.

Server error logs are added as additional log files, useful to debug test failures.

Optionally, data about the test run and any test failures can be inserted into a database for further analysis and report
generation. To use this facility, create an instance of twisted.enterprise.adbapi.ConnectionPool
with connections to the database. The necessary tables can be created automatically by setting
autoCreateTables to True, or manually using the SQL found in the mt rlogobserver . py source file.

One problem with specifying a database is that each reload of the configuration will get a new instance of
ConnectionPool (even if the connection parameters are the same). To avoid that Buildbot thinks the builder
configuration has changed because of this, use the steps.mtrlogobserver.EgConnectionPool sub-
class of ConnectionPool, which implements an equiality operation that avoids this problem.

Example use:

from buildbot.plugins import steps, util

myPool = util.EgConnectionPool ("MySQLdb", "host", "buildbot", "password", "db")
myFactory.addStep (steps.MIR (workdir="mysgl-test", dbpool=myPool,
command=["perl", "mysgl-test-run.pl", "--force"]))

The MTR step’s arguments are:

textLimit Maximum number of test failures to show on the waterfall page (to not flood the page in case of a
large number of test failures. Defaults to 5.

testNameLimit Maximum length of test names to show unabbreviated in the waterfall page, to avoid exces-
sive column width. Defaults to 16.

parallel Value of ——parallel option used for mysgl-test—-run.pl (number of processes used to run
the test suite in parallel). Defaults to 4. This is used to determine the number of server error log files
to download from the slave. Specifying a too high value does not hurt (as nonexisting error logs will be

2.4. Configuration 137

BuildBot Documentation, Release 0.8.12

ignored), however if using ——parallel value greater than the default it needs to be specified, or some
server error logs will be missing.

dbpool An instance of twisted.enterprise.adbapi.ConnectionPool, or None. Defaults to
None. If specified, results are inserted into the database using the ConnectionPool.

autoCreateTables Boolean, defaults to False. If True (and dbpool is specified), the necessary database
tables will be created automatically if they do not exist already. Alternatively, the tables can be created
manually from the SQL statements found in the mt r1ogobserver . py source file.

test_type Short string that will be inserted into the database in the row for the test run. Defaults to the empty
string, but can be specified to identify different types of test runs.

test_info Descriptive string that will be inserted into the database in the row for the test run. Defaults to the
empty string, but can be specified as a user-readable description of this particular test run.

mtr_subdir The subdirectory in which to look for server error log files. Defaults to mysgl-test, which is
usually correct. Interpolate is supported.

SubunitShellCommand

class buildbot.steps.subunit.SubunitShellCommand

This buildstep is similar to Shel1Command, except that it runs the log content through a subunit filter to extract
test and failure counts.

from buildbot.plugins import steps
f.addStep (steps.SubunitShellCommand (command="make test"))

This runs make test and filters it through subunit. The ‘tests’ and ‘test failed’ progress metrics will now
accumulate test data from the test run.

If failureOnNoTests is True, this step will fail if no test is run. By default failureOnNoTests is False.

Slave Filesystem Steps

Here are some buildsteps for manipulating the slave’s filesystem.

FileExists

This step will assert that a given file exists, failing if it does not. The filename can be specified with a property.
from buildbot.plugins import steps

f.addStep (steps.FileExists (file="test_data’))

This step requires slave version 0.8.4 or later.

CopyDirectory

This command copies a directory on the slave.

from buildbot.plugins import steps
f.addStep (steps.CopyDirectory (src="build/data", dest="tmp/data"))

This step requires slave version 0.8.5 or later.

The CopyDirectory step takes the following arguments:

138 Chapter 2. Buildbot Manual

BuildBot Documentation, Release 0.8.12

timeout if the copy command fails to produce any output for this many seconds, it is assumed to be locked up
and will be killed. This defaults to 120 seconds. Pass None to disable.

maxTime if the command takes longer than this many seconds, it will be killed. This is disabled by default.

RemoveDirectory

This command recursively deletes a directory on the slave.

from buildbot.plugins import steps
f.addStep (steps.RemoveDirectory (dir="build/build"))

This step requires slave version 0.8.4 or later.

MakeDirectory

This command creates a directory on the slave.

from buildbot.plugins import steps
f.addStep (steps.MakeDirectory (dir="build/build"))

This step requires slave version 0.8.5 or later.

Python BuildSteps

Here are some BuildSteps that are specifically useful for projects implemented in Python.

BuildEPYDoc

class buildbot.steps.python.BuildEPYDoc

epydoc (http://epydoc.sourceforge.net/) is a tool for generating API documentation for Python modules from their
docstrings. It reads all the . py files from your source tree, processes the docstrings therein, and creates a large
tree of . html files (or a single . pdf file).

The BuildEPYDoc step will run epydoc to produce this API documentation, and will count the errors and
warnings from its output.

You must supply the command line to be used. The default is make epydocs, which assumes that your
project has a Makefile with an epydocs target. You might wish to use something like epydoc -o apiref
source/PKGNAME instead. You might also want to add ——pd7 to generate a PDF file instead of a large tree of
HTML files.

The API docs are generated in-place in the build tree (under the workdir, in the subdirectory controlled by the —o
argument). To make them useful, you will probably have to copy them to somewhere they can be read. A com-
mand like rsync —-ad apiref/ dev.example.com:~public_html/current—-apiref/ might be
useful. You might instead want to bundle them into a tarball and publish it in the same place where the generated
install tarball is placed.

from buildbot.plugins import steps

f.addStep (steps.BuildEPYDoc (command=["epydoc", "-o", "apiref", "source/mypkg"]))

2.4. Configuration 139

http://epydoc.sourceforge.net/

BuildBot Documentation, Release 0.8.12

PyFlakes

class buildbot.steps.python.PyFlakes

PyFlakes (http://divmod.org/trac/wiki/DivmodPyflakes) is a tool to perform basic static analysis of Python code to
look for simple errors, like missing imports and references of undefined names. It is like a fast and simple form of
the C lint program. Other tools (like pychecker (http://pychecker.sourceforge.net/)) provide more detailed results
but take longer to run.

The PyFlakes step will run pyflakes and count the various kinds of errors and warnings it detects.

You must supply the command line to be used. The defaultis make pyflakes, which assumes you have a top-
level Makefile with apyflakes target. You might want to use something like pyflakes . orpyflakes
src.

from buildbot.plugins import steps

f.addStep (steps.PyFlakes (command=["pyflakes", "src"]))

Sphinx

class buildbot.steps.python.Sphinx

Sphinx (http://sphinx.pocoo.org/) is the Python Documentation Generator. It uses RestructuredText
(http://docutils.sourceforge.net/rst.html) as input format.

The Sphinx step will run sphinx-build or any other program specified in its sphinx argument and count the
various warnings and error it detects.

from buildbot.plugins import steps
f.addStep (steps.Sphinx (sphinx_builddir="_build"))

This step takes the following arguments:

sphinx_builddir (required) Name of the directory where the documentation will be generated.
sphinx_sourcedir (optional, defaulting to .), Name the directory where the conf . py file will be found
sphinx_builder (optional) Indicates the builder to use.

sphinx (optional, defaulting to sphinx-build) Indicates the executable to run.

tags (optional) List of tags to pass to sphinx-build

defines (optional) Dictionary of defines to overwrite values of the conf . py file.

mode (optional) String, one of full or incremental (the default). If set to full, indicates to Sphinx to
rebuild everything without re-using the previous build results.

PyLint

Similarly, the PyLint step will run pylint and analyze the results.
You must supply the command line to be used. There is no default.

from buildbot.plugins import steps

f.addStep (steps.PyLint (command=["pylint", "src"]))

140 Chapter 2. Buildbot Manual

http://divmod.org/trac/wiki/DivmodPyflakes
http://pychecker.sourceforge.net/
http://sphinx.pocoo.org/
http://docutils.sourceforge.net/rst.html

BuildBot Documentation, Release 0.8.12

Trial

class buildbot.steps.python_twisted.Trial

This step runs a unit test suite using trial, a unittest-like testing framework that is a component of Twisted Python.
Trial is used to implement Twisted’s own unit tests, and is the unittest-framework of choice for many projects that
use Twisted internally.

Projects that use trial typically have all their test cases in a ‘test’ subdirectory of their top-level library directory.
For example, for a package petmail, the tests might be in petmail/test/test_x.py. More complicated
packages (like Twisted itself) may have multiple test directories, like twisted/test/test_«.py for the core
functionality and twisted/mail/test/test_x.py for the email-specific tests.

To run trial tests manually, you run the trial executable and tell it where the test cases are located. The most
common way of doing this is with a module name. For petmail, this might look like trial petmail.test, which
would locate all the test_x.py files under petmail/test/, running every test case it could find in them.
Unlike the unittest . py that comes with Python, it is not necessary to run the test_foo.py as a script; you
always let trial do the importing and running. The step’s tests * parameter controls which tests trial will run: it
can be a string or a list of strings.

To find the test cases, the Python search path must allow something like import petmail.test to
work. For packages that don’t use a separate top-level 1ib directory, PYTHONPATH=. will work,
and will use the test cases (and the code they are testing) in-place. ~PYTHONPATH=build/lib or
PYTHONPATH=build/lib.somearch are also useful when you do a python setup.py build step
first. The testpath attribute of this class controls what PYTHONPATH is set to before running trial.

Trial has the ability, through the ——testmodule flag, to run only the set of test cases named by special
test-case—name tags in source files. We can get the list of changed source files from our parent Build and
provide them to trial, thus running the minimal set of test cases needed to cover the Changes. This is useful for
quick builds, especially in trees with a lot of test cases. The testChanges parameter controls this feature: if
set, it will override tests.

The trial executable itself is typically just trial, and is typically found in the shell search path. It can be overridden
with the trial parameter. This is useful for Twisted’s own unittests, which want to use the copy of bin/trial that
comes with the sources.

To influence the version of Python being used for the tests, or to add flags to the command, set the python
parameter. This can be a string (like python2.2) or alist (like [python2.3", ’'-Wall’]).

Trial creates and switches into a directory named _trial_temp/ before running the tests, and sends the twisted
log (which includes all exceptions) to a file named test . 1og. This file will be pulled up to the master where it
can be seen as part of the status output.

from buildbot.plugins import steps
f.addStep (steps.Trial (tests='petmail.test’))

Trial has the ability to run tests on several workers in parallel (beginning with Twisted 12.3.0). Set jobs to the
number of workers you want to run. Note that running trial in this way will create multiple log files (named
test.N.log,err.N.logand out.N. log starting with N=0) rather than a single test . log.

This step takes the following arguments:

jobs (optional) Number of slave-resident workers to use when running the tests. Defaults to 1 worker. Only
works with Twisted>=12.3.0.

RemovePYCs

class buildbot.steps.python_twisted.RemovePYCs

This is a simple built-in step that will remove . pyc files from the workdir. This is useful in builds that update their
source (and thus do not automatically delete . pyc files) but where some part of the build process is dynamically
searching for Python modules. Notably, trial has a bad habit of finding old test modules.

2.4. Configuration 141

BuildBot Documentation, Release 0.8.12

from buildbot.plugins import steps

f.addStep (steps.RemovePYCs ())

Transferring Files

class buildbot.steps.transfer.FileUpload
class buildbot.steps.transfer.FileDownload

Most of the work involved in a build will take place on the buildslave. But occasionally it is useful to do some
work on the buildmaster side. The most basic way to involve the buildmaster is simply to move a file from the
slave to the master, or vice versa. There are a pair of steps named Fi leUploadand FileDownload to provide
this functionality. FileUpload moves a file up to the master, while FileDownload moves a file down from
the master.

As an example, let’s assume that there is a step which produces an HTML file within the source tree that
contains some sort of generated project documentation. We want to move this file to the buildmaster, into
a ~/public_html directory, so it can be visible to developers. This file will wind up in the slave-
side working directory under the name docs/reference.html. We want to put it into the master-side
~/public_html/ref.html, and add a link to the HTML status to the uploaded file.

from buildbot.plugins import steps

f.addStep (steps.ShellCommand (command=["make", "docs"]))

f.addStep (steps.FileUpload(slavesrc="docs/reference.html",
masterdest="/home/bb/public_html/ref.html",
url="http://somesite/~buildbot/ref.html"))

The masterdest= argument will be passed to os.path.expanduser, so things like ~ will be expanded
properly. Non-absolute paths will be interpreted relative to the buildmaster’s base directory. Likewise, the
slavesrc= argument will be expanded and interpreted relative to the builder’s working directory.

Note: The copied file will have the same permissions on the master as on the slave, look at the mode= parameter
to set it differently.

To move a file from the master to the slave, use the FileDownload command. For example, let’s assume
that some step requires a configuration file that, for whatever reason, could not be recorded in the source code
repository or generated on the buildslave side:

from buildbot.plugins import steps

f.addStep (steps.FileDownload (mastersrc="~/todays_build_config.txt",
slavedest="build_config.txt"))
f.addStep (steps.ShellCommand (command=["make", "config"]))

Like FileUpload, the mastersrc= argument is interpreted relative to the buildmaster’s base directory,
and the slavedest= argument is relative to the builder’s working directory. If the buildslave is running
in ~buildslave, and the builder’s builddir is something like tests—-1386, then the workdir is go-
ing to be ~buildslave/tests—-1386/build, and a slavedest= of foo/bar.html will get put in
~buildslave/tests-1386/build/foo/bar.html. Both of these commands will create any missing
intervening directories.

Other Parameters

The maxsize= argument lets you set a maximum size for the file to be transferred. This may help to avoid
surprises: transferring a 100MB coredump when you were expecting to move a 10kB status file might take an
awfully long time. The blocksize= argument controls how the file is sent over the network: larger blocksizes

142 Chapter 2. Buildbot Manual

BuildBot Documentation, Release 0.8.12

are slightly more efficient but also consume more memory on each end, and there is a hard-coded limit of about
640kB.

The mode= argument allows you to control the access permissions of the target file, traditionally expressed as an
octal integer. The most common value is probably 0755, which sets the x executable bit on the file (useful for
shell scripts and the like). The default value for mode= is None, which means the permission bits will default
to whatever the umask of the writing process is. The default umask tends to be fairly restrictive, but at least on
the buildslave you can make it less restrictive with a —umask command-line option at creation time (Buildslave
Options).

The keepstamp= argument is a boolean that, when True, forces the modified and accessed time of the destina-
tion file to match the times of the source file. When False (the default), the modified and accessed times of the
destination file are set to the current time on the buildmaster.

The ur 1= argument allows you to specify an url that will be displayed in the HTML status. The title of the url will
be the name of the item transferred (directory for DirectoryUpload or file for FileUpload). This allows
the user to add a link to the uploaded item if that one is uploaded to an accessible place.

Transfering Directories

class buildbot.steps.transfer.DirectoryUpload

To transfer complete directories from the buildslave to the master, there is a BuildStep named
DirectoryUpload. It works like FileUpload, just for directories. However it does not support the
maxsize, blocksize and mode arguments. As an example, let’s assume an generated project documentation,
which consists of many files (like the output of doxygen or epydoc). We want to move the entire documentation
to the buildmaster, into a ~/public_html/docs directory, and add a link to the uploaded documentation on
the HTML status page. On the slave-side the directory can be found under docs:

from buildbot.plugins import steps

f.addStep (steps.ShellCommand (command=["make", "docs"]))

f.addStep (steps.DirectoryUpload(slavesrc="docs",
masterdest="~/public_html/docs",
url="~buildbot/docs"))

The DirectoryUpload step will create all necessary directories and transfers empty directories, too.

The maxsize and blocksize parameters are the same as for F'i1eUpload, although note that the size of the
transferred data is implementation-dependent, and probably much larger than you expect due to the encoding used
(currently tar).

The optional compress argument can be given as ' gz’ or ' bz2’ to compress the datastream.

Note: The permissions on the copied files will be the same on the master as originally on the slave, see
buildslave create-slave —-umask tochange the default one.

Transferring Multiple Files At Once

class buildbot.steps.transfer.MultipleFileUpload

In addition to the FileUpload and DirectoryUpload steps there is the MultipleFileUpload step for
uploading a bunch of files (and directories) in a single BuildStep. The step supports all arguments that are
supported by FileUploadand DirectoryUpload, butinstead of a the single slavesrc parameter it takes
a (plural) slavesrcs parameter. This parameter should either be a list, or something that can be rendered as a
list.

from buildbot.plugins import steps

f.addStep (steps.Test (command=["make", "test"]))
f.addStep (steps.ShellCommand (command=["make", "docs"]))

2.4. Configuration 143

BuildBot Documentation, Release 0.8.12

f.addStep (steps.MultipleFileUpload(slavesrcs=["docs", "test-results.html"],
masterdest="~/public_html",
url="~buildbot"))

The url= parameter, can be used to specify a link to be displayed in the HTML status of the step.

The way URLs are added to the step can be customized by extending the MultipleFileUpload class. the
allUploadsDone method is called after all files have been uploaded and sets the URL. The uploadDone method is
called once for each uploaded file and can be used to create file-specific links.

from buildbot.plugins import steps
import os.path

class CustomFileUpload(steps.MultipleFileUpload) :
linkTypes = (/ .html’, 7 .txt’)

def linkFile(self, basename) :
name, ext = os.path.splitext (basename)
return ext in self.linkTypes

def uploadDone (self, result, source, masterdest):
if self.url:
basename = os.path.basename (source)
if self.linkFile (basename) :
self.addURL (self.url + 7/’ + basename, basename)

def allUploadsDone(self, result, sources, masterdest):
if self.url:
notLinked = filter (lambda src: not self.linkFile(src), sources)

numFiles = len(notLinked)
if numFiles:
self.addURL (self.url, "... more’ % numFiles)

Transfering Strings

class buildbot.steps.transfer.StringDownload
class buildbot.steps.transfer.JSONStringDownload
class buildbot.steps.transfer.JSONPropertiesDownload

Sometimes it is useful to transfer a calculated value from the master to the slave. Instead of having to create a
temporary file and then use FileDownload, you can use one of the string download steps.

from buildbot.plugins import steps

f.addStep (steps.StringDownload (Interpolate ("% (src::branch)s-% (prop:got_revision)s\n"),
slavedest="buildid.txt"))

StringDownload works justlike FileDownload except it takes a single argument, s, representing the string
to download instead of a mastersrc argument.

from buildbot.plugins import steps

buildinfo = {
"branch’: Property(’branch’),
"got_revision’: Property(’got_revision’)
}
f.addStep (steps.JSONStringDownload (buildinfo, slavedest="buildinfo.json"))

JSONStringDownload is similar, except it takes an o argument, which must be JSON serializable, and trans-
fers that as a JSON-encoded string to the slave.

144 Chapter 2. Buildbot Manual

BuildBot Documentation, Release 0.8.12

from buildbot.plugins import steps
f.addStep (steps.JSONPropertiesDownload (slavedest="build-properties.json"))

JSONPropertiesDownload transfers a json-encoded string that represents a dictionary where properties
maps to a dictionary of build property name to property value; and sourcestamp represents the build’s
sourcestamp.

Running Commands on the Master

class buildbot.steps.master.MasterShellCommand

Occasionally, it is useful to execute some task on the master, for example to create a directory, deploy a
build result, or trigger some other centralized processing. This is possible, in a limited fashion, with the
MastersShellCommand step.

This step operates similarly to a regular Shel1Command, but executes on the master, instead of the slave. To be
clear, the enclosing Build object must still have a slave object, just as for any other step — only, in this step, the
slave does not do anything.

In this example, the step renames a tarball based on the day of the week.

from buildbot.plugins import steps

f.addStep (steps.FileUpload(slavesrc="widgetsoft.tar.gz",
masterdest="/var/buildoutputs/widgetsoft-new.tar.gz"))
f.addStep (steps.MasterShellCommand (command="""
cd /var/buildoutputs;
mv widgetsoft-new.tar.gz widgetsoft-‘date +%a‘.tar.gz"""))

Note: By default, this step passes a copy of the buildmaster’s environment variables to the subprocess. To pass
an explicit environment instead, add an env={ . . } argument.

Environment variables constructed using the env argument support expansion so that if you just want to prepend
/home/buildbot /bin to the PATH environment variable, you can do it by putting the value $ {PATH} at the
end of the value like in the example below. Variables that don’t exist on the master will be replaced by " ".

from buildbot.plugins import steps

f.addStep (steps.MasterShellCommand (

command=["make", "www"],
env={’'PATH’ : ["/home/buildbot/bin",
"S{PATH}"]1}))

Note that environment values must be strings (or lists that are turned into strings). In particular, numeric properties
such as buildnumber must be substituted using Interpolate.

interruptSignal (optional) Signal to use to end the process, if the step is interrupted.

LogRenderable

class buildbot.steps.master.LogRenderable

This build step takes content which can be renderable and logs it in a pretty-printed format. It can be useful for
debugging properties during a build.

Setting Properties

These steps set properties on the master based on information from the slave.

2.4. Configuration 145

BuildBot Documentation, Release 0.8.12

SetProperty

class buildbot.steps.master.SetProperty

SetProperty takes two arguments of property and value where the value is to be assigned to the property
key. It is usually called with the value argument being specifed as a Interpolate object which allows the value
to be built from other property values:

from buildbot.plugins import steps, util

f.addStep (steps.SetProperty (property="SomeProperty",
value=util.Interpolate ("sch=% (prop:scheduler)s, slave=% (prop:slavenam

SetPropertyFromCommand

class buildbot.steps.shell.SetPropertyFromCommand

This buildstep is similar to Shel1Command, except that it captures the output of the command into a property.
It is usually used like this:

from buildbot.plugins import steps

f.addStep (steps.SetPropertyFromCommand (command="uname -a", property="uname"))

This runs uname -a and captures its stdout, stripped of leading and trailing whitespace, in the property uname.
To avoid stripping, add strip=False.

The property argument can be specified as a Interpolate object, allowing the property name to be built from
other property values.

The more advanced usage allows you to specify a function to extract properties from the command output. Here
you can use regular expressions, string interpolation, or whatever you would like. In this form, extract_fn
should be passed, and not Property. The ext ract_fn function is called with three arguments: the exit status
of the command, its standard output as a string, and its standard error as a string. It should return a dictionary
containing all new properties.

from buildbot.plugins import steps

def glob2list (rc, stdout, stderr):
jpgs = [l.strip() for 1 in stdout.split(’\n’)]
return {’ jpgs’ : jpgs}

f.addStep (steps.SetPropertyFromCommand (command="1s -1 =*.Jjpg",
extract_fn=glob2list))

Note that any ordering relationship of the contents of stdout and stderr is lost. For example, given:

from buildbot.plugins import steps

f.addStep (steps.SetPropertyFromCommand (
command="echo outputl; echo error >&2; echo output2",
extract_fn=my_extract))

Then my_extract will see stdout="outputl\noutput2\n" and stderr="error\n".

Avoid using the ext ract_fn form of this step with commands that produce a great deal of output, as the output
is buffered in memory until complete.

class buildbot.steps.slave.SetPropertiesFromEnv

146 Chapter 2. Buildbot Manual

BuildBot Documentation, Release 0.8.12

SetPropertiesFromEnv

Buildbot slaves (later than version 0.8.3) provide their environment variables to the master on connect. These can
be copied into Buildbot properties with the Set PropertiesFromEnv step. Pass a variable or list of variables
in the variables parameter, then simply use the values as properties in a later step.

Note that on Windows, environment variables are case-insensitive, but Buildbot property names are case sensitive.
The property will have exactly the variable name you specify, even if the underlying environment variable is
capitalized differently. If, for example, you use variables=[’ Tmp’], the result will be a property named
Tmp, even though the environment variable is displayed as TMP in the Windows GUI.

from buildbot.plugins import steps, util

f.addStep (steps.SetPropertiesFromEnv (variables=["SOME_JAVA_LIB_HOME", "JAVAC"]))
f.addStep (steps.Compile (commands=[util.Interpolate ("% (prop:JAVAC)s"),
"*Cp",
util.Interpolate ("% (prop:SOME_JAVA_LIB_HOME)s")]1))

Note that this step requires that the Buildslave be at least version 0.8.3. For previous versions, no environment
variables are available (the slave environment will appear to be empty).

Setting Buildslave Info

Each buildslave has a dictionary of properties (the “buildslave info dictionary”) that is persisted into the database.
This info dictionary is displayed on the “buildslave” web page and is available in Interpolate operations.

SetSlavelnfo

class buildbot.steps.master.SetSlaveInfo
SetSlaveInfo is a base class to provide a facility to set values in the buildslave info dictionary. For example:

from buildbot.plugins import steps

class SetSlaveFromPropInfo (steps.SetSlaveInfo):
name = "SetSlaveFromPropInfo"

override this to return the dictionary update
def getSlaveInfoUpdate (self):
for example, copy a property into the buildslave dict
update = {
"foo": self.getProperty ("foo")
}

return update

Triggering Schedulers

Trigger (schedulerNames=[], sourceStamp=None, sourceStamps=None,
updateSourceStamp=None, alwaysUselatest=False,
waitForFinish=False, set_properties={},

copy_properties=[])

The counterpart to the Triggerable described in section Triggerable is the Trigger build step:

from buildbot.plugins import steps

f.addStep (steps.Trigger (schedulerNames=['build-prep’],
waitForFinish=True,
updateSourceStamp=True,
set_properties={’'quick’ : False}))

2.4. Configuration 147

BuildBot Documentation, Release 0.8.12

The SourceStamps to use for the triggered build are controlled by the arguments updateSourceStamp,
alwaysUseLatest, and sourceStamps.

Hyperlinks are added to the build detail web pages for each triggered build.

param schedulerNames lists the Triggerable schedulers that should be triggered when this step
is executed.

Note: It is possible, but not advisable, to create a cycle where a build continually triggers itself,
because the schedulers are specified by name.

param waitForFinish

 If True, the step will not finish until all of the builds from the triggered schedulers have
finished.

* If False (the default) or not given, then the buildstep succeeds immediately after trigger-
ing the schedulers.

param updateSourceStamp

e If True (the default), then step updates the source stamps given to the Triggerable schedulers to include
This is useful to ensure that all of the builds use exactly the same source stamps, even
if other Changes have occurred while the build was running.

¢ If False (and neither of the other arguments are specified), then the exact same SourceS-
tamps are used.

param alwaysUseLatest If True, then no SourceStamps are given, corresponding to using the latest
revisions of the repositories specified in the Source steps. This is useful if the triggered builds
use to a different source repository.

param sourceStamps Accepts a list of dictionaries containing the keys branch, revision,
repository, project, and optionally patch_level, patch_body, patch_subdir,
patch_author and patch_comment and creates the corresponding SourceStamps. If
only one sourceStamp has to be specified then the argument sourceStamp can be used for
a dictionary containing the keys mentioned above. The arguments updateSourceStamp,
alwaysUseLlatest, and sourceStamp can be specified using properties.

param set_properties allows control of the properties that are passed to the triggered scheduler. The
parameter takes a dictionary mapping property names to values. You may use Interpolate here
to dynamically construct new property values. For the simple case of copying a property, this
might look like:

set_properties={"my_propl" : Property ("my_propl")}

The copy_properties parameter, given a list of properties to copy into the new build request, has been
deprecated in favor of explicit use of set_properties.

Dynamic Trigger

Sometimes it is desirable to select which scheduler to trigger, and which properties to set dynamically, at the time
of the build. For this purpose, Trigger step support a method that you can customize in order to override statically
defined schedulernames, and set_properties.

buildbot.steps.source.getSchedulersAndProperties ()
Returns list of tuples (schedulerName, propertiesDict) optionally via deferred

This methods returns a list of tuples describing what scheduler to trigger, with which properties. The proper-
ties should already be rendered (ie, concrete value, not objects wrapped by Interpolate or Property).
Since this function happens at build-time, the property values are available from the step and can be used to
decide what schedulers or properties to use.

148 Chapter 2. Buildbot Manual

BuildBot Documentation, Release 0.8.12

With this method, you can also trigger the same scheduler multiple times with different set of properties.
The sourcestamp configuration is however the same for each triggered build request.

RPM-Related Steps

These steps work with RPMs and spec files.

RpmBuild

The RpmBuild step builds RPMs based on a spec file:

from buildbot.plugins import steps
f.addStep (steps.RpmBuild (specfile="proj.spec", dist=’.el5"))

The step takes the following parameters

specfile The . spec file to build from

topdir Definition for _topdir, defaulting to the workdir.
builddir Definition for _builddir, defaulting to the workdir.
rpmdir Definition for _rpmdir, defaulting to the workdir.
sourcedir Definition for _sourcedir, defaulting to the workdir.
srcrpmdir Definition for _srcrpmdir, defaulting to the workdir.
dist Distribution to build, used as the definition for _dist.
autoRelease If true, use the auto-release mechanics.

vesRevision If true, use the version-control revision mechanics. This uses the got__revision property to
determine the revision and define _revision. Note that this will not work with multi-codebase builds.

RpmLint

The RomLint step checks for common problems in RPM packages or spec files:

from buildbot.plugins import steps
f.addStep (steps.RpmLint ())

The step takes the following parameters

fileloc The file or directory to check. In case of a directory, it is recursively searched for RPMs and spec files
to check.

config Path to a rpmlint config file. This is passed as the user configuration file if present.

Mock Steps

Mock (http://fedoraproject.org/wiki/Projects/Mock) creates chroots and builds packages in them. It populates
the changeroot with a basic system and the packages listed as build requirement. The type of chroot to build is
specified with the root parameter. To use mock your buildbot user must be added to the mock group.

2.4. Configuration 149

http://fedoraproject.org/wiki/Projects/Mock

BuildBot Documentation, Release 0.8.12

MockBuildSRPM Step

The MockBuildSRPM step builds a SourceRPM based on a spec file and optionally a source directory:

from buildbot.plugins import steps
f.addStep (steps.MockBuildSRPM (root="default’, spec='mypkg.spec’))

The step takes the following parameters

root Use chroot configuration defined in /etc/mock/<root>.cfg.
resultdir The directory where the logfiles and the SourceRPM are written to.
spec Build the SourceRPM from this spec file.

sources Path to the directory containing the sources, defaulting to ..

MockRebuild Step

The MockRebuild step rebuilds a SourceRPM package:

from buildbot.plugins import steps
f.addStep (steps.MockRebuild (root="default’, spec="mypkg-1.0-1.src.rpm’))

The step takes the following parameters
root Uses chroot configuration defined in /etc/mock/<root>.cfgq.
resultdir The directory where the logfiles and the SourceRPM are written to.

srpm The path to the SourceRPM to rebuild.

Debian Build Steps

DebPbuilder

The DebPbuilder step builds Debian packages within a chroot built by pbuilder. It populates the changeroot
with a basic system and the packages listed as build requirement. The type of chroot to build is specified with the
distribution,distribution and mirror parameter. To use pbuilder your buildbot must have the right
to run pbuilder as root through sudo.

from buildbot.plugins import steps
f.addStep (steps.DebPbuilder())

The step takes the following parameters

architecture Architecture to build chroot for.

distribution Name, or nickname, of the distribution. Defaults to ‘stable’.
basetgz Path of the basetgz to use for building.

mirror URL of the mirror used to download the packages from.
extrapackages List if packages to install in addition to the base system.

keyring Path to a gpg keyring to verify the downloaded packages. This is necessary if you build for a foreign
distribution.

components Repos to activate for chroot building.

150 Chapter 2. Buildbot Manual

BuildBot Documentation, Release 0.8.12

DebCowbuilder

The DebCowbuilder step is a subclass of DebPbui lder, which use cowbuilder instead of pbuilder.

DebLintian

The DebLintian step checks a build .deb for bugs and policy violations. The packages or changes file to test is
specifiedin fileloc

from buildbot.plugins import steps, utils

f.addStep (steps.DeblLintian(fileloc=util.Interpolate ("% (prop:deb-changes)s")))

Miscellaneous BuildSteps

A number of steps do not fall into any particular category.

HLint

The HLint step runs Twisted Lore, a lint-like checker over a set of . xhtml files. Any deviations from recom-
mended style is flagged and put in the output log.

The step looks at the list of changes in the build to determine which files to check - it does not check all files. It
specifically excludes any . xhtml files in the top-level sandbox/ directory.

The step takes a single, optional, parameter: python. This specifies the Python executable to use to run Lore.

from buildbot.plugins import steps

f.addStep (steps.HLint ())

MaxQ

MaxQ (http://maxq.tigris.org/) is a web testing tool that allows you to record HTTP sessions and play them back.
The MaxQ step runs this framework.

from buildbot.plugins import steps
f.addStep (steps.MaxQ (testdir="tests/"))

The single argument, testdir, specifies where the tests should be run. This directory will be passed to the
run_maxq.py command, and the results analyzed.

HTTP Requests

Using the HTTPStep step, it is possible to perform HTTP requests in order to trigger another REST service about
the progress of the build.

Note: This step requires the txrequests (https://pypi.python.org/pypi/txrequests) and requests (http://python-
requests.org) Python libraries.

The parameters are the following:
url (mandatory) The URL where to send the request

method The HTTP method to use (out of POST, GET, PUT, DELETE, HEAD or OPTIONS), default to POST.

2.4. Configuration 151

http://maxq.tigris.org/
https://pypi.python.org/pypi/txrequests
http://python-requests.org

BuildBot Documentation, Release 0.8.12

params Dictionary of URL parameters to append to the URL.
data The body to attach the request. If a dictionary is provided, form-encoding will take place.
headers Dictionary of headers to send.

other params Any other keywords supported by the request s api can be passed to this step

Note: The entire Buildbot master process shares a single Requests Session object. This has the advan-
tage of supporting connection re-use and other HTTP/1.1 features. However, it also means that any cookies

or other state changed by one step will be visible to other steps, causing unexpected results. This behavior
may change in future versions.

‘When the method is known in advance, class with the name of the method can also be used. In this case, it is not
necessary to specify the method.

Example:

from buildbot.plugins import steps, util

f.addStep (
steps.POST (' http://myRESTService.example.com/builds’,
data = {
"builder’: util.Property(’buildername’),
"buildnumber’: util.Property (’buildnumber’),
"slavename’ : util.Property ('’ slavename’),
"revision’: util.Property(’got_revision’),

b

2.4.10 Interlocks

* Access Modes
e Count
* Scope
Examples

Until now, we assumed that a master can run builds at any slave whenever needed or desired. Some times, you
want to enforce additional constraints on builds. For reasons like limited network bandwidth, old slave machines,
or a self-willed data base server, you may want to limit the number of builds (or build steps) that can access a
resource.

Access Modes

The mechanism used by Buildbot is known as the read/write lock >. It allows either many readers or a single
writer but not a combination of readers and writers. The general lock has been modified and extended for use
in Buildbot. Firstly, the general lock allows an infinite number of readers. In Buildbot, we often want to put an
upper limit on the number of readers, for example allowing two out of five possible builds at the same time. To do
this, the lock counts the number of active readers. Secondly, the terms read mode and write mode are confusing
in Buildbot context. They have been replaced by counting mode (since the lock counts them) and exclusive mode.
As a result of these changes, locks in Buildbot allow a number of builds (up to some fixed number) in counting
mode, or they allow one build in exclusive mode.

Note: Access modes are specified when a lock is used. That is, it is possible to have a single lock that is used by
several slaves in counting mode, and several slaves in exclusive mode. In fact, this is the strength of the modes:

accessing a lock in exclusive mode will prevent all counting-mode accesses.

2 See http://en.wikipedia.org/wiki/Read/write_lock_pattern for more information.

152 Chapter 2. Buildbot Manual

http://en.wikipedia.org/wiki/Read/write_lock_pattern

BuildBot Documentation, Release 0.8.12

Count

Often, not all slaves are equal. To allow for this situation, Buildbot allows to have a separate upper limit on the
count for each slave. In this way, you can have at most 3 concurrent builds at a fast slave, 2 at a slightly older
slave, and 1 at all other slaves.

Scope

The final thing you can specify when you introduce a new lock is its scope. Some constraints are global — they
must be enforced over all slaves. Other constraints are local to each slave. A master lock is used for the global
constraints. You can ensure for example that at most one build (of all builds running at all slaves) accesses the
data base server. With a slave lock you can add a limit local to each slave. With such a lock, you can for example
enforce an upper limit to the number of active builds at a slave, like above.

Examples

Time for a few examples. Below a master lock is defined to protect a data base, and a slave lock is created to limit
the number of builds at each slave.

from buildbot.plugins import util

db_lock = util.MasterLock ("database")
build_lock = util.SlaveLock ("slave_builds",
maxCount=1,
maxCountForSlave={’fast’: 3, ’'new’: 2})

After importing locks from buildbot, db_ 1ock is defined to be a master lock. The database string is used for
uniquely identifying the lock. At the next line, a slave lock called build_1lock is created. It is identified by the
slave_builds string. Since the requirements of the lock are a bit more complicated, two optional arguments
are also specified. The maxCount parameter sets the default limit for builds in counting mode to 1. For the slave
called * fast’ however, we want to have at most three builds, and for the slave called ' new’ the upper limit is
two builds running at the same time.

The next step is accessing the locks in builds. Buildbot allows a lock to be used during an entire build (from
beginning to end), or only during a single build step. In the latter case, the lock is claimed for use just before the
step starts, and released again when the step ends. To prevent deadlocks, ? it is not possible to claim or release
locks at other times.

To use locks, you add them with a 1ocks argument to a build or a step. Each use of a lock is either in counting
mode (that is, possibly shared with other builds) or in exclusive mode, and this is indicated with the syntax
lock.access (mode), where mode is one of "counting" or "exclusive".

A build or build step proceeds only when it has acquired all locks. If a build or step needs a lot of locks, it may be
starved * by other builds that need fewer locks.

To illustrate use of locks, a few examples.

from buildbot.plugins import util, steps

db_lock = util.MasterLock ("database™)
build_lock = util.SlavelLock ("slave_builds",
maxCount=1,
maxCountForSlave={’fast’: 3, ’'new’: 2})

f = util.BuildFactory ()
f.addStep (steps.SVN (svnurl="http://example.org/svn/Trunk"))
f.addStep (steps.ShellCommand (command="make all"))

3 Deadlock is the situation where two or more slaves each hold a lock in exclusive mode, and in addition want to claim the lock held by the
other slave exclusively as well. Since locks allow at most one exclusive user, both slaves will wait forever.

4 Starving is the situation that only a few locks are available, and they are immediately grabbed by another build. As a result, it may take a
long time before all locks needed by the starved build are free at the same time.

2.4. Configuration 153

BuildBot Documentation, Release 0.8.12

f.addStep (steps.ShellCommand (command="make test",
locks=[db_lock.access ('exclusive’) 1))

bl = {

"name’: ’fulll’,

"slavename’: ' fast’,

"builddir’: "f17,

"factory’: £,

"locks’: [build_lock.access (' counting’)]
}
b2 = {

"name’ : ’full2’,

"slavename’: ’'new’,

"builddir’: "f27,

"factory’: £,

"locks’: [build_lock.access (' counting’)]

"name’: ’full3’,

"slavename’: ’"o0ld’,

"builddir’: "£37,

"factory’: £,

"locks’: [build_lock.access (' counting’)]

"name’ : " fulld’,

"slavename’ : ’other’,

"builddir’: 7 f47,

"factory’: £,

"locks’: [build_lock.access (’counting’)]

c[’builders’] = [bl, b2, b3, bi4]

Here we have four slaves b1, b2, b3, and b4. Each slave performs the same checkout, make, and test build step
sequence. We want to enforce that at most one test step is executed between all slaves due to restrictions with the
data base server. This is done by adding the 1 ocks= parameter with the third step. It takes a list of locks with
their access mode. In this case only the db_1ock is needed. The exclusive access mode is used to ensure there is
at most one slave that executes the test step.

In addition to exclusive accessing the data base, we also want slaves to stay responsive even under the
load of a large number of builds being triggered. For this purpose, the slave lock called build_lock
is defined. Since the restraint holds for entire builds, the lock is specified in the builder with ’ locks’ :
[build_lock.access (' counting’)].

Note that you will occasionally see lock.access (mode) written as LockAccess (lock, mode). The
two are equivalent, but the former is preferred.

2.4.11 Status Targets

154 Chapter 2. Buildbot Manual

BuildBot Documentation, Release 0.8.12

* WebStatus
— Configuration
— Buildbot Web Resources
— WebStatus Configuration Parameters
— Change Hooks
e MailNotifier
— MailNotifier arguments
* IRC Bot
* PBListener
 StatusPush
» HttpStatusPush
* GerritStatusPush
* GitHubStatus
» StashStatusPush

The Buildmaster has a variety of ways to present build status to various users. Each such delivery method is a
Status Target object in the configuration’s st atus list. To add status targets, you just append more objects to this
list:

from buildbot.plugins import status

c[’status’] = []

c[’status’].append(status.WebStatus (http_port=8010))

m = status.MailNotifier (fromaddr="buildbot@localhost",
extraRecipients=["builds@lists.example.com"],
sendToInterestedUsers=False)

c[’status’].append(m)

c[’status’] .append(status.IRC (host="irc.example.com", nick="bb",

channels=[{"channel": "f#examplel"},
{"channel": "#example2",
"password": "somesecretpassword"}]))

Most status delivery objects take a tags= argument, which can contain a list of tag names: in this case, it will
only show status for Builders that have one of the named tags.

Note: Implementation Note

Each of these objects should be a service.MultiService which will be attached to the BuildMaster object
when the configuration is processed. They should use self.parent.getStatus () to get access to the
top-level IStatus object, either inside startService or later. They may call status.subscribe in
startService to receive notifications of builder events, in which case they must define builderAdded and
related methods. See the docstrings in buildbot/interfaces.py for full details.

The remainder of this section describes each built-in status target. A full list of status targets is available in the
status.

WebStatus

class buildbot.status.web.baseweb.WebStatus

The buildbot.status.html.WebStatus status target runs a small web server inside the buildmaster. You
can point a browser at this web server and retrieve information about every build the buildbot knows about, as well
as find out what the buildbot is currently working on.

The first page you will see is the Welcome Page, which contains links to all the other useful pages. By default, this
page is served from the status/web/templates/root.html file in buildbot’s library area.

2.4. Configuration 155

BuildBot Documentation, Release 0.8.12

One of the most complex resource provided by WebStatus is the Waterfall Display, which shows a time-based
chart of events. This somewhat-busy display provides detailed information about all steps of all recent builds,
and provides hyperlinks to look at individual build logs and source changes. By simply reloading this page on a
regular basis, you will see a complete description of everything the buildbot is currently working on.

A similar, but more developer-oriented display is the Grid display. This arranges builds by SourceStamp
(horizontal axis) and builder (vertical axis), and can provide quick information as to which revisions are passing
or failing on which builders.

There are also pages with more specialized information. For example, there is a page which shows the last 20
builds performed by the buildbot, one line each. Each line is a link to detailed information about that build. By
adding query arguments to the URL used to reach this page, you can narrow the display to builds that involved
certain branches, or which ran on certain Builders. These pages are described in great detail below.

Configuration

The simplest possible configuration for WebStatus is:

from buildbot.plugins import status
c[’status’].append(status.WebStatus (8080))

Buildbot uses a templating system for the web interface. The source of these templates can be found in the
status/web/templates/ directory in buildbot’s library area. You can override these templates by creating
alternate versions in a templates/ directory within the buildmaster’s base directory.

If that isn’t enough you can also provide additional Jinja2 template loaders:
import jinja2
myloaders = [

jinja2.FileSystemLoader ("/tmp/mypath"),
]

c[’status’].append(status.WebStatus (
o,
jinja_loaders = myloaders

))

The first time a buildmaster is created, the public_html/ directory is populated with some sample files, which
you will probably want to customize for your own project. These files are all static: the Buildbot does not modify
them in any way as it serves them to HTTP clients.

Templates in templates/ take precedence over static files in public_html/.

The initial robots . txt file has Disallow lines for all of the dynamically-generated buildbot pages, to discourage
web spiders and search engines from consuming a lot of CPU time as they crawl through the entire history of your
buildbot. If you are running the buildbot behind a reverse proxy, you’ll probably need to put the robots . txt file
somewhere else (at the top level of the parent web server), and replace the URL prefixes in it with more suitable
values.

If you would like to use an alternative root directory, add the public_html= option to the WebStatus cre-
ation:

c[’status’] .append(status.WebStatus (8080, public_html="/var/www/buildbot"))

In addition, if you are familiar with twisted.web Resource Trees, you can write code to add additional pages at
places inside this web space. Just use webstatus.putChild to place these resources.

The following section describes the special URLs and the status views they provide.

156 Chapter 2. Buildbot Manual

BuildBot Documentation, Release 0.8.12

Buildbot Web Resources

Certain URLs are magic, and the pages they serve are created by code in various classes in the
buildbot.status.web package instead of being read from disk. The most common way to access these
pages is for the buildmaster admin to write or modify the index . html page to contain links to them. Of course
other project web pages can contain links to these buildbot pages as well.

Many pages can be modified by adding query arguments to the URL. For example, a page which shows the results
of the most recent build normally does this for all builders at once. But by appending ?builder=1386 to the
end of the URL, the page will show only the results for the i386 builder. When used in this way, you can add
multiple builder= arguments to see multiple builders. Remembering that URL query arguments are separated
from each other with ampersands, a URL that ends in ?builder=i386&builder=ppc would show builds
for just those two Builders.

The branch= query argument can be used on some pages. This filters the information displayed by that page
down to only the builds or changes which involved the given branch. Use branch=t runk to reference the trunk:
if you aren’t intentionally using branches, you’re probably using trunk. Multiple branch= arguments can be used
to examine multiple branches at once (so appending ?branch=foo&branch=bar to the URL will show builds
involving either branch). No branch= arguments means to show builds and changes for all branches.

Some pages may include the Builder name or the build number in the main part of the URL itself. For example, a
page that describes Build #7 of the i386 builder would live at /builders/i386/builds/7.

The table below lists all of the internal pages and the URLs that can be used to access them.

/waterfall This provides a chronologically-oriented display of the activity of all builders. It is the same
display used by the Waterfall display.

By adding one or more builder= query arguments, the Waterfall is restricted to only showing information
about the given Builders. By adding one or more branch= query arguments, the display is restricted to
showing information about the given branches. In addition, adding one or more t ag= query arguments to
the URL will limit the display to Builders that were defined with one of the given tags.

A show_events=true query argument causes the display to include non-Build events, like slaves
attaching and detaching, as well as reconfiguration events. show_events=false hides these events.
The default is to show them.

By adding the failures_only=true query argument, the Waterfall is restricted to only showing infor-
mation about the builders that are currently failing. A builder is considered failing if the last finished build
was not successful, a step in the current build(s) is failing, or if the builder is offline.

The last_time=, first_time=, and show_time= arguments will control what interval of time is
displayed. The default is to show the latest events, but these can be used to look at earlier periods in history.
The num_event s= argument also provides a limit on the size of the displayed page.

The Waterfall has references to resources many of the other portions of the URL space: /builders for
access to individual builds, /changes for access to information about source code changes, etc.

/grid This provides a chronologically oriented display of builders, by revision. The builders are listed down
the left side of the page, and the revisions are listed across the top.

By adding one or more t ag= arguments the grid will be restricted to builders with those tags.
A width=N argument will limit the number of revisions shown to N, defaulting to 5.
A branch=BRANCHNAME argument will limit the grid to revisions on branch BRANCHNAME.

/tgrid The Transposed Grid is similar to the standard grid, but, as the name implies, transposes the grid: the
revisions are listed down the left side of the page, and the build hosts are listed across the top. It accepts the
same query arguments. The exception being that instead of width the argument is named length.

This page also has a rev_order= query argument that lets you change in what order revisions are shown.
Valid values are asc (ascending, oldest revision first) and de sc (descending, newest revision first).

/console EXPERIMENTAL: This provides a developer-oriented display of the last changes and how they
affected the builders.

2.4. Configuration 157

BuildBot Documentation, Release 0.8.12

It allows a developer to quickly see the status of each builder for the first build including his or her change.
A green box means that the change succeeded for all the steps for a given builder. A red box means that the
changed introduced a new regression on a builder. An orange box means that at least one of the tests failed,
but it was also failing in the previous build, so it is not possible to see if there were any regressions from
this change. Finally a yellow box means that the test is in progress.

By adding one or more builder= query arguments, the Console view is restricted to only showing infor-
mation about the given Builders. Adding a repository= argument will limit display to a given reposi-
tory. By adding one or more branch= query arguments, the display is restricted to showing information
about the given branches. In addition, adding one or more t ag= query arguments to the URL will limit the
display to Builders that were defined with one of the given tags. With the project= query argument, it’s
possible to restrict the view to changes from the given project. With the codebase= query argument, it’s
possible to restrict the view to changes for the given codebase.

By adding one or more name= query arguments to the URL, the console view is restricted to only showing
changes made by the given users.

NOTE: To use this page, your buildbot.css file in public_html must
be the one found in master/buildbot/status/web/files/default.css
(https://github.com/buildbot/buildbot/blob/master/master/buildbot/status/web/files/default.css). This is
the default for new installs, but upgrades of very old installs of Buildbot may need to manually fix the CSS
file.

The console view is still in development. At this moment by default the view sorts revisions lexically, which
can lead to odd behavior with non-integer revisions (e.g., Git), or with integer revisions of different length
(e.g., 999 and 1000). It also has some issues with displaying multiple branches at the same time. If you do
have multiple branches, you should use the branch= query argument. The order_console_by_time
option may help sorting revisions, although it depends on the date being set correctly in each commit:

w = status.WebStatus (http_port=8080, order_console_by_time=True)

/rss This provides a rss feed summarizing all failed builds. The same query-arguments used by ‘waterfall’ can
be added to filter the feed output.

/atom This provides an atom feed summarizing all failed builds. The same query-arguments used by ‘waterfall’
can be added to filter the feed output.

/json This view provides quick access to Buildbot status information in a form that is easily digested from
other programs, including JavaScript. See /json/help for detailed interactive documentation of the
output formats for this view.

/buildstatus?builder=$BUILDERNAME&number=$BUILDNUM This displays a waterfall-like
chronologically-oriented view of all the steps for a given build number on a given builder.

/builders/$BUILDERNAME This describes the given Builder and provides buttons to force a build. A
numbuilds= argument will control how many build lines are displayed (5 by default). This page also ac-
cepts property filters of the form property.${PROPERTYNAME }=$ {PROPERTVALUE }. When used,
only builds and build requests which have properties with matching string representations will be shown.

/builders/$BUILDERNAME /builds/$BUILDNUM This describes a specific Build.

/builders/$BUILDERNAME /builds/$BUILDNUM/steps/$STEPNAME This describes a specific
BuildStep.

/builders/$BUILDERNAME /builds/$BUILDNUM/steps/$STEPNAME /logs/$LOGNAME This
provides an HTML representation of a specific logfile.

/builders/$BUILDERNAME /builds/$BUILDNUM/steps/$STEPNAME /logs/$LOGNAME /text
This returns the logfile as plain text, without any HTML coloring markup. It also removes the headers,
which are the lines that describe what command was run and what the environment variable settings were
like. This maybe be useful for saving to disk and feeding to tools like grep.

/changes This provides a brief description of the ChangeSource in use (see Change Sources).

/changes/NN This shows detailed information about the numbered Change: who was the author, what files
were changed, what revision number was represented, etc.

158 Chapter 2. Buildbot Manual

https://github.com/buildbot/buildbot/blob/master/master/buildbot/status/web/files/default.css

BuildBot Documentation, Release 0.8.12

/buildslaves This summarizes each BuildSlave, including which Builders are configured to use it,
whether the buildslave is currently connected or not, and host information retrieved from the buildslave
itself.

A no_builders=1 URL argument will omit the builders column. This is useful if each buildslave is
assigned to a large number of builders.

/one_line_per build This page shows one line of text for each build, merging information from all
Builders °. Each line specifies the name of the Builder, the number of the Build, what revision it
used, and a summary of the results. Successful builds are in green, while failing builds are in red. The date
and time of the build are added to the right-hand edge of the line. The lines are ordered by build finish
timestamp.

One or more builder= or branch= arguments can be used to restrict the list. In addition, a
numbuilds= argument will control how many lines are displayed (20 by default).

/builders This page shows a small table, with one box for each Builder, containing the results of the most
recent Build. It does not show the individual steps, or the current status. This is a simple summary of
buildbot status: if this page is green, then all tests are passing.

As with /one_line_per_build, this page will also honor builder= and branch= arguments.

/png This view produces an image in png format with information about the last build for the given builder name
or whatever other build number if is passed as an argument to the view.

/png?builder=$BUILDERNAME snumber=$BUILDNUMé&size=large This generate a large png image
reporting the status of the given SBUILDNUM for the given builder SBUILDERNAME. The sizes are small,
normal and large if no size is given the normal size is returned, if no $BUILDNUM is given the last build
is returned. For example:

build ‘success

/png?builder=$BUILDERNAMES&revision=$REVHASH&size=1large This generate a large png im-
age reporting the status of the build of the given SREVHASH for the given builder SBUILDERNAME. If
both number and revision are specified revision will be ignored. SREVHASH must be the full length hash
not the short one.

Note: Buildbot stores old build details in pickle files so it’s a good idea to enable cache if you are planning to
actively search build statuses by revision.

/users This page exists for authentication reasons when checking showUsersPage. It’ll redirect to
/authfail on False, /users/table on True, and give a username/password login prompt on
"auth’. Passing or failing results redirect to the same pages as False and True.

/users/table This page shows a table containing users that are stored in the database. It has columns for
their respective uid and identifier values, with the uid values being clickable for more detailed
information relating to a user.

/users/table/{NN} Shows all the attributes stored in the database relating to the user with uid {NN} in a
table.

/about This page gives a brief summary of the Buildbot itself: software version, versions of some libraries that
the Buildbot depends upon, etc. It also contains a link to the buildbot.net home page.

There is also a set of web-status resources that are intended for use by other programs, rather than humans.

/change_hook This provides an endpoint for web-based source change notification. It is used by GitHub and
contrib/post_build_request.py. See Change Hooks for more details.

WebStatus Configuration Parameters

5 Apparently this is the same way http://buildd.debian.org displays build status

2.4. Configuration 159

http://buildd.debian.org

BuildBot Documentation, Release 0.8.12

HTTP Connection The most common way to run a WebStatus is on a regular TCP port. To do this, just pass
in the TCP port number when you create the WebStatus instance; this is called the http_port argument:

from buildbot.plugins import status
c[’status’].append(status.WebStatus (http_port=8080))

The http_port argument is actually a strports specification for the port that the web server should listen on.
This can be a simple port number, or a string like http_port="tcp:8080:interface=127.0.0.1" (to
limit connections to the loopback interface, and therefore to clients running on the same host) °.

If instead (or in addition) you provide the distrib_port argument, a twisted.web distributed server will be
started either on a TCP port (if distrib_port is like "tcp:12345") or more likely on a UNIX socket (if
distrib_portislike "unix:/path/to/socket").

The public_html option gives the path to a regular directory of HTML files that will be displayed alongside
the various built-in URLSs buildbot supplies. This is most often used to supply CSS files (/buildbot .css)and
a top-level navigational file (/index.html), but can also serve any other files required - even build results!

Authorization The buildbot web status is, by default, read-only. It displays lots of information, but users are not
allowed to affect the operation of the buildmaster. However, there are a number of supported activities that can be
enabled, and Buildbot can also perform rudimentary username/password authentication. The actions are:

view view buildbot web status

forceBuild force a particular builder to begin building, optionally with a specific revision, branch, etc.
forceAllBuilds force all builders to start building

pingBuilder “ping” a builder’s buildslaves to check that they are alive
gracefulShutdown gracefully shut down a slave when it is finished with its current build
pauseSlave temporarily stop running new builds on a slave

stopBuild stop a running build

stopAllBuilds stop all running builds

cancelPendingBuild cancel a build that has not yet started
cancelAllPendingBuilds cancel all or selected subset of builds that has not yet started
stopChange cancel builds that include a given change number

cleanShutdown shut down the master gracefully, without interrupting builds
showUsersPage access to page displaying users in the database, see User Objects

For each of these actions, you can configure buildbot to never allow the action, always allow the action, allow the
action to any authenticated user, or check with a function of your creation to determine whether the action is OK
(see below).

This is all configured with the Authz class:

from buildbot.plugins import status, util

authz = util.Authz (forceBuild=True, stopBuild=True)
c[’status’].append(status.WebStatus (http_port=8080, authz=authz))

Each of the actions listed above is an option to Authz. You can specify False (the default) to prohibit that
action or True to enable it. Or you can specify a callable. Each such callable will take a username as its first
argument. The remaining arguments vary depending on the type of authorization request. For forceBuild, the
second argument is the builder status.

6 Tt may even be possible to provide SSL access by using a specification like "ss1:12345:privateKey=mykey.pen:certKey=cert .pen",
but this is completely untested

160 Chapter 2. Buildbot Manual

BuildBot Documentation, Release 0.8.12

Authentication If you do not wish to allow strangers to perform actions, but do want developers to have such
access, you will need to add some authentication support. Pass an instance of status.web.auth.IAuthasa
auth keyword argument to Authz, and specify the action as "auth".

from buildbot.plugins import status, util

users = [
("bob’, ’"secret-pass’),
("9i11’, ’'super-pass’)

1

authz = util.Authz (auth=util.BasicAuth (users),
forceBuild=’auth’, # only authenticated users
pingBuilder=True, # but anyone can do this

)

c[’status’].append(status.WebStatus (http_port=8080, authz=authz))

or

auth = util.HTPasswdAuth (’ /path/to/htpasswd’)

or

auth = util.UsersAuth ()

The class BasicAuth implements a basic authentication mechanism using a list of user/password tuples provided
from the configuration file. The class HTPasswdAuth implements an authentication against an . htpasswd file.
The HTPasswdAprAuth a subclass of HTPasswdAuth use libaprutil for authenticating. This adds support for
aprl/md5 and shal password hashes but requires libaprutil at runtime. The UsersAuth works with User Objects
to check for valid user credentials.

If you need still-more flexibility, pass a function for the authentication action. That function will be called with an
authenticated username and some action-specific arguments, and should return true if the action is authorized.

def canForceBuild(username, builder_status):
if builder_status.getName () == ’'smoketest’:
return True # any authenticated user can run smoketest
elif username == ’'releng’:
return True # releng can force whatever they want
else:
return False # otherwise, no way.

authz = util.Authz (auth=util.BasicAuth (users),
forceBuild=canForceBuild)

The forceBuild and pingBuilder actions both supply a BuilderStatus object. The stopBuild
action supplies a BuildStatus object. The cancelPendingBuild action supplies a BuildRequest.
The remainder do not supply any extra arguments.

HTTP-based authentication by frontend server In case if WebStatus is served through reverse proxy that sup-
ports HTTP-based authentication (like apache, lighttpd), it’s possible to to tell WebStatus to trust web server and
get username from request headers. This allows displaying correct usernames in build reason, interrupt messages,
etc.

Just set useHttpHeader to True in Authz constructor.

authz = util.Authz (useHttpHeader=True) # WebStatus secured by web frontend with HTTP auth

Please note that WebStatus can decode password for HTTP Basic requests only (for Digest authentication it’s just
impossible). Custom status.web.auth.IAuth subclasses may just ignore password at all since it’s already
validated by web server.

Administrator must make sure that it’s impossible to get access to WebStatus using other way than through fron-
tend. Usually this means that WebStatus should listen for incoming connections only on localhost (or on some
firewall-protected port). Frontend must require HTTP authentication to access WebStatus pages (using any source
for credentials, such as htpasswd, PAM, LDAP).

2.4. Configuration 161

BuildBot Documentation, Release 0.8.12

If you allow unauthenticated access through frontend as well, it’s possible to specify a ht tpLoginUrl which
will be rendered on the WebStatus for unauthenticated users as a link named Login.

authz = util.Authz (useHttpHeader=True,
httpLoginUrl='https://buildbot.example.org/login’)

A configuration example with Apache HTTPD as reverse proxy could look like the following.

authz = util.Authz (useHttpHeader=True,
httpLoginUrl="https://buildbot.example.org/login’,
auth=util.HTPasswdAprAuth (' /var/www/htpasswd’),
forceBuild="auth’)

Corresponding Apache configuration.

ProxyPass / http://127.0.0.1:8010/

<Location /login>
AuthType Basic
AuthName "Buildbot"
AuthUserFile /var/www/htpasswd
Require valid-user

RewriteEngine on
RewriteCond ${HTTP_REFERER} “https?://(["/1+)/(.*)$
RewriteRule ”~.*$ https://%1/%2 [R,L]

</Location>

Logging configuration The WebStatus uses a separate log file (http. 1og) to avoid clutter buildbot’s default
log (twistd. log) with request/response messages. This log is also, by default, rotated in the same way as the
twistd.log file, but you can also customize the rotation logic with the following parameters if you need a different
behaviour.

rotateLength An integer defining the file size at which log files are rotated.

maxRotatedFiles The maximum number of old log files to keep.

URL-decorating options These arguments adds an URL link to various places in the WebStatus, such as revi-
sions, repositories, projects and, optionally, ticket/bug references in change comments.

revlink The revlink argument on WebStatus is deprecated in favour of the global rev1ink option. Only
use this if you need to generate different URLs for different web status instances.

In addition to a callable like rev 1 ink, this argument accepts a format string or a dict mapping a string (repository
name) to format strings.

The format string should use %s to insert the revision id in the url. For example, for Buildbot on GitHub:

revlink='http://github.com/buildbot/buildbot/tree/%s’

The revision ID will be URL encoded before inserted in the replacement string

changecommentlink The changecommentlink argument can be used to create links to ticket-ids from
change comments (i.e. #123).

The argument can either be a tuple of three strings, a dictionary mapping strings (project names) to tuples or a
callable taking a changetext (a jinjaZ2.Markup instance) and a project name, returning a the same change text
with additional links/html tags added to it.

If the tuple is used, it should contain three strings where the first element is a regex that searches for strings (with
match groups), the second is a replace-string that, when substituted with \ 1 etc, yields the URL and the third is the
title attribute of the link. (The is added by the system.) So, for Trac tickets

162 Chapter 2. Buildbot Manual

BuildBot Documentation, Release 0.8.12

(#42, etc): changecommentlink (r"# (\d+)", r"http://buildbot.net/trac/ticket/\1",
r"Ticket \g<0>") .

projects A dictionary from strings to strings, mapping project names to URLs, or a callable taking a project
name and returning an URL.

repositories Same as the projects arg above, a dict or callable mapping project names to URLs.

Display-Specific Options The order_console_by_time option affects the rendering of the console; see
the description of the console above.

The numbuilds option determines the number of builds that most status displays will show. It can usually be
overriden in the URL, e.g., ?numbuilds=13.

The num_events option gives the default number of events that the waterfall will display. The
num_events_max gives the maximum number of events displayed, even if the web browser requests more.

Change Hooks

The /change_hook wurl is a magic URL which will accept HTTP requests and trans-
late them into changes for buildbot. Implementations (such as a trivial json-based endpoint
and a GitHub implementation) can be found in master/buildbot/status/web/hooks
(https://github.com/buildbot/buildbot/blob/master/master/buildbot/status/web/hooks). The format of the url
is /change_hook/DIALECT where DIALECT is a package within the hooks directory. Change_hook is
disabled by default and each DIALECT has to be enabled separately, for security reasons.

An example WebStatus configuration line which enables change_hook and two DIALECTS:

cl[’status’].append(status.WebStatus (http_port=8010, allowForce=True,
change_hook_dialects={
"base’ : True,
"somehook’ : {’optionl’: True,
"option2’: False}}))

Within the WebStatus arguments, the change_hook key enables/disables the module and
change_hook_dialects whitelists DIALECTs where the keys are the module names and the values
are optional arguments which will be passed to the hooks.

The post_build_request.py script in master/contrib allows for the submission of an arbitrary
change request. Run post_build_request.py —help for more information. The base dialect must be enabled
for this to work.

GitHub hook

Note: There is a standalone HTTP server available for receiving GitHub notifications as well:
contrib/github_buildbot.py. This script may be useful in cases where you cannot expose the Web-

Status for public consumption.

The GitHub hook has the following parameters:
secret (default None) Secret token to use to validate payloads

strict (default False) If the hook must be strict regarding valid payloads. If the value is False (default), the
signature will only be checked if a secret is specified and a signature was supplied with the payload. If the
value is True, a secret must be provided, and payloads without signature will be ignored.

codebase (default None) The codebase value to include with created changes. If the value is a function (or any
other callable), it will be called with the GitHub event payload as argument and the function must return the
codebase value to use for the event.

2.4. Configuration 163

https://github.com/buildbot/buildbot/blob/master/master/buildbot/status/web/hooks

BuildBot Documentation, Release 0.8.12

class (default None) A class to be used for processing incoming payloads. If the value is None (default), the
default class — buildbot.status.web.hooks.github.GitHubEventHandler — will be used.
The default class handles ping, push and pull_request events only. If you’d like to handle other events
(see Event Types & Payloads (https://developer.github.com/v3/activity/events/types/) for more information),
you’d need to subclass GitHubEventHandler and add handler methods for the corresponding events. For
example, if you’d like to handle blah events, your code should look something like this:

from buildbot.status.web.hooks.github import GitHubEventHandler
class MyBlahHandler (GitHubEventHandler) :

def handle_blah(self, payload):
Do some magic here
return [], 'git’

The simples way to use GitHub hook is as follows:

c[’status’].append(status.WebStatus (...,
change_hook_dialects={"github’: {}},
-))

Having added this line, you should add a webhook for your GitHub project (see Creating Webhooks page at
GitHub (https://developer.github.com/webhooks/creating/)). The parameters are:

Payload URL This URL should point to /change_hook/github relative to the root of the web status. For
example, if the grid URL is http://builds.example.com/bbot/grid, then point GitHub to
http://builds.example.com/bbot/change_hook/github. To specify a project associated
to the repository, append ?project=name to the URL.

Content Type Specify application/x-www—form-urlencoded. JSON is not currently not supported.

Secret Any value. If you provide a non-empty value (recommended), make sure that your hook is configured to
use it:

c[’status’].append(status.WebStatus (...,
change_hook_dialects={

"github’: {
"secret’: "MY-SECRET’,
"strict’: True

}
}y
)

Which events would you like to trigger this webhook? Leave the default — Just the push event — other
kind of events are not currently supported.

And then press the Add Webhook button.

Warning: The incoming HTTP requests for this hook are not authenticated by default. If you do not specify
a secret, anyone who can access the web status can “fake” a request from GitHub, potentially causing the
buildmaster to run arbitrary code.

To protect URL against unauthorized access you either specify a secret, or you should use change_hook_auth
option:

c[’status’].append(status.WebStatus (...,
change_hook_auth=["file:changehook.passwd"],

))

create a file changehook .passwd:

user:password

164 Chapter 2. Buildbot Manual

https://developer.github.com/v3/activity/events/types/
https://developer.github.com/webhooks/creating/
https://developer.github.com/webhooks/creating/

BuildBot Documentation, Release 0.8.12

and change the the Payload URL of your GitHub webhook to http://user:password@builds.example.com/bbot/

See the documentation for twisted cred (https://twistedmatrix.com/documents/current/core/howto/cred.html) for
more options to pass to change_hook_auth.

Note that not using change_hook_auth may expose you to security risks.

BitBucket hook The BitBucket hook is as simple as GitHub one and it also takes no options.

c[’status’].append(status.WebStatus (...,
change_hook_dialects={’bitbucket’: True}))

When this is setup you should add a POST service pointing to /change_hook/bitbucket relative to the root
of the web status. For example, it the grid URL is http://builds.mycompany.com/bbot/grid, then
point BitBucketto http://builds.mycompany.com/change_hook/bitbucket. To specify a project
associated to the repository, append ?project=name to the URL.

Note that there is a satandalone HTTP server available for receiving BitBucket notifications, as well:
contrib/bitbucket_buildbot.py. This script may be useful in cases where you cannot expose the
WebStatus for public consumption.

Warning: As in the previous case, the incoming HTTP requests for this hook are not authenticated bu default.
Anyone who can access the web status can “fake” a request from BitBucket, potentially causing the buildmaster
to run arbitrary code.

To protect URL against unauthorized access you should use change_hook_auth option.

c[’status’].append(status.WebStatus (...,
change_hook_auth=["file:changehook.passwd"]))

Then, create a BitBucket service hook (see https://confluence.atlassian.com/display/BITBUCKET/POST+Service+Management)
with a WebHook URL like http://user:password@builds.mycompany.com/bbot/change_hook/bitbucket.

Note that as before, not using change_hook_auth can expose you to security risks.

Google Code hook The Google Code hook is quite similar to the GitHub Hook. It has one option for the
“Post-Commit Authentication Key” used to check if the request is legitimate:

c[’status’].append(status.WebStatus (

...

change_hook_dialects={’googlecode’: {’secret_key’: "FSP3p-Ghdnd4TOogX’ }}
))

This will add a “Post-Commit URL” for the project in the Google Code administrative interface, pointing to
/change_hook/googlecode relative to the root of the web status.

Alternatively, you can use the GoogleCodeAtomPoller ChangeSource that periodically poll the Google Code
commit feed for changes.

Note: Google Code doesn’t send the branch on which the changes were made. So, the hook always returns
"default'’ as the branch, you can override it with the ' branch’ option:

change_hook_dialects={’googlecode’ : {’secret_key’: "FSP3p-Ghdn4TOogX’, ’'branch’: ’'master’}}

Poller hook The poller hook allows you to use GET or POST requests to trigger polling. One advantage of this
is your buildbot instance can poll at launch (using the pollAtLaunch flag) to get changes that happened while it
was down, but then you can still use a commit hook to get fast notification of new changes.

Suppose you have a poller configured like this:

2.4. Configuration 165

https://twistedmatrix.com/documents/current/core/howto/cred.html
https://confluence.atlassian.com/display/BITBUCKET/POST+Service+Management

BuildBot Documentation, Release 0.8.12

c[’change_source’] = SVNPoller (
svnurl="https://amanda.svn.sourceforge.net/svnroot/amanda/amanda",
split_file=split_file_branches,
pollInterval=24%x60%60,
pollAtLaunch=True)

And you configure your WebStatus to enable this hook:

c[’status’].append(status.WebStatus (
#
change_hook_dialects={’poller’: True}

))

Then you will be able to trigger a poll of the SVN repository by poking the /change_hook/poller URL
from a commit hook like this:

curl -s -F poller=https://amanda.svn.sourceforge.net/svnroot/amanda/amanda \
http://yourbuildbot/change_hook/poller

If no poller argument is provided then the hook will trigger polling of all polling change sources.
You can restrict which pollers the webhook has access to using the allowed option:

c[’status’].append(status.WebStatus (
#

change_hook_dialects={’poller’: {’allowed’: [’'https://amanda.svn.sourceforge.net/svnroot/aman

))

GitLab hook The GitLab hook is as simple as GitHub one and it also takes no options.

c[’status’].append(status.WebStatus (

...

change_hook_dialects={ ’"gitlab’ : True }
))

When this is setup you should add a POST service pointing to /change_hook/gitlab relative to the root of
the web status. For example, it the grid URLis http://builds.mycompany.com/bbot /grid, then point
GitLab to http://builds.mycompany.com/change_hook/gitlab. The project and/or codebase can
also be passed in the URL by appending ?project=name or ?codebase=foo to the URL. These parameters
will be passed along to the scheduler.

Warning: As in the previous case, the incoming HTTP requests for this hook are not authenticated bu default.
Anyone who can access the web status can “fake” a request from your GitLab server, potentially causing the
buildmaster to run arbitrary code.

To protect URL against unauthorized access you should use change_hook_auth option.

c[’status’].append(status.WebStatus (
#
change_hook_auth=["file:changehook.passwd"]

))

Then, create a GitLab service hook (see https://your.gitlab.server/help/web_hooks) with a WebHook URL like
http://user:password@builds.mycompany.com/bbot/change_hook/gitlab.

Note that as before, not using change_hook_auth can expose you to security risks.

Gitorious Hook The Gitorious hook is as simple as GitHub one and it also takes no options.

cl[’status’].append(status.WebStatus (
#

166 Chapter 2. Buildbot Manual

https://your.gitlab.server/help/web_hooks

BuildBot Documentation, Release 0.8.12

change_hook_dialects={’gitorious’: True}

))

When this is setup you should add a POST service pointing to /change_hook/gitorious relative to the
root of the web status. For example, it the grid URL is http://builds.example.com/bbot/grid, then
point Gitorious to http://builds.example.com/change_hook/gitorious.

Warning: As in the previous case, the incoming HTTP requests for this hook are not authenticated by default.
Anyone who can access the web status can “fake” a request from your Gitorious server, potentially causing the
buildmaster to run arbitrary code.

To protect URL against unauthorized access you should use change_hook_auth option.

c[’status’].append(status.WebStatus (
...
change_hook_auth=["file:changehook.passwd"]
))

Then, create a Gitorious web hook (see http://gitorious.org/gitorious/pages/WebHooks) with a WebHook URL
like http://user:password@builds.example.com/bbot/change_hook/gitorious.

Note that as before, not using change_hook_auth can expose you to security risks.

Note: Web hooks are only available for local Gitorious installations, since this feature is not offered as part of
Gitorious.org yet.

MailNotifier

class buildbot.status.mail.MailNotifier

The buildbot can also send email when builds finish. The most common use of this is to tell developers when their
change has caused the build to fail. It is also quite common to send a message to a mailing list (usually named
builds or similar) about every build.

The MailNotifier status target is used to accomplish this. You configure it by specifying who mail should be
sent to, under what circumstances mail should be sent, and how to deliver the mail. It can be configured to only
send out mail for certain builders, and only send messages when the build fails, or when the builder transitions
from success to failure. It can also be configured to include various build logs in each message.

If a proper lookup function is configured, the message will be sent to the “interested users” list (Doing Things
With Users), which includes all developers who made changes in the build. By default, however, Buildbot does
not know how to construct an email addressed based on the information from the version control system. See the
lookup argument, below, for more information.

You can add additional, statically-configured, recipients with the ext raRecipients argument. You can also
add interested users by setting the owners build property to a list of users in the scheduler constructor (Config-
uring Schedulers).

Each MailNotifier sends mail to a single set of recipients. To send different kinds of mail to different
recipients, use multiple MailNotifiers.

The following simple example will send an email upon the completion of each build, to just those developers
whose Changes were included in the build. The email contains a description of the Bui 1d, its results, and URLs
where more information can be obtained.

from buildbot.plugins import status

mn = status.MailNotifier (fromaddr="buildbot@example.org", lookup="example.org")
c[’status’].append (mn)

2.4. Configuration 167

http://gitorious.org/gitorious/pages/WebHooks

BuildBot Documentation, Release 0.8.12

To get a simple one-message-per-build (say, for a mailing list), use the following form instead. This form does not
send mail to individual developers (and thus does not need the 1ookup= argument, explained below), instead it
only ever sends mail to the extra recipients named in the arguments:

mn = status.MailNotifier (fromaddr="buildbot@example.org",
sendToInterestedUsers=False,
extraRecipients=[’listaddr@example.org’])

If your SMTP host requires authentication before it allows you to send emails, this can also be done by specifying
smtpUser and smtpPassword:

mn = status.MailNotifier (fromaddr="myuser@gmail.com",
sendToInterestedUsers=False,
extraRecipients=["listaddr@example.org"],
relayhost="smtp.gmail.com", smtpPort=587,
smtpUser="myuser@gmail.com", smtpPassword="mypassword")

If you want to require Transport Layer Security (TLS), then you can also set useT1s:

mn = status.MailNotifier (fromaddr="myuser@gmail.com",
sendToInterestedUsers=False,
extraRecipients=["listaddr@example.org"],
useTls=True, relayhost="smtp.gmail.com", smtpPort=587,
smtpUser="myuser@gmail.com", smtpPassword="mypassword")

Note: If yousee twisted.mail.smtp.TLSRequiredError exceptions in the log while using TLS, this
can be due either to the server not supporting TLS or to a missing PyOpenSSL (http://pyopenssl.sourceforge.net/)

package on the buildmaster system.

In some cases it is desirable to have different information then what is provided in a standard MailNotifier message.
For this purpose MailNotifier provides the argument messageFormatter (a function) which allows for the
creation of messages with unique content.

For example, if only short emails are desired (e.g., for delivery to phones):

from buildbot.plugins import util, status

def messageFormatter (mode, name, build, results, master_status):
result = util.Results[results]

text = list ()

text.append ("STATUS: " % result.title())
return
"body’ : "\n".join (text),

"type’ : ’'plain’

mn = status.MailNotifier (fromaddr="buildbotlexample.org",
sendToInterestedUsers=False,
mode=("problem’,),
extraRecipients=[’listaddr@example.org’],
messageFormatter=messageFormatter)

Another example of a function delivering a customized html email containing the last 80 log lines of logs of the
last build step that finished is given below:

from buildbot.plugins import util, status
import cgi
import datetime

def html_message_formatter (mode, name, build, results, master_status):
"""pProvide a customized message to Buildbot’s MailNotifier.

168 Chapter 2. Buildbot Manual

http://pyopenssl.sourceforge.net/

BuildBot Documentation, Release 0.8.12

The last 80 lines of the log are provided as well as the changes
relevant to the build. Message content is formatted as html.

mmn

result = util.Results[results]

limit_lines = 80
text = list ()
text.append (u’ <h4>Build status: %s</h4>’ % result.upper())
text.append (u’ <table cellspacing="10"><tr>")
text.append (u"<td>Buildslave for this Build:</td><td>%s</td></tr>" % build.getSlavenam
if master_status.getURLForThing (build) :
text.append (u’ <tr><td>Complete logs for all bu